CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation?

Size: px
Start display at page:

Download "CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation?"

Transcription

1 BA01 ENGINEERING MATHEMATICS 01 CHAPTER DIFFERENTIATION.1 FIRST ORDER DIFFERENTIATION What is Differentiation? Differentiation is all about finding rates of change of one quantity compared to another. We need differentiation when the rate of change is not constant. Notation for the Derivative IMPORTANT: The derivative (also called differentiation) can be written in several ways. This can cause some confusion when we first learn about differentiation. The following are equivalent ways of writing the first derivative of y = f(): d ' or ( ) or ' f y.1.1 RULES OF DIFFERENTIATION A. Derivative of Power Function y a n So na d n1 Eamples: 1. Find the derivative of y = -7 6 Note: We can do this in one step: We can write: OR y' =

2 BA01 ENGINEERING MATHEMATICS 01 Eample 1 Find the derivative for each of the following function. a) y b) y 5 c) y 4 1 d) y e) y f) y g) y h) y 5 i) 1 y j) y 5 k) y l) y 9

3 BA01 ENGINEERING MATHEMATICS 01 B. Derivative of a Constant Function y a So 0 d Eample Find the derivative for each of the following functions. a) y 1 b) y c) y 40 d) y 1.1. THE DERIVATIVE OF SUMMATION AND SUBSTRACTION If ( ) and ( ) are differentiable functions, the derivative of y f g y f g and f ' g ' d f ' g ' d Eamples: 1. Find the derivative of y = 5-1 y = 5 1 Now, 0

4 BA01 ENGINEERING MATHEMATICS 01 And since we can write: So,. Find the derivative of Now, taking each term in turn: (using ) (using ) (since - = -( 1 ) and so the derivative will be -( 0 ) = -1) So (since ) 1

5 BA01 ENGINEERING MATHEMATICS 01 Eample Find the following derivatives; a) 4 y 6 b) y c) 4 d) p q q s t t e) 1 1 y f) 4 y 9 5 f) y 14 y g) 1

6 BA01 ENGINEERING MATHEMATICS 01 Eercise Find the derivative of the following function; 4 i. f f 6 9 ii. 11 iii. y 8 5 iv. y 1

7 BA01 ENGINEERING MATHEMATICS THE DERIVATIVES OF COMPOSITE FUNCTION Chain Rule If y f u, where, u is a function of, so: du d du d This means we need to 1. Recognise u (always choose the inner-most epression, usually the part inside brackets, or under the square root sign).. Then we need to re-epress y in terms of u.. Then we differentiate y (with respect to u), then we re-epress everything in terms of. 4. The net step is to find du d. 5. Then we multiply du Eample 1: and du d. Differentiate each the following function with respect to. i. y = ( + ) 5 In this case, we let u = + and then y = u 5. We see that: u is a function of and y is a function of u. For the chain rule, we firstly need to find and. So 4

8 BA01 ENGINEERING MATHEMATICS 01 ii. In this case, we let u = 4 and then. Once again, u is a function of and y is a function of u. Using the chain rule, we firstly need to find: and So i. y 4 ii. 1 y 4 9 iii. y 4 5

9 BA01 ENGINEERING MATHEMATICS 01 The Etended Power Rule An etension of the chain rule is the Power Rule for differentiating. We are finding the derivative of u n (a power of a function): n y a b k k a b d d a b n1 n k 1 kan a b d n k 1 n Eample: 1. In the case of we have a power of a function. If we let u = - 1 then y = u 4. So now y is written as a power of u; and u is a function of [ u = f() ]. To find the derivative of such an epression, we can use our new rule: where u = - 1 and n = 4. So 6

10 BA01 ENGINEERING MATHEMATICS 01 We could, of course, use the chain rule, as before: d du * du d a) 5 y 4 b) y 4 c) y 4 d) 8 y 6 7 e) y 1 5 f) y 7 1 g) y 5 1 h) y i) 7 y 4 7

