Mixed-effects Maximum Likelihood Difference Scaling

Size: px
Start display at page:

Download "Mixed-effects Maximum Likelihood Difference Scaling"

Transcription

1 Mixed-effects Maximum Likelihood Difference Scaling Kenneth Knoblauch Inserm U 846 Stem Cell and Brain Research Institute Dept. Integrative Neurosciences Bron, France Laurence T. Maloney Department of Psychology Center for Neural Science New York University New York, NY USA

2 Psychophysics, qu est-ce que c est? Gustav Fechner ( ) A body of techniques and analytic methods to study the relation between physical stimuli and the organism s (classification) behavior to infer internal states of the organism or their organization.

3

4 Difference scaling is a psychophysical procedure used to estimate a perceptual (interval) scale for stimuli distributed along a physical continuum. Example: VQ compressed images, Up to what compression rate can the observer detect no loss of image quality? 1:1 6:1 9:1 12:1 15:1 18:1 21:1 24:1 27:1 30:1 Charrier, Maloney, Cherifi & Knoblauch, (2007) J Opt Soc Am A, 24,

5 Difference Scaling: Experimental Procedure From a set of p stimuli, {I 1 <I 2 <... < I p }, a random quadruple, {I a,i b ; I c,i d }, is chosen (w/out replacement) and presented to the observer as in this example, on each trial: Between which pair (upper/lower) is the perceived difference greatest?

6 The aim of the Maximum Likelihood Difference Scaling (MLDS) procedure is to estimate scale values, (ψ 1, ψ 2,...,ψ p ), that best capture the observer s judgments of the perceptual difference between the stimuli in each pair. The MLDS package, available on CRAN, provides tools for performing this analysis in R. An example scale obtained from an observer for the apples sequence of VQ compressed images is shown on the right: Difference Scale Value Image: apples Color Space: L*a*b* Observer: PYB Compression Rate

7 The decision model Given a quadruple, q =(a, b ; c, d), from a single trial, we assume that the observer chooses the upper pair to be further apart when (a, b ; c, d) = ψ d ψ c ψ b ψ a + ɛ > 0, where and ψ i σ are estimated scale values, a scale factor. ɛ N (0, σ 2 )

8 Estimation of Scale Values Maloney and Yang (2003) used a direct method for estimating the maximum likelihood scale values, ( ( n ) ) 1 Rk ( ( ( ) δ q k δ q k L(Ψ, σ) = Φ 1 Φ σ σ k=1 where Ψ =( ψ 2, ψ 3,...,ψ p 1 ) δ(q k )= ψ d ψ c ψ b ψ a )) Rk ( Φ is the cumulative standard Gaussian (a probit analysis) R k ψ 1 =0, ψ p =1 is 0/1 if the judgment is lower/upper leaving for identifiability, p 1 parameters to estimate Maloney LT, Yang JN (2003). Maximum Likelihood Difference Scaling. Journal of Vision, 3(8), URL

9 Estimation of Scale Values The problem can also be conceptualized as a GLM. Each level of the stimulus is treated as a covariate in the model matrix, taking on values of 0 or ± 1 in the design matrix, depending on the presence of the stimulus in a trial and its weight in the decision variable, with absolute value signs removed. resp S1 S2 S3 S p p" p# p$ p% p& p' p( p) p* p For model identifiability, we drop the first column (fixing and σ =1). ψ 1 =0 Knoblauch & Maloney (2008) J. Stat. Software, 25, 1-25

10 Estimation of Scale Values > kk.ix <- make.ix.mat(kk) > head(kk.ix) resp stim.2 stim.3 stim.4 stim.5 stim.6 stim.7 stim.8 stim.9 stim.10 stim η (E [Y ]) = Xβ > glm(resp ~. - 1, family = binomial( "probit" ), data = kk.ix)

11 Can the MLDS analysis be extended within a mixed-effects modeling framework to account for random sensitivity variations across sessions and across observers? FD SF NM BA Difference Scale Test Control FD Test Control SF Test Control NM Test Control BA Elevation Difference Scaling of the Watercolor Illusion Devinck & Knoblauch (in preparation)

12 Mixed-effects models with MLDS Three Strategies 1. Re-parameterize in terms of parametric decision variable 2. Normalize to common scale 3. Regression on estimated coefficients

