Consider a s ystem with 2 parts with well defined transformation properties

Size: px
Start display at page:

Download "Consider a s ystem with 2 parts with well defined transformation properties"

Transcription

1 Direct Product of Representations Further important developments of the theory of symmetry are needed for systems that consist of parts (e.g. two electrons, spin and orbit of an electron, one electron and a vibration mode). Consider a s ystem with parts with well defined transformation properties The basis can always be chosen as if they were independent parts, and any state is a linear combination of products f (α)g (β), where f (α), f (α) m and g (β), g (β) n are bases for irreps of dimensions m and n respectively: ( α ) ( β ) Direct product basis: αβ i j = f g = αi βj i j ( αβ ) ( R) m n ( αβ α β ) kp, ij R αβ i j = k p D R D k p = direct product representation, kp ij

2 m α m n α β α β ( ) Rf Rg f g () D R D R = ( ( α ) ) i R αβ i j Rf Rg ( α ) ( ) ( ) ( ) ( ) ( = α α, β = β β ) Rf f D R Rg g D R i k ki j p pj k= p= i k p ki pj k p D ( αβ ) ( R) = direct product representation, kp ij n Direct product αβ α β kp, ij ki pj D R = D R D R αβ α β D R = D R D R

3 Direct Product of Matrices The direct product of two matrices a a b b A=, B= a a b b is defined as follows: a b a b a b a b a B a B a b a b a b a b D= A B= a B a B = a b a b a b a b a b a b a b a b A B B A Basic property of Direct Product: TrD = a b + a b + a b + a b = ( a + a )( b + b ) = TrATrB D = a b TrD = a b = TrATrB kp, ij ki pj kk jj kj

4 Direct Product of representations ( αβ ) ( α ) ( β ) ( αβ ) ( α ) ( β = ) D R D R D R D R D R D R kp, ij ki pj ( αβ ) ( αβ ) ( α ) ( β ) ( α ) ( β χ R = D R = D R D R = χ R χ ) ( R) kp, kp kk pp kp kp The character χ of the direct product of two representations is the product of the characters of the two representations. EXAMPLE Consider for instance the Group of the Square C4v I C C4 σv σ d g = 8 A A z R B x y B xy E ( xy, ) z Suppose that the two parts and belong to known irreps: their products define a representation of G and we wish to reduce it: 4

5 Direct product Irreps of parts χ are products C I C C σ σ g = 8 4v 4 v d A A z z B x y B xy E ( xy, ) A B B B B A E A E E E A A B B R Reduction by LOT n = i χ( R) χ ( R) N G R G Multiplication Table for the IRREPS () i * C A A B B E 4v A A A B B E A A A B B E B B B A A E B B B A A E E E E E E A A B B Irreps of total system 5

6 C A A B B E 4v A A A B B E A A A B B E B B B A A E B B B A A E E E E E E A A B B A in diagonal and only there. A matter of chance? NO LOT ni = χ R χ R χ R = N () i * ( A Using and ) G R G ( αβ ) ( α ) ( β ) na = χ ( R). = χ ( R). χ ( R) = δ αβ N N G R G G R G 6

7 Selection rules ( T ) For an irreducible tensor, we can find out when φ Tˆ ψ = 0, φ Γ Tˆ Γ ψ Γ ( φ) ( ψ) knowing that,. φ T ψ =invariant A integrand A ( T ) ( φ) ( ψ) Reducing Γ Γ Γ do we obtain A? If not, φ T ψ = 0 φ T ψ =invariant A requires that Γ( T ) and Γ ( φψ ) =Γ( φ) Γ( φ) have irreps in common 7

8 Example: electromagnetic transitions in square symmetry: An electron in an orbital E absorbs (or emits) a photon. What symmetries of the final orbitals are allowed? Dipole operator d=(x,y,z) E A,A,B,B allowed by x,y E E allowed by z E A = E B B forbidden because B B : = A no dipole component C I C C σ σ g = 8 4v 4 v d A A z z B x y B xy E ( xy, ) E E E E = A A B B R 8

9 Electronic ground state of molecules and clusters often closed shells A Shells are invariant subspaces for one-body states Closed shells are obtained by filling those subspaces with electrons- They are canonically conjugated to empty subspaces, that are totally symmetric. infrared selection rules Vibrational ground state=vibration vacuum: A symmetry Ground state excited state with the symmetry of dipole component (also for IR absorption, see classification of vibrations) With inversion, Ungerade modes in IR 9

10 Raman effect ε, ω ε, ω R= R ε ε Raman Tensor pq pq p q Raman tensor transforming like x p x q With inversion, Gerade modes in Raman 0