11 BA01 ENGINEERING MATHEMATICS DERIVATIVE OF A PRODUCT FUNCTION If u and v are two functions of, then the derivative of the product uv is given by... In words, this can be remembered as: "The derivative of a product of two functions is the first times the derivative of the second, plus the second times the derivative of the first." Eample: If we have a product like y = ( + 6)( + 5 ) we can find the derivative without multiplying out the epression on the right. We use the substitutions u = + 6 and v = + 5. We can then use the PRODUCT RULE: We first find: and Then we can write: 8

12 BA01 ENGINEERING MATHEMATICS 01 Eercise: a) y 4 5 b) y 1 1 c) y 1 4 e) y 8 1 d) y f) y DERIVATIVE OF A QUOTIENT FUNCTION (A quotient is just a fraction.) If u and v are two functions of, then the derivative of the quotient u/v is given by... In words, this can be remembered as: 9

13 BA01 ENGINEERING MATHEMATICS 01 "The derivative of a quotient equals bottom times derivative of top minus top times derivative of the bottom, divided by bottom squared." Eample: 1. We wish to find the derivative of the epression: Solution: We recognise that it is in the form:. We can use the substitutions: u = and v = 4 Using the quotient rule, we first need to find: And Then 40

14 BA01 ENGINEERING MATHEMATICS 01. Find if. Solution We can use the substitutions: u = 4 and v = + Using the quotient rule, we first need: Then and 41

15 BA01 ENGINEERING MATHEMATICS 01 a) y 5 4 b) y 8 c) y d) y t e) g s s 5 s f) g 4 4

16 BA01 ENGINEERING MATHEMATICS 01 Challenge Find the derivative of 4

17 BA01 ENGINEERING MATHEMATICS DERIVATIVE OF LOGARITHMIC FUNCTION If, y ln 1 d y ln u 1 d u d a ln a b d a b Eample: Differentiate each of the following functions; i. y ln 1 d d d 1 1 iv. yln 1 ii. y ln 4 iii. yln 5 44

18 BA01 ENGINEERING MATHEMATICS 01 Eercise: 5 1. y ln 4. yln 7. y ln 4 4. y ln 1 5. y ln y ln 1 45

19 BA01 ENGINEERING MATHEMATICS DERIVATIVE OF EXPONENTIAL FUNCTION If, So, y e e d Eample: Differentiate each of the following functions; i. y e 4 e d e 4 4 4e d 4 d 4 4 ii. y e e d e 6e d d 6 iii. y e d e d d e 46

20 BA01 ENGINEERING MATHEMATICS 01 Eercise: y 1 e 1 ii. y e iii. i. 5 y e iv. y e v. vi. y 1e y e ln 47

21 BA01 ENGINEERING MATHEMATICS DERIVATIVE OF TRIGONOMETRY FUNCTIONS If, y sin cos d y cos sin d y tan sec d Eample: Differentiate each of the following with respect to ; i. y sin v. y sin d cos d d cos 1 cos ii. y cos d sin d d sin 6sin iii. y tan 6 vi. y cos 5 vii. y cos 1 iv. ysin 1 48

22 BA01 ENGINEERING MATHEMATICS 01 Eercise 1: i. y sin 4 ii. ycos 1 iii. y tan 1 iv. y sin v. 4 y tan vi. 4 y sin

23 BA01 ENGINEERING MATHEMATICS 01 Eercise : i. y cos ii. y sin iii. sin y 1 sin iv. y sin cos v. tan y vi. y e sin vii. y e viii. y ln i. ln y 50

24 BA01 ENGINEERING MATHEMATICS PARAMETRIC DIFFERENTIATION The implicit of relationship of and y can be epressed in a simpler form by using a third variable, known as the parameter. Eample: Find in terms of the parameter for d 1. t, y t t t d t dt y t t d t 1 d dt * dt d 1 t 1* t t 1 t. t, y 4 4t 4t 51

25 BA01 ENGINEERING MATHEMATICS 01. e t, y sin t Eercise: Find d in terms of the parameter for i. t y t, 1 ii. 5cos t, y 7sin t 1 iii., y 1 t t iv. t v. cos a, y a sin a vi. sin t, y e t t, y t t 5

26 BA01 ENGINEERING MATHEMATICS SECOND DERIVATIVE The second derivative is what you get when you differentiate the derivative. Remember that the derivative of y with respect to is written. The second derivative is written d d y, pronounced "dee two y by d squared". d Eample: Find d and d y d if a) y d