13 Knoblauch & Maloney, J. Stat. Soft., 25, Difference Scaling: Correlation in scatterplots r = 0 r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9 r = r Difference Scale Value ψ(r) r 2

14 Mixed-effects models with MLDS: Re-parameterize in terms of decision variable 6 indiv runs combined average = ψ d ψ c ψ b + ψ a re-parameterized as empirical decision variable: Difference Scale 4 2 DV = ρ 2 d ρ 2 c ρ 2 b + ρ 2 a then, fit GLMM 0 Φ 1 (E[Y ]) = (β + b i )DV, b N (0, σ 2 ) r

15 resp S1 S2 S3 S4 Obs DV OL S S S S S S > library(lme4)... > gm1 <- glmer( resp ~ DV + (DV + 0 Obs) + 0, allraw.df, binomial(probit) ) > summary( gm1 ) Generalized linear mixed model fit by the Laplace approximation Formula: resp ~ DV + (DV + 0 Obs) + 0 Data: allraw.df AIC BIC loglik deviance Random effects: Groups Name Variance Std.Dev. Obs DV Number of obs: 4620, groups: Obs, 7 Fixed effects: Estimate Std. Error z value Pr(> z ) DV <2e-16 ***

16 Mixed-effects models with MLDS: Re-parameterize in terms of decision variable Difference Scale indiv runs combined average glmm pred > coef(gm1) $Obs DV S S S S S S S r

17 Mixed-effects models with MLDS: Re-parameterize in terms of decision variable S5 S6 S Difference Scale 6 S1 S2 S3 0 S r

18 Mixed-effects models with MLDS: Normalize to common scale Experiment of Fleming, Jäkel and Maloney (2011). Perception of transparency as a function of rendered index of refraction Difference Scale Index of Refraction No simple functional description of relation because of kink in curve Use each individual s scale value to compute decision variables and fit GLMM to these value; normalizes out individual shape differences. DV o = ˆψ d,o ˆψ c,o ˆψ b,o + ˆψ a,o Fleming, RW, Jäkel, F, Maloney, LT (2011). Visual perception of thick transparent materials. Psychol Sci, 22, 6:

19 Mixed-effects models with MLDS: Normalize to common scale O4 O5 O Difference Scale O1 O2 O Index of Refraction

20 Mixed-effects models with MLDS: Regression on estimated coefficients For this approach we use lmer and fit the coefficients as a function of the stimulus level using MLDS directly. ˆψ(S) (β 1 + b 1 )S +(β 2 + b 2 )S ɛ By taking the log of the coefficients, we transform the multiplicative effect to additive. We use polynomials to fit the fixed effect but also to model random differences in the shapes of the function across observers log( ˆψ(S)) (β 0 + b 0)+(β 1 + b 1)S +(β 2 + b 2)S ɛ Difference Scale Index of Refraction

21 Mixed-effects models with MLDS: Regression on estimated coefficients log( ˆψ(S)) (β 0 + b 0)+(β 1 + b 1)S +(β 2 + b 2)S ɛ First, test random effects:

22 Then, test fixed effects: Mixed-effects models with MLDS: Regression on estimated coefficients

23 Mixed-effects models with MLDS: Regression on estimated coefficients Linear Scale Log Scale O4 O5 O6 O4 O5 O Difference Scale 15 O1 O2 O3 5 Log Difference Scale 1.0 O1 O2 O Index of Refraction Index of Refraction

24 - Difference Scaling is a psychophysical technique that permits estimation of interval perceptual scales by maximum likelihood - The approach is implemented in the R package MLDS on CRAN. - We can introduce mixed-effects into MLDS models using the lme4 package (and perhaps others) via a number of strategies. Thank you.