11 Reduction of the direct product representation From the m α -times degenerate irrep α and the m β -times degenerate irrep β one forms a direct product representation Γ(α) Γ(α) of dimension m α m β. For symmetry operations on the combined system, { γ r, r =,... m γ } = basis set for irrep γ of the Group. One can go, with a unitary transformation, from the basis { αiβj> } of the direct product to a basis of functions that transform according to irrep Γ(γ) of the Group G. m = αβ i j γr γr αβ i j irreps γ components r γ γr αβ i j = Clebsh Gordan coefficients of the Group

12 irreps γ m γ αβ i j γr γr αβ i j = m i components Clearly, γr αβ i j αβ i j γr = irreps αβ components i components m j r j Reduction of the D matrices ( αβ ) ( α ) ( β ) By definition, D ( R)= D ( RD ) ( R) is the direct product matrix ( αβ ) kp, ij ki pj Dkp, ij ( R) = αkβprαβ i j. Inserting basis sets αkβp R αβ i j αkβp γs γs R γr γr αβ i j = γ r s = ( α ) ( β ) ( γ ) D ( RD ) ( R) αkβpγsd ( R) γrαβ i j. ki pj sr γ r s

13 Problem: Molecule of C v symmetry To find a -e state of A symmetry with both electrons in orbitals of irrep E E E = A A B B Solution : From one-electron basis (x,y) direct product () i () * ( = i A P χ ( R) R P ) = R R We recall the matrices we used for irrep E : so two electrons of E can give A xx, xy, yx, yy 0 = = DE DC DC = 0 0 D( σ ) = D( σ ) = D( σ ) = a c b 0 R

14 irrep E : Effect of each R on (x,y) basis 0 DE = = x y y x DC Cx=, Cy=, + + = x y y x DC C x=, C y=, 0 D( σ ) = σ x= x, σ y= y, a 0 D( σ ) = x+ y y+ x σ x=, σ y =, b σ = x y y x D σ x=, σ y = c 4

15 From one-electron basis (x,y) direct product xx, xy, yx, yy A x + y x + y x+ y x + y P xx = xx + ( )( ) + x + y x + y x y x y + xx + + A Simplification gives: P xx = ( xx + yy ) P ( A ) = R R This is the wave function, which is even in the exchange on and, so it is singlet. Normalizing, A = xx + yy Clebsh Gordan coefficients αβ i j γr ExEx A = = EyEy A, ExEy A = 0. 5

16 Double Groups Spin without spin-orbit interaction trivial degeneracy Spin-orbit interaction for H atom: the degeneracy is lowered symmetry is lowered Budapest, 5 gennaio 908 Stanford, 9 settembre 00 (L + ) J=L+/ J=L-/ L+ states L states The symmetry Group is no longer O(). SU() is appropriate. Teller invented H bomb and Reagan s star wars 6

17 Spinor representation of the rotation Group The rotation around to the z axis by an angle ω is done by R ω i ω e 0 = exp[ i ω σ ] = z ω i ω χ = cos ω 0 e A similar formula for rotating Dirac s spinor. Here we assume relativistic corrections are enough R ω ω ω = cos iσ z sin and belongs to the SU() covering group of SO() (same operations occur twice). For ω = π, R ω =. 7

18 Rotation by angle ω around n = (n,n,n ) = (sinθcos φ,sinθsin φ, cos θ) x y z ω ω ω Develop R = exp[ i ( σ. n)] = i ( σ. n) + ( i ( σ. n)) +... ω! iϕ ϑ ϑe n n in z x y iϕ cosϑe sinϑ n + in n x y z sin cos ( σ. n) = = n n in n n in z x y z x y 0 = = n + in n n + in n 0 x y z x y z ( σ. n) and the series is easily summed: ω ω ω R = exp[ i ( σ. n)] = cos σ ω i(. n)sin Note: ω = π R = commutes with all other ω z ω symmetries ω ω For n= (0,0,), Tr( σ. n) = 0 and Tr exp[ i σ ] = χ = cos; this holds true (indeed, change of axis is an unitary transformation). 8

19 The π rotation as an extra symmetry (Teller 99) E= R (any n) π E= E (for a spinor) E= E (for an orbital); E = E; [ EX, ] = 0 X G: no X is altered by a π rotation. Adding XEX E X G E E to the generators of G we obtain the so-calle d double Group G'. = ' is a class, any rotation R has same character as R = R ω 4π ω ω ω 4π ω since for a spinor χ = cos is obviously = cos. ω D matrices for G ( α) ( α) ( α) ( α) E = E D ( E) =± D ( E) irrep α (in agreement with Schur lemma) χ ( ER) =± χ ( R) irrep α, R 9

20 The spinor representation i σω. χ ω D ( R ) = e ( E) = Since characters are invariant for unitary transformations, for any rotation axis we can obtain characters from D ω ( ω) = χ ( ω) = cos 0 e ω i e 0 ω i Space inversion operation i: (x,y,z) -> (-x,-y,-z) leaves angular momenta and spins invariant D(i) = D(E) and χ(i) =. Reflections = inversion*proper rotation Example: a reflection in (xyz) (xy z) in the (x,y) plane can be obtained as a rotation (xyz) ( x yz) followed by i. 0