27 BA01 ENGINEERING MATHEMATICS 01 Eercise: Find d and d y if : d f t 45t 11t t i. 1 ii. y iii. y p q 1 v. y 5 iv. vi. f 1 54

28 BA01 ENGINEERING MATHEMATICS 01 POLITEKNIK KOTA BHARU JABATAN MATEMATIK, SAINS DAN KOMPUTER BA 01 ENGINEERING MATHEMATICS PAST YEAR FINAL EXAMINATION QUESTIONS 1) Using the suitable method differentiate the following variables. a) ( ) ( ) b) c) d) ( ) e) ) Differentiate the equation below. a) b) ( ) c) d) e) ( ) f) ( ) ) Derive the equation below: a) ( )( ) b) c) ( ) d) ( ) e) 4) Using the suitable method differentiate the following variables a) b) ( ) c) ( ) d) ( ) e) f) ( ) 5) Differentiate the equation below. a) ( ) b) c) d) e) 6) Derive the equation below: a) b) ( ) c) ( ) d) e) 55

29 BA01 ENGINEERING MATHEMATICS 01 10) Derive the equation below: 7) Find for the following equations a) b) ( )( ) c) d) e) ( ) ( ) f) 8) Find for the following equations a) b) ( ) a) b) c) d) ( )( ) e) ( ) f) ( ) 11) Find the for the parametric d functions given below in terms of t. a) b) y t 5, t t 4 y 5 t, ln t 4 c) c) t, y 4t t d) e) 9) Using the right method, differentiate the functions given. a) ( ) b) ( ) 1) Find the second derivatives for the function a) y 5 1 b) f 5 c) y 4 c) d) ( ) e) 56

The Petronas Towers of Kuala Lumpur

The Petronas Towers of Kuala Lumpur BA0 ENGINEERING MATHEMATICS 0 CHAPTER 4 INTEGRATION 4. INTRODUCTION TO INTEGRATION Why do we need to study Integration? The Petronas Towers of Kuala Lumpur Often we know the relationship involving the

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

CHAPTER 1 COMPLEX NUMBER

CHAPTER 1 COMPLEX NUMBER BA0 ENGINEERING MATHEMATICS 0 CHAPTER COMPLEX NUMBER. INTRODUCTION TO COMPLEX NUMBERS.. Quadratic Equations Examples of quadratic equations:. x + 3x 5 = 0. x x 6 = 0 3. x = 4 i The roots of an equation

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

Integration. Section 8: Using partial fractions in integration

Integration. Section 8: Using partial fractions in integration Integration Section 8: Using partial fractions in integration Notes and Eamples These notes contain subsections on Using partial fractions in integration Putting all the integration techniques together

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

Integration: Using the chain rule in reverse

Integration: Using the chain rule in reverse Mathematics Learning Centre Integration: Using the chain rule in reverse Mary Barnes c 999 University of Syney Mathematics Learning Centre, University of Syney Using the Chain Rule in Reverse Recall that

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

NOTATION: We have a special symbol to use when we wish to find the anti-derivative of a function, called an Integral Symbol,

NOTATION: We have a special symbol to use when we wish to find the anti-derivative of a function, called an Integral Symbol, SECTION 5.: ANTI-DERIVATIVES We eplored taking the Derivative of functions in the previous chapters, but now want to look at the reverse process, which the student should understand is sometimes more complicated.

More information

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim Math 0-0-RE - Calculus I Trigonometry Limits & Derivatives Page of 8 Trigonometric Limits It has been shown in class that: lim 0 sin lim 0 sin lim 0 cos cos 0 lim 0 cos lim 0 + cos + To evaluate trigonometric

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

C6-2 Differentiation 3

C6-2 Differentiation 3 chain, product and quotient rules C6- Differentiation Pre-requisites: C6- Estimate Time: 8 hours Summary Learn Solve Revise Answers Summary The chain rule is used to differentiate a function of a function.