25

MLDS: Maximum Likelihood Difference Scaling in R

MLDS: Maximum Likelihood Difference Scaling in R MLDS: Maximum Likelihood Difference Scaling in R Kenneth Knoblauch Inserm U 846 Département Neurosciences Intégratives Institut Cellule Souche et Cerveau Bron, France Laurence T. Maloney Department of

More information

Maximum Likelihood Conjoint Measurement in R

Maximum Likelihood Conjoint Measurement in R Maximum Likelihood Conjoint Measurement in R Kenneth Knoblauch¹, Blaise Tandeau de Marsac¹, Laurence T. Maloney² 1. Inserm, U846 Stem Cell and Brain Research Institute Dept. Integrative Neurosciences Bron,

More information

Psychophysics, Classical Psychophysical Paradigm Event. Observer. Response

Psychophysics, Classical Psychophysical Paradigm Event. Observer. Response INTRODUCTION Estimating Perceptual Scales with Interval Properties Kenneth Knoblauch & Laurence T. Maloney" Psychophysics, Introduction. La Psychophysique de finition? qu est-ce que : c est La psychophysique

More information

Estimating Classification Images with. Generalized Linear and Additive Models

Estimating Classification Images with. Generalized Linear and Additive Models Estimating Classification Images with Generalized Linear and Additive Models Kenneth Knoblauch 1 Laurence T. Maloney 2 1 INSERM, U846, Stem Cell and Brain Research Institute, Département Neurosciences

More information

STAT 526 Advanced Statistical Methodology

STAT 526 Advanced Statistical Methodology STAT 526 Advanced Statistical Methodology Fall 2017 Lecture Note 10 Analyzing Clustered/Repeated Categorical Data 0-0 Outline Clustered/Repeated Categorical Data Generalized Linear Mixed Models Generalized

More information

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data Outline Mixed models in R using the lme4 package Part 3: Longitudinal data Douglas Bates Longitudinal data: sleepstudy A model with random effects for intercept and slope University of Wisconsin - Madison

More information

Mixed models in R using the lme4 package Part 7: Generalized linear mixed models

Mixed models in R using the lme4 package Part 7: Generalized linear mixed models Mixed models in R using the lme4 package Part 7: Generalized linear mixed models Douglas Bates University of Wisconsin - Madison and R Development Core Team University of

More information

lme4 Luke Chang Last Revised July 16, Fitting Linear Mixed Models with a Varying Intercept

lme4 Luke Chang Last Revised July 16, Fitting Linear Mixed Models with a Varying Intercept lme4 Luke Chang Last Revised July 16, 2010 1 Using lme4 1.1 Fitting Linear Mixed Models with a Varying Intercept We will now work through the same Ultimatum Game example from the regression section and

More information

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates Madison January 11, 2011 Contents 1 Definition 1 2 Links 2 3 Example 7 4 Model building 9 5 Conclusions 14

More information

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36 20. REML Estimation of Variance Components Copyright c 2018 (Iowa State University) 20. Statistics 510 1 / 36 Consider the General Linear Model y = Xβ + ɛ, where ɛ N(0, Σ) and Σ is an n n positive definite

More information

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates 2011-03-16 Contents 1 Generalized Linear Mixed Models Generalized Linear Mixed Models When using linear mixed

More information

Outline. Mixed models in R using the lme4 package Part 5: Generalized linear mixed models. Parts of LMMs carried over to GLMMs

Outline. Mixed models in R using the lme4 package Part 5: Generalized linear mixed models. Parts of LMMs carried over to GLMMs Outline Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates University of Wisconsin - Madison and R Development Core Team UseR!2009,

More information

Outline. Statistical inference for linear mixed models. One-way ANOVA in matrix-vector form

Outline. Statistical inference for linear mixed models. One-way ANOVA in matrix-vector form Outline Statistical inference for linear mixed models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark general form of linear mixed models examples of analyses using linear mixed

More information

Workshop 9.3a: Randomized block designs

Workshop 9.3a: Randomized block designs -1- Workshop 93a: Randomized block designs Murray Logan November 23, 16 Table of contents 1 Randomized Block (RCB) designs 1 2 Worked Examples 12 1 Randomized Block (RCB) designs 11 RCB design Simple Randomized

More information

Motion influences the Effects of Systematic Chromatic Changes

Motion influences the Effects of Systematic Chromatic Changes Motion influences the Effects of Systematic Chromatic Changes Peggy Gérardin 1, Philippe Roud 1, Sabine Süsstrunk 1 and Kenneth Knoblauch 2,3 1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,

More information

A brief introduction to mixed models

A brief introduction to mixed models A brief introduction to mixed models University of Gothenburg Gothenburg April 6, 2017 Outline An introduction to mixed models based on a few examples: Definition of standard mixed models. Parameter estimation.