21 Example: Structure of C v. Start from C v. In C v the square of any σ is E, and for example σ a rotation around y axis. Then in the double group is the same as a π E C C C C E C E C σ σ σ a b c σ σ σ b c a σ σ σ c a b σ σ σ a b c σ σ σ c a b σ σ σ b c a E C C C E C C C E C v multiplication table In σ σ σ a = b = c = E C v v σ = E σ = σ a a a x b c In C' σ = E, σ σ = E σ = σ = σ E a a a a a a In In C σ Cσ = σ Cσ = σ σ = C v a a a a b a thus C and C are in the same class. a C ' v σ Cσ = σ C σ E = σ σ E = CE a a a b a C C C E E σ E ' v σ v v CE CE

22 Building the G character table (fast way) α α Find the classes and append the irreps and characters of G, with ) Add spinor representation Number of irreps = number of classes Size of irreps from Burnside theorem Characters from orthogonality theorems χ ( ER = χ R Example: building the C v character table C v classes: E, C, σ Add E Inverse of C rotation: C E C I C σ g = 6 v A A z E 0 ( xy, ) Add normal irreps a v R z C C C E E E ' v σ v σv CE CE A' A' E ' 0 0

23 C C C E E E ' v σ v σv CE CE A' A' E ' 0 0 C I C σ g = 6 v A A z E 0 ( xy, ) v R z Add Spinor representation: χ π = cos * π = σ : x xy, y σ = i* R, spins are even under i χσ = χ( i)* χ( R) = *cos * π= 0 C C C E E E ' v σ v σv CE CE A' A' E ' 0 0 E classes 4 irreps irreps are missing N G = Missing irreps are - dimensional

24 C C C E E E ' v σ v σv CE CE A' A' E ' 0 0 E 0 0 By orthogonality C C C' E E E v σ v σv CE CE A' A' E ' 0 0 E Γ i i i i 6 Γ Example C I C C σ σ g= 8 4v 4 v d A A z z B x y B xy E ( xy, ) R C C C σv σd C' E E CE CE σ E σ E 4 4 4v 4 CE 4 A' A' B' B' E' E' E' v d 4

25 How does the spin-orbit interaction resolve degeneracies in crystals? To find that, classify orbitals by irreps of G build spinor representation (or find in Character Table) direct product yields spin-orbital representation Example C' E E C C E v σ v σv CE CE A' A' E ' 0 0 E Γ i i i i 6 Γ reduction by LOT case of orbital A A E/ = E/ not resolved case of orbital E E E = E Γ Γ / / 5 6 5

26 Cu [Ar]4s d Example: Cu in d configuration J =, Splitting in square planar D 4 environment Characters of reducible representation of rotations found by χ ( j) ( φ) sin ( J + ) φ = φ sin sin[ φ ] φ 4cos cos φ sin χ ( φ) = = φ χ 5 ( φ) [ ] sin φ φ φ 5φ = = (cos cos cos ) φ + + sin reflections and improper rotations= inversion x rotation 6

27 Γ C C C C' C" D' E E C E C E C E C E CE ' 4 " A' A' B' B' E' E' E' Γ Γ = E' 5 E' Γ = E' E' n = i χ( R) χ ( R) N G R G () i * 7

Little Orthogonality Theorem (LOT)

Little Orthogonality Theorem (LOT) Little Orthogonality Theorem (LOT) Take diagonal elements of D matrices in RG * D R D R i j G ij mi N * D R D R N i j G G ij ij RG mi mi ( ) By definition, D j j j R TrD R ( R). Sum GOT over β: * * ( )

More information

Little Orthogonality Theorem (LOT)

Little Orthogonality Theorem (LOT) Little Orthogonality Theorem (LOT) Take diagonal elements of D matrices in R G i * j G αµ βν = δδ ij µνδαβ mi D R D R N N i * j G G Dµµ R Dββ R = δijδ µ β δ µβ = δijδµβ R G mi mi j j ( j) By definition,

More information

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES SYMMETRY II. J. M. GOICOECHEA. LECTURE 3 1 LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES 3.1 Direct products and many electron states Consider the problem of deciding upon the symmetry of

More information

Crystal field effect on atomic states

Crystal field effect on atomic states Crystal field effect on atomic states Mehdi Amara, Université Joseph-Fourier et Institut Néel, C.N.R.S. BP 66X, F-3842 Grenoble, France References : Articles - H. Bethe, Annalen der Physik, 929, 3, p.