More information

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve

1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: and. So the slopes of the tangent lines to the curve MAT 11 Solutions TH Eam 3 1. By the Product Rule, in conjunction with the Chain Rule, we compute the derivative as follows: Therefore, d 5 5 d d 5 5 d 1 5 1 3 51 5 5 and 5 5 5 ( ) 3 d 1 3 5 ( ) So the

More information

Logarithmic differentiation

Logarithmic differentiation Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Logarithmic differentiation What you need to know already: All basic differentiation rules, implicit

More information

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique MS2: IT Mathematics Integration Two Techniques of Integration John Carroll School of Mathematical Sciences Dublin City University Integration by Substitution: The Technique Integration by Substitution:

More information

2 nd ORDER O.D.E.s SUBSTITUTIONS

2 nd ORDER O.D.E.s SUBSTITUTIONS nd ORDER O.D.E.s SUBSTITUTIONS Question 1 (***+) d y y 8y + 16y = d d d, y 0, Find the general solution of the above differential equation by using the transformation equation t = y. Give the answer in

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then f (u) u The Chain Rule with the Power

More information

6.1 Antiderivatives and Slope Fields Calculus

6.1 Antiderivatives and Slope Fields Calculus 6. Antiderivatives and Slope Fields Calculus 6. ANTIDERIVATIVES AND SLOPE FIELDS Indefinite Integrals In the previous chapter we dealt with definite integrals. Definite integrals had limits of integration.

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

2.13 Linearization and Differentials

2.13 Linearization and Differentials Linearization and Differentials Section Notes Page Sometimes we can approimate more complicated functions with simpler ones These would give us enough accuracy for certain situations and are easier to

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B Lecture The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then y = f (u) u The Chain Rule

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

192 Calculus and Structures

192 Calculus and Structures 9 Calculus and Structures CHAPTER PRODUCT, QUOTIENT, CHAIN RULE, AND TRIG FUNCTIONS Calculus and Structures 9 Copyright Chapter PRODUCT, QUTIENT, CHAIN RULE AND TRIG FUNTIONS. NEW FUNCTIONS FROM OLD ONES

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

Further factorising, simplifying, completing the square and algebraic proof

Further factorising, simplifying, completing the square and algebraic proof Further factorising, simplifying, completing the square and algebraic proof 8 CHAPTER 8. Further factorising Quadratic epressions of the form b c were factorised in Section 8. by finding two numbers whose

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

TImath.com Calculus. Topic: Techniques of Integration Derive the formula for integration by parts and use it to compute integrals

TImath.com Calculus. Topic: Techniques of Integration Derive the formula for integration by parts and use it to compute integrals Integration by Parts ID: 985 Time required 45 minutes Activity Overview In previous activities, students have eplored the differential calculus through investigations of the methods of first principles,

More information

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0 Eact Equations An eact equation is a first order differential equation that can be written in the form M(, + N(,, provided that there eists a function ψ(, such that = M (, and N(, = Note : Often the equation

More information

Section 4.3: Quadratic Formula

Section 4.3: Quadratic Formula Objective: Solve quadratic equations using the quadratic formula. In this section we will develop a formula to solve any quadratic equation ab c 0 where a b and c are real numbers and a 0. Solve for this

More information

Chapter 3: Topics in Differentiation

Chapter 3: Topics in Differentiation Chapter 3: Topics in Differentiation Summary: Having investigated the derivatives of common functions in Chapter (i.e., polynomials, rational functions, trigonometric functions, and their combinations),

More information

The Product and Quotient Rules

The Product and Quotient Rules The Product and Quotient Rules In this section, you will learn how to find the derivative of a product of functions and the derivative of a quotient of functions. A function that is the product of functions

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY 5. Introduction The whole of science is nothing more than a refinement of everyday thinking. ALBERT EINSTEIN This chapter is essentially a continuation of our stu of differentiation of functions in Class

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( )

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( ) Chain Rule Page We ve taken a lot of derivatives over the course of the last few sections. However, if you look back they have all been functions similar to the following kinds of functions. 0 w ( ( tan

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

INVERSE TRIGONOMETRIC FUNCTIONS Notes

INVERSE TRIGONOMETRIC FUNCTIONS Notes Inverse Trigonometric s MODULE - VII INVERSE TRIGONOMETRIC FUNCTIONS In the previous lesson, you have studied the definition of a function and different kinds of functions. We have defined inverse function.