More information

Lecture 9 STK3100/4100

Lecture 9 STK3100/4100 Lecture 9 STK3100/4100 27. October 2014 Plan for lecture: 1. Linear mixed models cont. Models accounting for time dependencies (Ch. 6.1) 2. Generalized linear mixed models (GLMM, Ch. 13.1-13.3) Examples

More information

Non-Gaussian Response Variables

Non-Gaussian Response Variables Non-Gaussian Response Variables What is the Generalized Model Doing? The fixed effects are like the factors in a traditional analysis of variance or linear model The random effects are different A generalized

More information

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58 Generalized Linear Mixed-Effects Models Copyright c 2015 Dan Nettleton (Iowa State University) Statistics 510 1 / 58 Reconsideration of the Plant Fungus Example Consider again the experiment designed to

More information

Linear, Generalized Linear, and Mixed-Effects Models in R. Linear and Generalized Linear Models in R Topics

Linear, Generalized Linear, and Mixed-Effects Models in R. Linear and Generalized Linear Models in R Topics Linear, Generalized Linear, and Mixed-Effects Models in R John Fox McMaster University ICPSR 2018 John Fox (McMaster University) Statistical Models in R ICPSR 2018 1 / 19 Linear and Generalized Linear

More information

Generalized Linear and Nonlinear Mixed-Effects Models

Generalized Linear and Nonlinear Mixed-Effects Models Generalized Linear and Nonlinear Mixed-Effects Models Douglas Bates University of Wisconsin - Madison and R Development Core Team University of Potsdam August 8, 2008 Outline

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

A Framework for Testing Identifiability of Bayesian Models of Perception

A Framework for Testing Identifiability of Bayesian Models of Perception A Framework for Testing Identifiability of Bayesian Models of Perception Luigi Acerbi,2 Wei Ji Ma 2 Sethu Vijayakumar School of Informatics, University of Edinburgh, UK 2 Center for Neural Science & Department

More information

Correlated Data: Linear Mixed Models with Random Intercepts

Correlated Data: Linear Mixed Models with Random Intercepts 1 Correlated Data: Linear Mixed Models with Random Intercepts Mixed Effects Models This lecture introduces linear mixed effects models. Linear mixed models are a type of regression model, which generalise

More information

HW 2 due March 6 random effects and mixed effects models ELM Ch. 8 R Studio Cheatsheets In the News: homeopathic vaccines

HW 2 due March 6 random effects and mixed effects models ELM Ch. 8 R Studio Cheatsheets In the News: homeopathic vaccines Today HW 2 due March 6 random effects and mixed effects models ELM Ch. 8 R Studio Cheatsheets In the News: homeopathic vaccines STA 2201: Applied Statistics II March 4, 2015 1/35 A general framework y

More information

Mixed effects models

Mixed effects models Mixed effects models The basic theory and application in R Mitchel van Loon Research Paper Business Analytics Mixed effects models The basic theory and application in R Author: Mitchel van Loon Research

More information

Power analysis examples using R

Power analysis examples using R Power analysis examples using R Code The pwr package can be used to analytically compute power for various designs. The pwr examples below are adapted from the pwr package vignette, which is available

More information

Functional form of motion priors in human motion perception

Functional form of motion priors in human motion perception Functional form of motion priors in human motion perception Hongjing Lu,2 hongjing@ucla.edu Alan L. F. Lee alanlee@ucla.edu Tungyou Lin 3 tungyoul@math.ucla.edu Luminita Vese 3 lvese@math.ucla.edu Alan

More information

Generalized Linear Models

Generalized Linear Models York SPIDA John Fox Notes Generalized Linear Models Copyright 2010 by John Fox Generalized Linear Models 1 1. Topics I The structure of generalized linear models I Poisson and other generalized linear

More information

Package HGLMMM for Hierarchical Generalized Linear Models

Package HGLMMM for Hierarchical Generalized Linear Models Package HGLMMM for Hierarchical Generalized Linear Models Marek Molas Emmanuel Lesaffre Erasmus MC Erasmus Universiteit - Rotterdam The Netherlands ERASMUSMC - Biostatistics 20-04-2010 1 / 52 Outline General

More information

Generalized Linear. Mixed Models. Methods and Applications. Modern Concepts, Walter W. Stroup. Texts in Statistical Science.