More information

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

Chem 673, Problem Set 5 Due Thursday, November 29, 2007 Chem 673, Problem Set 5 Due Thursday, November 29, 2007 (1) Trigonal prismatic coordination is fairly common in solid-state inorganic chemistry. In most cases the geometry of the trigonal prism is such

More information

b c a Permutations of Group elements are the basis of the regular representation of any Group. E C C C C E C E C E C C C E C C C E

b c a Permutations of Group elements are the basis of the regular representation of any Group. E C C C C E C E C E C C C E C C C E Permutation Group S(N) and Young diagrams S(N) : order= N! huge representations but allows general analysis, with many applications. Example S()= C v In Cv reflections transpositions. E C C a b c a, b,

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Spectroscopic Selection Rules

Spectroscopic Selection Rules E 0 v = 0 v = 1 v = 2 v = 4 v = 3 For a vibrational fundamental (Δv = ±1), the transition will have nonzero intensity in either the infrared or Raman spectrum if the appropriate transition moment is nonzero.

More information

Review of Matrices. L A matrix is a rectangular array of numbers that combines with other such arrays according to specific rules.

Review of Matrices. L A matrix is a rectangular array of numbers that combines with other such arrays according to specific rules. Review of Matrices L A matrix is a rectangular array of numbers that combines with other such arrays according to specific rules. T The dimension of a matrix is given as rows x columns; i.e., m x n. Matrix

More information

Landau & Lifshits, Quantum Mechanics, Ch. 12. Tinkham, Group Theory and Quantum Mechanics

Landau & Lifshits, Quantum Mechanics, Ch. 12. Tinkham, Group Theory and Quantum Mechanics Suggested reading: Landau & Lifshits, Quantum Mechanics, Ch. 2 Tinkham, Group Theory and Quantum Mechanics Dresselhaus, Dresselhaus, Jorio, Group Theory: Applications to the Physics of Condensed Matter

More information

13, Applications of molecular symmetry and group theory

13, Applications of molecular symmetry and group theory Subject Paper No and Title Module No and Title Module Tag Chemistry 13, Applications of molecular symmetry and group theory 27, Group theory and vibrational spectroscopy: Part-IV(Selection rules for IR

More information

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential.

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential. IV. Molecular Vibrations IV-1 As discussed solutions, ψ, of the amiltonian, (Schrödinger Equation) must be representations of the group of the molecule i.e. energy cannot change due to a symmetry operation,

More information

Chimica Inorganica 3

Chimica Inorganica 3 A symmetry operation carries the system into an equivalent configuration, which is, by definition physically indistinguishable from the original configuration. Clearly then, the energy of the system must

More information

Quantum Mechanical Operators and Wavefunctions. Orthogonality of Wavefunctions. Commuting Operators have Common Eigenfunctions

Quantum Mechanical Operators and Wavefunctions. Orthogonality of Wavefunctions. Commuting Operators have Common Eigenfunctions Quantum Mechanical perators and Wavefunctions "well behaved" functions (φ), have the following properties must be continuous (no "breaks") must have continuous derivatives (no "kinks") must be normalizable.

More information

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator Time Dependent Wave Equation Quantum Mechanical Description Hamiltonian Static/Time-dependent Time-dependent Energy operator H 0 + H t Ψ t = ih Ψ t t The Hamiltonian and wavefunction are time-dependent

More information

9 Electron orbits in atoms

9 Electron orbits in atoms Physics 129b Lecture 15 Caltech, 02/22/18 Reference: Wu-Ki-Tung, Group Theory in physics, Chapter 7. 9 Electron orbits in atoms Now let s see how our understanding of the irreps of SO(3) (SU(2)) can help

More information

B7 Symmetry : Questions

B7 Symmetry : Questions B7 Symmetry 009-10: Questions 1. Using the definition of a group, prove the Rearrangement Theorem, that the set of h products RS obtained for a fixed element S, when R ranges over the h elements of the

More information

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site:

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site: Advanced Spectroscopy Dr. P. Hunt p.hunt@imperial.ac.uk Rm 167 (Chemistry) web-site: http://www.ch.ic.ac.uk/hunt Maths! Coordinate transformations rotations! example 18.1 p501 whole chapter on Matrices

More information

Group Theory and Its Applications in Physics

Group Theory and Its Applications in Physics T. Inui Y Tanabe Y. Onodera Group Theory and Its Applications in Physics With 72 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Contents Sections marked with

More information

Chapter 3. Representations

Chapter 3. Representations Chapter 3 Representations 1 CHAPTER 3. REPRESENTATIONS 2 3.1 Basic definitions The main ingredients that are necessary to develop representation theory are introduced in this section. Some basic theorems