More information

Chapter 3. Integration. 3.1 Indefinite Integration

Chapter 3. Integration. 3.1 Indefinite Integration Chapter 3 Integration 3. Indefinite Integration Integration is the reverse of differentiation. Consider a function f(x) and suppose that there exists another function F (x) such that df f(x). (3.) For

More information

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2 AP Calculus Students: Welcome to AP Calculus. Class begins in approimately - months. In this packet, you will find numerous topics that were covered in your Algebra and Pre-Calculus courses. These are

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.2 The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

Lesson 53 Integration by Parts

Lesson 53 Integration by Parts 5/0/05 Lesson 53 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

Some commonly encountered sets and their notations

Some commonly encountered sets and their notations NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS (This notes are based on the book Introductory Mathematics by Ng Wee Seng ) LECTURE SETS & FUNCTIONS Some commonly encountered sets and their

More information

Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 4. The chain rule

Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 4. The chain rule Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 4 The chain rule What you need to know already: The concept and definition of derivative, basic differentiation rules.

More information

x y x 2 2 x y x x y x U x y x y

x y x 2 2 x y x x y x U x y x y Lecture 7 Appendi B: Some sample problems from Boas Here are some solutions to the sample problems assigned for hapter 4 4: 8 Solution: We want to learn about the analyticity properties of the function

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Unit 4: Rules of Differentiation

Unit 4: Rules of Differentiation Unit : Rules of Differentiation DAY TOPIC ASSIGNMENT Power Rule p. Power Rule Again p. Even More Power Rule p. 5 QUIZ 5 Rates of Change p. 6-7 6 Rates of Change p. 8-9 7 QUIZ 8 Product Rule p. 0-9 Quotient

More information

MATH 108 REVIEW TOPIC 6 Radicals

MATH 108 REVIEW TOPIC 6 Radicals Math 08 T6-Radicals Page MATH 08 REVIEW TOPIC 6 Radicals I. Computations with Radicals II. III. IV. Radicals Containing Variables Rationalizing Radicals and Rational Eponents V. Logarithms Answers to Eercises

More information

Section: I. u 4 du. (9x + 1) + C, 3

Section: I. u 4 du. (9x + 1) + C, 3 EXAM 3 MAT 168 Calculus II Fall 18 Name: Section: I All answers must include either supporting work or an eplanation of your reasoning. MPORTANT: These elements are considered main part of the answer and

More information

Calculus Differentiation Norhafizah Md Sarif Faculty of Industrial Science & Technology

Calculus Differentiation Norhafizah Md Sarif Faculty of Industrial Science & Technology Calculus Differentiation By Norhafizah Md Sarif Faculty of Industrial Science & Technology norhafizah@ump.edu.my Description Aims This chapter is aimed to : 1. introduce the concept of integration. evaluate

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

Edexcel past paper questions. Core Mathematics 4. Parametric Equations Edexcel past paper questions Core Mathematics 4 Parametric Equations Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Maths Parametric equations Page 1 Co-ordinate Geometry A parametric equation of

More information

Chapter 2 Overview: Anti-Derivatives. As noted in the introduction, Calculus is essentially comprised of four operations.

Chapter 2 Overview: Anti-Derivatives. As noted in the introduction, Calculus is essentially comprised of four operations. Chapter Overview: Anti-Derivatives As noted in the introduction, Calculus is essentially comprised of four operations. Limits Derivatives Indefinite Integrals (or Anti-Derivatives) Definite Integrals There

More information

Integration by substitution

Integration by substitution Roberto s Notes on Integral Calculus Chapter : Integration methods Section 1 Integration by substitution or by change of variable What you need to know already: What an indefinite integral is. The chain

More information

Mathematics. Differentiation. Applying the Differentiation of Trigonometric Functions

Mathematics. Differentiation. Applying the Differentiation of Trigonometric Functions Mathematics Stills from our new series Differentiation Differentiation is one of the most fundamental tools in calculus. This series can be used to introduce or review this important topic through 13 targeted