Generalized Linear. Mixed Models. Methods and Applications. Modern Concepts, Walter W. Stroup. Texts in Statistical Science. Texts in Statistical Science Generalized Linear Mixed Models Modern Concepts, Methods and Applications Walter W. Stroup CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint

More information

Latent random variables

Latent random variables Latent random variables Imagine that you have collected egg size data on a fish called Austrolebias elongatus, and the graph of egg size on body size of the mother looks as follows: Egg size (Area) 4.6

More information

Exploring Hierarchical Linear Mixed Models

Exploring Hierarchical Linear Mixed Models Exploring Hierarchical Linear Mixed Models 1/49 Last time... A Greenhouse Experiment testing C:N Ratios Sam was testing how changing the C:N Ratio of soil affected plant leaf growth. He had 3 treatments.

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions

Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions Douglas Bates Department of Statistics University of Wisconsin - Madison Madison January 11, 2011

More information

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R 2nd Edition Brian S. Everitt and Torsten Hothorn CHAPTER 12 Analysing Longitudinal Data I: Computerised Delivery of Cognitive Behavioural Therapy Beat the Blues

More information

Multivariate Statistics in Ecology and Quantitative Genetics Summary

Multivariate Statistics in Ecology and Quantitative Genetics Summary Multivariate Statistics in Ecology and Quantitative Genetics Summary Dirk Metzler & Martin Hutzenthaler http://evol.bio.lmu.de/_statgen 5. August 2011 Contents Linear Models Generalized Linear Models Mixed-effects

More information

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R 2nd Edition. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R 2nd Edition Brian S. Everitt and Torsten Hothorn CHAPTER 12 Analysing Longitudinal Data I: Computerised Delivery of Cognitive Behavioural Therapy Beat the Blues

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Parameter Estimation. Industrial AI Lab.

Parameter Estimation. Industrial AI Lab. Parameter Estimation Industrial AI Lab. Generative Model X Y w y = ω T x + ε ε~n(0, σ 2 ) σ 2 2 Maximum Likelihood Estimation (MLE) Estimate parameters θ ω, σ 2 given a generative model Given observed

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - part III Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs.

More information

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1 Parametric Modelling of Over-dispersed Count Data Part III / MMath (Applied Statistics) 1 Introduction Poisson regression is the de facto approach for handling count data What happens then when Poisson

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 14 1 / 64 Data structure and Model t1 t2 tn i 1st subject y 11 y 12 y 1n1 2nd subject

More information

Solution Anti-fungal treatment (R software)

Solution Anti-fungal treatment (R software) Contents Solution Anti-fungal treatment (R software) Question 1: Data import 2 Question 2: Compliance with the timetable 4 Question 3: population average model 5 Question 4: continuous time model 9 Question

More information

Experimental design of fmri studies & Resting-State fmri

Experimental design of fmri studies & Resting-State fmri Methods & Models for fmri Analysis 2016 Experimental design of fmri studies & Resting-State fmri Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian

More information

Chapter 1. Modeling Basics

Chapter 1. Modeling Basics Chapter 1. Modeling Basics What is a model? Model equation and probability distribution Types of model effects Writing models in matrix form Summary 1 What is a statistical model? A model is a mathematical

More information

Value Added Modeling

Value Added Modeling Value Added Modeling Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background for VAMs Recall from previous lectures

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Applied Asymptotics Case studies in higher order inference

Applied Asymptotics Case studies in higher order inference Applied Asymptotics Case studies in higher order inference Nancy Reid May 18, 2006 A.C. Davison, A. R. Brazzale, A. M. Staicu Introduction likelihood-based inference in parametric models higher order approximations

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Experimental design of fmri studies

Experimental design of fmri studies Methods & Models for fmri Analysis 2017 Experimental design of fmri studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

More information

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 10 Analysing Longitudinal Data I: Computerised Delivery of Cognitive Behavioural Therapy Beat the Blues 10.1 Introduction

More information

Overdispersion Workshop in generalized linear models Uppsala, June 11-12, Outline. Overdispersion

Overdispersion Workshop in generalized linear models Uppsala, June 11-12, Outline. Overdispersion Biostokastikum Overdispersion is not uncommon in practice. In fact, some would maintain that overdispersion is the norm in practice and nominal dispersion the exception McCullagh and Nelder (1989) Overdispersion