More information

Construction of the C 2v character table

Construction of the C 2v character table Construction of the C 2v character table The character table C 2v has the following form: C 2v E C 2 σ v (xz) σ v '(yz) Α 1 1 1 1 1 z x 2, y 2, z 2 Α 2 1 1-1 -1 R z xy Β 1 1-1 1-1 x, R y xz Β 2 1-1 -1

More information

Ligand Field Theory Notes

Ligand Field Theory Notes Ligand Field Theory Notes Read: Hughbanks, Antisymmetry (Handout). Carter, Molecular Symmetry..., Sections 7.4-6. Cotton, Chemical Applications..., Chapter 9. Harris & Bertolucci, Symmetry and Spectroscopy...,

More information

Symmetries On The Lattice

Symmetries On The Lattice Symmetries On The Lattice K.Demmouche January 8, 2006 Contents Background, character theory of finite groups The cubic group on the lattice O h Representation of O h on Wilson loops Double group 2 O and

More information

26 Group Theory Basics

26 Group Theory Basics 26 Group Theory Basics 1. Reference: Group Theory and Quantum Mechanics by Michael Tinkham. 2. We said earlier that we will go looking for the set of operators that commute with the molecular Hamiltonian.

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Group Representations

Group Representations Group Representations Alex Alemi November 5, 2012 Group Theory You ve been using it this whole time. Things I hope to cover And Introduction to Groups Representation theory Crystallagraphic Groups Continuous

More information

Molecular Symmetry 10/25/2018

Molecular Symmetry 10/25/2018 Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy). Predict IR spectra or Interpret UV-Vis spectra Predict optical activity

More information

2.3 Band structure and lattice symmetries: example of diamond

2.3 Band structure and lattice symmetries: example of diamond 2.2.9 Product of representaitons Besides the sums of representations, one can also define their products. Consider two groups G and H and their direct product G H. If we have two representations D 1 and

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

Group. Benzene D 6h z B B. E ( x y, xy) ( x, y) A B B C 2

Group. Benzene D 6h z B B. E ( x y, xy) ( x, y) A B B C 2 Benzene D 6h Group D E C C C 3 C ' 3 C '' i S S 3 3 g 4 A A B B 6h 6 3 3 6 h d v 1g g 1g g 1g x y g 1u u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

More information

Symmetry and degeneracy

Symmetry and degeneracy Symmetry and degeneracy Let m= degeneracy (=number of basis functions) of irrep i: From ( irrep) 1 one can obtain all the m irrep j by acting with off-diagonal R and orthogonalization. For instance in

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Fall, 008

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

The AKLT Model. Lecture 5. Amanda Young. Mathematics, UC Davis. MAT290-25, CRN 30216, Winter 2011, 01/31/11

The AKLT Model. Lecture 5. Amanda Young. Mathematics, UC Davis. MAT290-25, CRN 30216, Winter 2011, 01/31/11 1 The AKLT Model Lecture 5 Amanda Young Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/31/11 This talk will follow pg. 26-29 of Lieb-Robinson Bounds in Quantum Many-Body Physics by B. Nachtergaele

More information

Matrices of Dirac Characters within an irrep

Matrices of Dirac Characters within an irrep Matrices of Dirac Characters within an irrep irrep E : 1 0 c s 2 c s D( E) D( C ) D( C ) 3 3 0 1 s c s c 1 0 c s c s D( ) D( ) D( ) a c b 0 1 s c s c 2 1 2 3 c cos( ), s sin( ) 3 2 3 2 E C C 2 3 3 2 3

More information

Free-Ion Terms to Ligand-field Terms

Free-Ion Terms to Ligand-field Terms Free-Ion Terms to Ligand-field Terms! Orbital term symbols for free atoms and ions are identical to symbols for irreducible representations in R 3. " The irreducible representations of R 3 include all

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Plan for the rest of the semester. ψ a

Plan for the rest of the semester. ψ a Plan for the rest of the semester ϕ ψ a ϕ(x) e iα(x) ϕ(x) 167 Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: and

More information

4 Group representations

4 Group representations Physics 9b Lecture 6 Caltech, /4/9 4 Group representations 4. Examples Example : D represented as real matrices. ( ( D(e =, D(c = ( ( D(b =, D(b =, D(c = Example : Circle group as rotation of D real vector

More information

Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters. Katya Rykhlinskaya, University of Kassel

Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters. Katya Rykhlinskaya, University of Kassel Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters Katya Rykhlinskaya, University of Kassel 02. 06. 2005 Computational techniques in the theoretical investigations

More information

1 g 1,gg 2 xg 1. 2 g 1,...,gg n xg 1. n g 1 } = {gxg 1,gg 1 x(gg 1 ) 1,gg 2 x(gg 2 ) 1,...,gg n x(gg n ) 1 } = {x,g 1 xg 1. 2,...