More information

Derivatives of Inverse Functions

Derivatives of Inverse Functions Derivatives of Inverse Functions Implicit differentiation enables us to determine the derivatives of inverse functions. determine the derivatives of arcsin, arccos, arctan, and ln. In this lecture, we

More information

EXACT EQUATIONS AND INTEGRATING FACTORS

EXACT EQUATIONS AND INTEGRATING FACTORS MAP- EXACT EQUATIONS AND INTEGRATING FACTORS First-order Differential Equations for Which We Can Find Eact Solutions Stu the patterns carefully. The first step of any solution is correct identification

More information

Lesson 50 Integration by Parts

Lesson 50 Integration by Parts 5/3/07 Lesson 50 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

METHODS OF DIFFERENTIATION. Contents. Theory Objective Question Subjective Question 10. NCERT Board Questions

METHODS OF DIFFERENTIATION. Contents. Theory Objective Question Subjective Question 10. NCERT Board Questions METHODS OF DIFFERENTIATION Contents Topic Page No. Theor 0 0 Objective Question 0 09 Subjective Question 0 NCERT Board Questions Answer Ke 4 Sllabus Derivative of a function, derivative of the sum, difference,

More information

1 Applications of the Chain Rule

1 Applications of the Chain Rule November 7, 08 MAT86 Week 6 Justin Ko Applications of the Chain Rule We go over several eamples of applications of the chain rule to compute erivatives of more complicate functions. Chain Rule: If z =

More information

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part)

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part) The Definite Integral Day 5 The Fundamental Theorem of Calculus (Evaluative Part) Practice with Properties of Integrals 5 Given f d 5 f d 3. 0 5 5. 0 5 5 3. 0 0. 5 f d 0 f d f d f d - 0 8 5 F 3 t dt

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundamental Theorem of Calculus MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Summer 208 Remarks The Fundamental Theorem of Calculus (FTC) will make the evaluation of definite integrals

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework.

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework. Goals: 1. Recognize an integrand that is the derivative of a composite function. 2. Generalize the Basic Integration Rules to include composite functions. 3. Use substitution to simplify the process of

More information

MathsGeeks. Everything You Need to Know A Level Edexcel C4. March 2014 MathsGeeks Copyright 2014 Elite Learning Limited

MathsGeeks. Everything You Need to Know A Level Edexcel C4. March 2014 MathsGeeks Copyright 2014 Elite Learning Limited Everything You Need to Know A Level Edexcel C4 March 4 Copyright 4 Elite Learning Limited Page of 4 Further Binomial Expansion: Make sure it starts with a e.g. for ( x) ( x ) then use ( + x) n + nx + n(n

More information

VII. Techniques of Integration

VII. Techniques of Integration VII. Techniques of Integration Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration of functions given

More information

4.8 Partial Fraction Decomposition

4.8 Partial Fraction Decomposition 8 CHAPTER 4. INTEGRALS 4.8 Partial Fraction Decomposition 4.8. Need to Know The following material is assumed to be known for this section. If this is not the case, you will need to review it.. When are

More information

Methods of Integration

Methods of Integration Methods of Integration Essential Formulas k d = k +C sind = cos +C n d = n+ n + +C cosd = sin +C e d = e +C tand = ln sec +C d = ln +C cotd = ln sin +C + d = tan +C lnd = ln +C secd = ln sec + tan +C cscd

More information

Limits and Continuity

Limits and Continuity Limits and Continuity Philippe B. Laval Kennesaw State University January 2, 2005 Contents Abstract Notes and practice problems on its and continuity. Limits 2. Introduction... 2.2 Theory:... 2.2. GraphicalMethod...