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

Normal distribution We have a random sample from N(m, υ). The sample mean is Ȳ and the corrected sum of squares is S yy. After some simplification,

Normal distribution We have a random sample from N(m, υ). The sample mean is Ȳ and the corrected sum of squares is S yy. After some simplification, Likelihood Let P (D H) be the probability an experiment produces data D, given hypothesis H. Usually H is regarded as fixed and D variable. Before the experiment, the data D are unknown, and the probability

More information

WU Weiterbildung. Linear Mixed Models

WU Weiterbildung. Linear Mixed Models Linear Mixed Effects Models WU Weiterbildung SLIDE 1 Outline 1 Estimation: ML vs. REML 2 Special Models On Two Levels Mixed ANOVA Or Random ANOVA Random Intercept Model Random Coefficients Model Intercept-and-Slopes-as-Outcomes

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Zurich SPM Course 2016 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering (IBT) University and ETH Zürich With many thanks for

More information

Introduction and Background to Multilevel Analysis

Introduction and Background to Multilevel Analysis Introduction and Background to Multilevel Analysis Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Background and

More information

How to deal with non-linear count data? Macro-invertebrates in wetlands

How to deal with non-linear count data? Macro-invertebrates in wetlands How to deal with non-linear count data? Macro-invertebrates in wetlands In this session we l recognize the advantages of making an effort to better identify the proper error distribution of data and choose

More information

Figure 36: Respiratory infection versus time for the first 49 children.

Figure 36: Respiratory infection versus time for the first 49 children. y BINARY DATA MODELS We devote an entire chapter to binary data since such data are challenging, both in terms of modeling the dependence, and parameter interpretation. We again consider mixed effects

More information

Generalized linear models

Generalized linear models Generalized linear models Douglas Bates November 01, 2010 Contents 1 Definition 1 2 Links 2 3 Estimating parameters 5 4 Example 6 5 Model building 8 6 Conclusions 8 7 Summary 9 1 Generalized Linear Models

More information

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models:

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models: Marginal models: based on the consequences of dependence on estimating model parameters.

More information

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/ Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Statistical Analysis in Ecology using R Linear Models/GLM Ing. Daniel Volařík, Ph.D. 13.

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model Stat 3302 (Spring 2017) Peter F. Craigmile Simple linear logistic regression (part 1) [Dobson and Barnett, 2008, Sections 7.1 7.3] Generalized linear models for binary data Beetles dose-response example

More information

Stat 209 Lab: Linear Mixed Models in R This lab covers the Linear Mixed Models tutorial by John Fox. Lab prepared by Karen Kapur. ɛ i Normal(0, σ 2 )

Stat 209 Lab: Linear Mixed Models in R This lab covers the Linear Mixed Models tutorial by John Fox. Lab prepared by Karen Kapur. ɛ i Normal(0, σ 2 ) Lab 2 STAT209 1/31/13 A complication in doing all this is that the package nlme (lme) is supplanted by the new and improved lme4 (lmer); both are widely used so I try to do both tracks in separate Rogosa

More information

Chapter 5: Generalized Linear Models

Chapter 5: Generalized Linear Models w w w. I C A 0 1 4. o r g Chapter 5: Generalized Linear Models b Curtis Gar Dean, FCAS, MAAA, CFA Ball State Universit: Center for Actuarial Science and Risk Management M Interest in Predictive Modeling

More information

Random and Mixed Effects Models - Part III

Random and Mixed Effects Models - Part III Random and Mixed Effects Models - Part III Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Quasi-F Tests When we get to more than two categorical factors, some times there are not nice F tests

More information

Generalized linear models

Generalized linear models Generalized linear models Christopher F Baum ECON 8823: Applied Econometrics Boston College, Spring 2016 Christopher F Baum (BC / DIW) Generalized linear models Boston College, Spring 2016 1 / 1 Introduction

More information

Neural Spike Train Analysis 1: Introduction to Point Processes

Neural Spike Train Analysis 1: Introduction to Point Processes SAMSI Summer 2015: CCNS Computational Neuroscience Summer School Neural Spike Train Analysis 1: Introduction to Point Processes Uri Eden BU Department of Mathematics and Statistics July 27, 2015 Spikes