1 g 1,gg 2 xg 1. 2 g 1,...,gg n xg 1. n g 1 } = {gxg 1,gg 1 x(gg 1 ) 1,gg 2 x(gg 2 ) 1,...,gg n x(gg n ) 1 } = {x,g 1 xg 1. 2,... Physics 5 Solution Set Spring 7. A finite group G can be decomposed into conjugacy classes C k. (a) Construct the set C k gc kg, which is obtained by replacing each element x C k by gxg. Prove that C k

More information

Representation Theory and Physical Systems. Finny Kuruvilla

Representation Theory and Physical Systems. Finny Kuruvilla Representation Theory and Physical Systems Finny Kuruvilla Math 126 December 16, 1998 A Brief History of Representation Theory in Physics and Chemistry Representation theory lies at the core of several

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12 As usual, these notes are intended for use by class participants only, and are not for circulation Week 6: Lectures, The Dirac equation and algebra March 5, 0 The Lagrange density for the Dirac equation

More information

Representations of Lorentz Group

Representations of Lorentz Group Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: How do we find the smallest (irreducible) representations of the

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals Laporte Selection Rule Polarization Dependence Spin Selection Rule 1 Laporte Selection Rule We first apply this

More information

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals Molecular Symmetry Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals - A molecule has a symmetry element if it is unchanged by a particular symmetry operation

More information

Functional determinants

Functional determinants Functional determinants based on S-53 We are going to discuss situations where a functional determinant depends on some other field and so it cannot be absorbed into the overall normalization of the path

More information

Tables for Group Theory

Tables for Group Theory Tables for Group Theory By P. W. ATKINS, M. S. CHILD, and C. S. G. PHILLIPS This provides the essential tables (character tables, direct products, descent in symmetry and subgroups) required for those

More information

Ligand Group Orbitals

Ligand Group Orbitals Ligand Group Orbitals he O h Group is the point Group of many interesting solids, including complexes like CuSO 4 5H O and FeCl 3 where a transition metal ion at the center of an Octahedron LCO model of

More information

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis:

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis: 5 Representations 5.3 Given a three-dimensional Hilbert space, consider the two observables ξ and η that, with respect to the basis 1, 2, 3, arerepresentedby the matrices: ξ ξ 1 0 0 0 ξ 1 0 0 0 ξ 3, ξ

More information

Symmetry: Translation and Rotation

Symmetry: Translation and Rotation Symmetry: Translation and Rotation The sixth column of the C 2v character table indicates the symmetry species for translation along (T) and rotation about (R) the Cartesian axes. y y y C 2 F v (x) T x

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta Physics 1A Fall 1996 Notes 14 Coupling of Angular Momenta In these notes we will discuss the problem of the coupling or addition of angular momenta. It is assumed that you have all had experience with

More information

5.4. Electronic structure of water

5.4. Electronic structure of water 5.4. Electronic structure of water Water belongs to C 2v point group, we have discussed the corresponding character table. Here it is again: C 2v E C 2 σ v (yz) σ v (xz) A 1 1 1 1 1 A 2 1 1-1 -1 B 1 1-1

More information

5.5. Representations. Phys520.nb Definition N is called the dimensions of the representations The trivial presentation

5.5. Representations. Phys520.nb Definition N is called the dimensions of the representations The trivial presentation Phys50.nb 37 The rhombohedral and hexagonal lattice systems are not fully compatible with point group symmetries. Knowing the point group doesn t uniquely determine the lattice systems. Sometimes we can

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle Chapter 1 Identical particles 1.1 Distinguishable particles The Hilbert space of N has to be a subspace H = N n=1h n. Observables Ân of the n-th particle are self-adjoint operators of the form 1 1 1 1

More information

PARTICLE PHYSICS Major Option

PARTICLE PHYSICS Major Option PATICE PHYSICS Major Option Michaelmas Term 00 ichard Batley Handout No 8 QED Maxwell s equations are invariant under the gauge transformation A A A χ where A ( φ, A) and χ χ ( t, x) is the 4-vector potential

More information

Spinor Formulation of Relativistic Quantum Mechanics

Spinor Formulation of Relativistic Quantum Mechanics Chapter Spinor Formulation of Relativistic Quantum Mechanics. The Lorentz Transformation of the Dirac Bispinor We will provide in the following a new formulation of the Dirac equation in the chiral representation

More information

Tables for Group Theory

Tables for Group Theory Tables for Group Theory By P. W. ATKINS, M. S. CHILD, and C. S. G. PHILLIPS This provides the essential tables (character tables, direct products, descent in symmetry and subgroups) required for those

More information

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012 Symmetry and Group Theory for Computational Chemistry Applications Chemistry 5325/5326 Angelo R. Rossi Department of Chemistry The University of Connecticut angelo.rossi@uconn.edu January 17-24, 2012 Infrared