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

2017 AP Calculus AB Summer Assignment

2017 AP Calculus AB Summer Assignment 07 AP Calculus AB Summer Assignment Mrs. Peck ( kapeck@spotsylvania.k.va.us) This assignment is designed to help prepare you to start Calculus on day and be successful. I recommend that you take off the

More information

Calculus Integration

Calculus Integration Calculus Integration By Norhafizah Md Sarif & Norazaliza Mohd Jamil Faculty of Instrial Science & Technology norhafizah@ump.e.my, norazaliza@ump.e.my Description Aims This chapter is aimed to : 1. introce

More information

2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 2.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 2.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Differentiation CHAPTER 2 2.1 TANGENT LINES AND VELOCITY 2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 25 2.5 THE CHAIN RULE 2.6 DERIVATIVES OF TRIGONOMETRIC

More information

With topics from Algebra and Pre-Calculus to

With topics from Algebra and Pre-Calculus to With topics from Algebra and Pre-Calculus to get you ready to the AP! (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the

More information

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes The Chain Rule 11.5 Introduction In this Section we will see how to obtain the derivative of a composite function (often referred to as a function of a function ). To do this we use the chain rule. This

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS. Introduction It is possible to integrate any rational function, constructed as the ratio of polynomials by epressing it as a sum of simpler fractions

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1 Regent College Maths Department Core Mathematics Trapezium Rule C Integration Page Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity Math 0 - Calculus f. Business and Management - Worksheet 1 Solutions for Worksheet 1 - Limits as approaches infinity Simple Limits Eercise 1: Compute the following its: 1a : + 4 1b : 5 + 8 1c : 5 + 8 Solution

More information

Name: Date: Period: Calculus Honors: 4-2 The Product Rule

Name: Date: Period: Calculus Honors: 4-2 The Product Rule Name: Date: Period: Calculus Honors: 4- The Product Rule Warm Up: 1. Factor and simplify. 9 10 0 5 5 10 5 5. Find ' f if f How did you go about finding the derivative? Let s Eplore how to differentiate

More information

The Chemistry Maths Book

The Chemistry Maths Book Solutions for Chapter The Chemistr Maths Book Erich Steiner Universit of Eeter Second Edition 008 Solutions Chapter. Differentiation. Concepts. The process of differentiation. Continuit. Limits.5 Differentiation

More information

2.3 Rectangular Components in Three-Dimensional Force Systems

2.3 Rectangular Components in Three-Dimensional Force Systems 2.3 Rectangular Components in Three-Dimensional Force Sstems 2.3 Rectangular Components in Three-Dimensional Force Sstems Eample 1, page 1 of 2 1. Epress the force F in terms of,, and components. F = 200

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible.

Math 2413 Final Exam Review 1. Evaluate, giving exact values when possible. Math 4 Final Eam Review. Evaluate, giving eact values when possible. sin cos cos sin y. Evaluate the epression. loglog 5 5ln e. Solve for. 4 6 e 4. Use the given graph of f to answer the following: y f

More information

( ) ( ) ( ) PAL Session Stewart 3.1 & 3.2 Spring 2010

( ) ( ) ( ) PAL Session Stewart 3.1 & 3.2 Spring 2010 PAL Session Stewart 3. & 3. Spring 00 3. Key Terms/Concepts: Derivative of a Constant Function Power Rule Constant Multiple Rule n Sum/Difference Rule ( ) Eercise #0 p. 8 Differentiate the function. f()

More information

IF you participate fully in this boot camp, you will get full credit for the summer packet.

IF you participate fully in this boot camp, you will get full credit for the summer packet. 18_19 AP Calculus BC Summer Packet NOTE - Please mark July on your calendars. We will have a boot camp in my room from 8am 11am on this day. We will work together on the summer packet. Time permitting,

More information

Differentiation of Logarithmic Functions

Differentiation of Logarithmic Functions Differentiation of Logarithmic Functions The rule for finding the derivative of a logarithmic function is given as: If y log a then dy or y. d a ( ln This rule can be proven by rewriting the logarithmic

More information

Franklin High School AB Calculus Prerequisite Work

Franklin High School AB Calculus Prerequisite Work Franklin High School AB Calculus Prerequisite Work Below you will find an assignment set based on the prerequisites needed for the AB Calculus curriculum taught at Franklin High School. The problems assigned

More information

CHAPTER 3 DIFFERENTIATION

CHAPTER 3 DIFFERENTIATION CHAPTER 3 DIFFERENTIATION 3.1 THE DERIVATIVE AND THE TANGENT LINE PROBLEM You will be able to: - Find the slope of the tangent line to a curve at a point - Use the limit definition to find the derivative

More information