More information

Experimental design of fmri studies

Experimental design of fmri studies Experimental design of fmri studies Sandra Iglesias With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff SPM Course 2015 Overview of SPM Image time-series Kernel

More information

Outline. The ordinal package: Analyzing ordinal data. Ordinal scales are commonly used (attribute rating or liking) Ordinal data the wine data

Outline. The ordinal package: Analyzing ordinal data. Ordinal scales are commonly used (attribute rating or liking) Ordinal data the wine data Outline Outline The ordinal package: Analyzing ordinal data Per Bruun Brockhoff DTU Compute Section for Statistics Technical University of Denmark perbb@dtu.dk August 0 015 c Per Bruun Brockhoff (DTU)

More information

Analysis of binary repeated measures data with R

Analysis of binary repeated measures data with R Analysis of binary repeated measures data with R Right-handed basketball players take right and left-handed shots from 3 locations in a different random order for each player. Hit or miss is recorded.

More information

Piotr Majer Risk Patterns and Correlated Brain Activities

Piotr Majer Risk Patterns and Correlated Brain Activities Alena My²i ková Piotr Majer Song Song Alena Myšičková Peter N. C. Mohr Peter N. C. Mohr Wolfgang K. Härdle Song Song Hauke R. Heekeren Wolfgang K. Härdle Hauke R. Heekeren C.A.S.E. Centre C.A.S.E. for

More information

Supplemental Data: Appendix

Supplemental Data: Appendix Supplemental Data: Appendix A Demonstration of model identifiability A.1 Identifiability of of 2-ADC model In this section, we demonstrate that there is a one-to-one mapping from the set of parameters

More information

Topic 20: Single Factor Analysis of Variance

Topic 20: Single Factor Analysis of Variance Topic 20: Single Factor Analysis of Variance Outline Single factor Analysis of Variance One set of treatments Cell means model Factor effects model Link to linear regression using indicator explanatory

More information

Position Variance, Recurrence and Perceptual Learning

Position Variance, Recurrence and Perceptual Learning Position Variance, Recurrence and Perceptual Learning Zhaoping Li Peter Dayan Gatsby Computational Neuroscience Unit 7 Queen Square, London, England, WCN 3AR. zhaoping@gatsby.ucl.ac.uk dayan@gatsby.ucl.ac.uk

More information

Supplemental Resource: Brain and Cognitive Sciences Statistics & Visualization for Data Analysis & Inference January (IAP) 2009

Supplemental Resource: Brain and Cognitive Sciences Statistics & Visualization for Data Analysis & Inference January (IAP) 2009 MIT OpenCourseWare http://ocw.mit.edu Supplemental Resource: Brain and Cognitive Sciences Statistics & Visualization for Data Analysis & Inference January (IAP) 2009 For information about citing these

More information

Random and Mixed Effects Models - Part II

Random and Mixed Effects Models - Part II Random and Mixed Effects Models - Part II Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Two-Factor Random Effects Model Example: Miles per Gallon (Neter, Kutner, Nachtsheim, & Wasserman, problem

More information

9 Generalized Linear Models

9 Generalized Linear Models 9 Generalized Linear Models The Generalized Linear Model (GLM) is a model which has been built to include a wide range of different models you already know, e.g. ANOVA and multiple linear regression models

More information

22s:152 Applied Linear Regression. Returning to a continuous response variable Y...

22s:152 Applied Linear Regression. Returning to a continuous response variable Y... 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y... Ordinary Least Squares Estimation The classical models we have fit so far with a continuous

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Aedes egg laying behavior Erika Mudrak, CSCU November 7, 2018

Aedes egg laying behavior Erika Mudrak, CSCU November 7, 2018 Aedes egg laying behavior Erika Mudrak, CSCU November 7, 2018 Introduction The current study investivates whether the mosquito species Aedes albopictus preferentially lays it s eggs in water in containers

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ)

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ) 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y Ordinary Least Squares Estimation The classical models we have fit so far with a continuous response

More information

Sta s cal Models: Day 3

Sta s cal Models: Day 3 Sta s cal Models: Day 3 Linear Mixed Effects Models and Generalized Linear Models Vincenzo Coia & David Kepplinger Applied Sta s cs and Data Science Group UBC Sta s cs February 9, 2017 Linear Mixed Effects

More information

Linear Mixed Models. One-way layout REML. Likelihood. Another perspective. Relationship to classical ideas. Drawbacks.