More information

Group Theory. Problem Set 3, Solution

Group Theory. Problem Set 3, Solution Problem Set 3, Solution Symmetry group of H From O b φ n = m T mnbφ m and O a φ q = p T pqaφ p we have O b O a φ q = O b T pq aφ p = T pq a T mp bφ m p p m =! T mp bt pq a φ m = O ba φ q m p = m T mq baφ

More information

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam Physics 624, Quantum II -- Final Exam Please show all your work on the separate sheets provided (and be sure to include your name). You are graded on your work on those pages, with partial credit where

More information

Gravitational radiation

Gravitational radiation Lecture 28: Gravitational radiation Gravitational radiation Reading: Ohanian and Ruffini, Gravitation and Spacetime, 2nd ed., Ch. 5. Gravitational equations in empty space The linearized field equations

More information

Physics 129B, Winter 2010 Problem Set 5 Solution

Physics 129B, Winter 2010 Problem Set 5 Solution Physics 9B, Winter 00 Problem Set 5 Solution Chan Y. Park March 3, 00 Problem Four equal masses m are connected by six springs of spring constant k in such a way that the equilibrium positions of the masses

More information

PHYSICS 220 : GROUP THEORY FINAL EXAMINATION SOLUTIONS

PHYSICS 220 : GROUP THEORY FINAL EXAMINATION SOLUTIONS PHYSICS 0 : GROUP THEORY FINAL EXAMINATION SOLUTIONS This exam is due in my office, 5438 Mayer Hall, at 9 am, Monday, June 6. You are allowed to use the course lecture notes, the Lax text, and the character

More information

Symmetries in Physics

Symmetries in Physics Symmetries in Physics September 23, 2009 a) The Unitary Symmetry group, SU(2) b) The Group SU(3) c) SU(N) tesnors and Young Tableaux. a) The SU(2) group Physical realisation is e.g. electron spin and isospin

More information

129 Lecture Notes More on Dirac Equation

129 Lecture Notes More on Dirac Equation 19 Lecture Notes More on Dirac Equation 1 Ultra-relativistic Limit We have solved the Diraction in the Lecture Notes on Relativistic Quantum Mechanics, and saw that the upper lower two components are large

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS /3 (3..) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 6, 3. How to describe a free particle? i> initial state x (t,x) V(x) f> final state. Non-relativistic particles Schrödinger

More information

Implications of Time-Reversal Symmetry in Quantum Mechanics

Implications of Time-Reversal Symmetry in Quantum Mechanics Physics 215 Winter 2018 Implications of Time-Reversal Symmetry in Quantum Mechanics 1. The time reversal operator is antiunitary In quantum mechanics, the time reversal operator Θ acting on a state produces

More information

Exercises Symmetries in Particle Physics

Exercises Symmetries in Particle Physics Exercises Symmetries in Particle Physics 1. A particle is moving in an external field. Which components of the momentum p and the angular momentum L are conserved? a) Field of an infinite homogeneous plane.

More information

PH 451/551 Quantum Mechanics Capstone Winter 201x

PH 451/551 Quantum Mechanics Capstone Winter 201x These are the questions from the W7 exam presented as practice problems. The equation sheet is PH 45/55 Quantum Mechanics Capstone Winter x TOTAL POINTS: xx Weniger 6, time There are xx questions, for

More information

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4.

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4. 4 Time-ind. Perturbation Theory II We said we solved the Hydrogen atom exactly, but we lied. There are a number of physical effects our solution of the Hamiltonian H = p /m e /r left out. We already said

More information

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Uwe-Jens Wiese Bern University LATTICE08, Williamsburg, July 14, 008 S. Chandrasekharan (Duke University) F.-J. Jiang, F.

More information

Symmetries for fun and profit

Symmetries for fun and profit Symmetries for fun and profit Sourendu Gupta TIFR Graduate School Quantum Mechanics 1 August 28, 2008 Sourendu Gupta (TIFR Graduate School) Symmetries for fun and profit QM I 1 / 20 Outline 1 The isotropic

More information

Symmetries in Quantum Physics

Symmetries in Quantum Physics Symmetries in Quantum Physics U. Fano Department of Physics and James Franck Institute University of Chicago Chicago, Illinois A. R. P. Rau Department of Physics and Astronomy louisiana State University

More information

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling Colors of Co(III) solutions Electronic-Vibrational Coupling Vibronic Coupling Because they have g g character, the d-d transitions of complees of the transition metals are forbidden (LaPorte forbidden).

More information

Quantum Theory of Angular Momentum and Atomic Structure

Quantum Theory of Angular Momentum and Atomic Structure Quantum Theory of Angular Momentum and Atomic Structure VBS/MRC Angular Momentum 0 Motivation...the questions Whence the periodic table? Concepts in Materials Science I VBS/MRC Angular Momentum 1 Motivation...the

More information

Clifford Algebras and Spin Groups

Clifford Algebras and Spin Groups Clifford Algebras and Spin Groups Math G4344, Spring 2012 We ll now turn from the general theory to examine a specific class class of groups: the orthogonal groups. Recall that O(n, R) is the group of

More information

Representation Theory

Representation Theory Frank Porter Ph 129b February 10, 2009 Chapter 3 Representation Theory 3.1 Exercises Solutions to Problems 1. For the Poincare group L, show that any element Λ(M,z) can be written as a product of a pure

More information

Ket space as a vector space over the complex numbers

Ket space as a vector space over the complex numbers Ket space as a vector space over the complex numbers kets ϕ> and complex numbers α with two operations Addition of two kets ϕ 1 >+ ϕ 2 > is also a ket ϕ 3 > Multiplication with complex numbers α ϕ 1 >

More information

1 Time reversal. 1.1 Without spin. Time-dependent Schrödinger equation: 2m + V (r) ψ (r, t) (7) Local time-reversal transformation, T :

1 Time reversal. 1.1 Without spin. Time-dependent Schrödinger equation: 2m + V (r) ψ (r, t) (7) Local time-reversal transformation, T : 1 Time reversal 1.1 Without spin Time-dependent Schrödinger equation: i t ψ (r, t = Local time-reversal transformation, T : Transformed Schrödinger equation d (f T (t dt ] 2m + V (r ψ (r, t (1 t 1 < t

More information

Transformation Matrices; Geometric and Otherwise As examples, consider the transformation matrices of the C 3v

Transformation Matrices; Geometric and Otherwise As examples, consider the transformation matrices of the C 3v Transformation Matrices; Geometric and Otherwise As examples, consider the transformation matrices of the v group. The form of these matrices depends on the basis we choose. Examples: Cartesian vectors:

More information

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis: Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein

More information

5 Irreducible representations

5 Irreducible representations Physics 29b Lecture 9 Caltech, 2/5/9 5 Irreducible representations 5.9 Irreps of the circle group and charge We have been talking mostly about finite groups. Continuous groups are different, but their

More information

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra Lecture 4: Polyatomic Spectra 1. From diatomic to polyatomic Ammonia molecule A-axis. Classification of polyatomic molecules 3. Rotational spectra of polyatomic molecules N 4. Vibrational bands, vibrational

More information

Symmetries in Physics

Symmetries in Physics W. Ludwig C. Falter Symmetries in Physics Group Theory Applied to Physical Problems With 87 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Contents 1. Introduction 1 2. Elements

More information

Atomic spectra of one and two-electron systems

Atomic spectra of one and two-electron systems Atomic spectra of one and two-electron systems Key Words Term symbol, Selection rule, Fine structure, Atomic spectra, Sodium D-line, Hund s rules, Russell-Saunders coupling, j-j coupling, Spin-orbit coupling,

More information

The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field:

The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field: SPIN 1/2 PARTICLE Stern-Gerlach experiment The experiment consists of studying the deflection of a beam of neutral ground state paramagnetic atoms (silver) in inhomogeneous magnetic field: A silver atom

More information

Quantum Information & Quantum Computing

Quantum Information & Quantum Computing Math 478, Phys 478, CS4803, February 9, 006 1 Georgia Tech Math, Physics & Computing Math 478, Phys 478, CS4803 Quantum Information & Quantum Computing Problems Set 1 Due February 9, 006 Part I : 1. Read

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 013 Solutions Yichen Shi Easter 014 1. (a) Define the groups SU() and SO(3), and find their Lie algebras. Show that these Lie algebras, including their bracket structure,

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

Part III Symmetries, Fields and Particles

Part III Symmetries, Fields and Particles Part III Symmetries, Fields and Particles Theorems Based on lectures by N. Dorey Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

A group G is a set of discrete elements a, b, x alongwith a group operator 1, which we will denote by, with the following properties:

A group G is a set of discrete elements a, b, x alongwith a group operator 1, which we will denote by, with the following properties: 1 Why Should We Study Group Theory? Group theory can be developed, and was developed, as an abstract mathematical topic. However, we are not mathematicians. We plan to use group theory only as much as

More information

The rotation group and quantum mechanics 1 D. E. Soper 2 University of Oregon 30 January 2012

The rotation group and quantum mechanics 1 D. E. Soper 2 University of Oregon 30 January 2012 The rotation group and quantum mechanics 1 D. E. Soper 2 University of Oregon 30 January 2012 I offer here some background for Chapter 3 of J. J. Sakurai, Modern Quantum Mechanics. 1 The rotation group

More information

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables.

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables. M.S. Dresselhaus G. Dresselhaus A. Jorio Group Theory Application to the Physics of Condensed Matter With 131 Figures and 219 Tables 4) Springer Contents Part I Basic Mathematics 1 Basic Mathematical Background:

More information