Linear Mixed Models. One-way layout REML. Likelihood. Another perspective. Relationship to classical ideas. Drawbacks. Linear Mixed Models One-way layout Y = Xβ + Zb + ɛ where X and Z are specified design matrices, β is a vector of fixed effect coefficients, b and ɛ are random, mean zero, Gaussian if needed. Usually think

More information

R Output for Linear Models using functions lm(), gls() & glm()

R Output for Linear Models using functions lm(), gls() & glm() LM 04 lm(), gls() &glm() 1 R Output for Linear Models using functions lm(), gls() & glm() Different kinds of output related to linear models can be obtained in R using function lm() {stats} in the base

More information

Generalized Linear Models in R

Generalized Linear Models in R Generalized Linear Models in R NO ORDER Kenneth K. Lopiano, Garvesh Raskutti, Dan Yang last modified 28 4 2013 1 Outline 1. Background and preliminaries 2. Data manipulation and exercises 3. Data structures

More information

Semiparametric Generalized Linear Models

Semiparametric Generalized Linear Models Semiparametric Generalized Linear Models North American Stata Users Group Meeting Chicago, Illinois Paul Rathouz Department of Health Studies University of Chicago prathouz@uchicago.edu Liping Gao MS Student

More information

36-463/663: Multilevel & Hierarchical Models

36-463/663: Multilevel & Hierarchical Models 36-463/663: Multilevel & Hierarchical Models (P)review: in-class midterm Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 In-class midterm Closed book, closed notes, closed electronics (otherwise I have

More information

Solution pigs exercise

Solution pigs exercise Solution pigs exercise Course repeated measurements - R exercise class 2 November 24, 2017 Contents 1 Question 1: Import data 3 1.1 Data management..................................... 3 1.2 Inspection

More information

Single-level Models for Binary Responses

Single-level Models for Binary Responses Single-level Models for Binary Responses Distribution of Binary Data y i response for individual i (i = 1,..., n), coded 0 or 1 Denote by r the number in the sample with y = 1 Mean and variance E(y) =

More information

Luminance, disparity and range statistics in 3D natural scenes

Luminance, disparity and range statistics in 3D natural scenes Luminance, disparity and range statistics in 3D natural scenes Yang Liu* a, Lawrence K. Cormack b, Alan C. Bovik a a LIVE, Dept. of ECE, Univ. of Texas at Austin, Austin, TX b Center of Perceptual Systems,

More information

Model Estimation Example

Model Estimation Example Ronald H. Heck 1 EDEP 606: Multivariate Methods (S2013) April 7, 2013 Model Estimation Example As we have moved through the course this semester, we have encountered the concept of model estimation. Discussions

More information

Fitting Mixed-Effects Models Using the lme4 Package in R

Fitting Mixed-Effects Models Using the lme4 Package in R Fitting Mixed-Effects Models Using the lme4 Package in R Douglas Bates University of Wisconsin - Madison and R Development Core Team International Meeting of the Psychometric

More information

Mixed models in R using the lme4 package Part 3: Linear mixed models with simple, scalar random effects

Mixed models in R using the lme4 package Part 3: Linear mixed models with simple, scalar random effects Mixed models in R using the lme4 package Part 3: Linear mixed models with simple, scalar random effects Douglas Bates University of Wisconsin - Madison and R Development Core Team

More information

Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne

Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne Applied Statistics J. Blanchet and J. Wadsworth Institute of Mathematics, Analysis, and Applications EPF Lausanne An MSc Course for Applied Mathematicians, Fall 2012 Outline 1 Motivation: Why Applied Statistics?

More information

Supplementary Figure 1. Characterization of the single-photon quantum light source based on spontaneous parametric down-conversion (SPDC).

Supplementary Figure 1. Characterization of the single-photon quantum light source based on spontaneous parametric down-conversion (SPDC). .2 Classical light source.8 g (2) ().6.4.2 EMCCD SPAD 2 3.2.4.6.8..2.4.6.8.2 Mean number of photon pairs per pump pulse 4 5 6 7 8 9 2 3 4 Supplementary Figure. Characterization of the single-photon quantum

More information