Math 151. Rumbos Spring Solutions to Assignment #15

Size: px
Start display at page:

Download "Math 151. Rumbos Spring Solutions to Assignment #15"

Transcription

1 Math 151. Rumbos Spring 28 1 Solutions to ssignment #15 1. Let F (X,Y ) be the joint cdf of two random variables X and Y. For real constants a < b, c < d, show that Pr(a < X b, c < Y d) F (X,Y ) (b, d) F (X,Y ) (b, c) F (X,Y ) (a, d)+f (X,Y ) Use this result to show that F (, y) cdf of two random variables. 1 if + 2y 1, otherwise, cannot be the joint Solution: Let (, y) R 2 a < b, c < y d}; we then want to compute Pr[(X, Y ) ]. In addition, define the events: y d 3 c a b 2 4 Figure 1: Events, 1, 2, 3 and 4 in the y plane 1 (, y) R 2 b, y d}, 2 (, y) R 2 a, y c}, 3 (, y) R 2 a, c < y d}, and 4 (, y) R 2 a < b, y c}. Then, 1 is a disjoint union of the events, 2, 3 and 4 (see Figure 1). It then follows that Pr[(X, Y ) 1 ] Pr[(X, Y ) ]

2 Math 151. Rumbos Spring 28 2 or Pr[(X, Y ) 1 ] Pr[(X, Y ) ] + Pr[(X, Y ) 2 ]+ +Pr[(X, Y ) 3 ] + Pr[(X, Y ) 4 ]. (1) Observe that Pr[(X, Y ) 1 ] Pr(X b, Y d) F (X,Y ) (b, d) and Pr[(X, Y ) 2 ] Pr(X a, Y c) F (X,Y ) It then follows from equation (1) that Pr[(X, Y ) ] F (X,Y ) (b, d) F (X,Y ) (a, c) Pr[(X, Y ) 3 ] Pr[(X, Y ) 4 ]. (2) On the other hand, observe that and Moreover, Pr[(X, Y ) 3 2 ] Pr(X a, Y d) F (X,Y ) (a, d) (3) Pr[(X, Y ) 4 2 ] Pr(X b, Y c) F (X,Y ) (b, c). (4) Pr[(X, Y ) ( 3 2 ) ( 4 2 )] Pr[(X, Y ) 3 2 ] +Pr[(X, Y ) 4 2 ] Pr[(X, Y ) 2 ], since ( 3 2 ) ( 4 2 ) 2. It then follows from equations (3) and (4) that Pr[(X, Y ) ( 3 2 ) ( 4 2 )] F (X,Y ) (a, d) +F (X,Y ) (b, c) F (X,Y ) However, since ( 3 2 ) ( 4 2 ) 2 3 4, we also get that Pr[(X, Y ) ( 3 2 ) ( 4 2 )] Pr[(X, Y ) 2 ] +Pr[(X, Y ) 3 ] +Pr[(X, y) 4 ].

3 Math 151. Rumbos Spring 28 3 We therefore get, using Pr[(X, Y ) 2 ] F (X,Y ) (a, c), that Pr[(X, Y ) 3 ] + Pr[(X, Y ) 4 ] F (X,Y ) (a, d) + F (X,Y ) (b, c) 2F (X,Y ) Substituting this into equation (2 ) yields Pr[(X, Y ) ] F (X,Y ) (b, d) F (X,Y ) (a, c) F (X,Y ) (a, d) F (X,Y ) (b, c) + 2F (X,Y ) (a, c), from which we get Pr[(X, Y ) ] F (X,Y ) (b, d) F (X,Y ) (a, d) F (X,Y ) (b, c) + F (X,Y ) 1 if + 2y 1, Net, suppose that F (, y) otherwise, two random variables X and Y. Consider the set By what we just proved, (, y) R 2 < 1, < y 1/2}. is the joint cdf of Pr[(X, Y ) ] F (1, 1/2) F (, 1/2) F (1, ) + F (, ) <, which is impossible since Pr[(X, Y ) ]. Therefore, F cannot be a joint pdf. 2. Let g(t) denote a non negative, integrable function of a single variable with the property that Define g(t) dt 1. 2g( 2 + y 2 ) π for < <, < y <, f(, y) 2 + y 2 otherwise. Show that f(, y) is a joint pdf for two random variables X and Y.

4 Math 151. Rumbos Spring 28 4 Solution: First observe that f is non negative since g is non negative. Net, compute R 2 f(, y) ddy 2g( 2 + y 2 ) π 2 + y 2 ddy. Switching to polar coordinates we then get that R 2 f(, y) ddy π/2 2g(r) πr rdrdθ π 2 1, 2 g(r) dr π g(r) dr and therefore f(, y) is indeed a joint pdf for two random variables X and Y. 3. Let X and Y have joint pdf e y for < <, < y <, (, y) otherwise. Define Z X + Y. Compute Pr(Z ) for < < and give the pdf of Z. Solution: y y Figure 2: Event in the y plane

5 Math 151. Rumbos Spring 28 5 Compute Pr(Z ) Pr(X + Y ), for > (, y) ddy, where (, y) R 2 >, y >, + y } (see Figure 2). We then have that Pr(Z ) e y dyd e e y dyd e [ e y] d e (1 e ( ) ) d (e e ) d [ e ] e 1 e e. Thus, F Z () 1 e e for all >. It then follows that the pdf of Z is e if >, f Z () otherwise. 4. Let X and Y have joint pdf (, y) 1 for < < 1, < y < 1, otherwise. Find the cdf and pdf of the product Z XY.

6 Math 151. Rumbos Spring 28 6 Solution: Compute Pr(Z ) Pr(XY ), for < < 1 (, y) ddy, where (, y) R 2 < < 1, < y < 1, y } (see Figure 3). y 1 y 1 Figure 3: Event in the y plane Then, Pr(Z ) ddy 1 dyd + 1 / dyd + 1 ln, d for < < 1. It then follows that the cdf of Z is if, F Z () ln if < < 1, 1 if 1, ln if < < 1, and the corresponding pdf of Z is f Z () otherwise.

7 Math 151. Rumbos Spring [Eercise 11 on page 136 in the tet] Suppose that two persons make an appointment to meet between 5 PM and 6 PM at a certain location and they agree that neither person will wait more than 1 minutes for each person. If they arrive independently at random times between 5 PM and 6 PM, what is the probability that they will meet? Solution: Let X denote the arrival time of the first person and Y that of the second person. Then X and Y are independent and uniformly distributed on the interval (5 PM, 6 PM), in hours. It then follows that the joint pdf of X and Y is 1 if 5 PM < < 6 PM, 5 PM < < 6 PM, (, y) otherwise. Define W X Y ; this is the time that one person would have to wait for the other one. Then, W takes on values, w, between and 1 (in hours). The probability that that a person would have to wait more than 1 minutes is Pr(W > 1/6), since the time is being measured in hours. It then follows that the probability that the two persons will meet is 1 Pr(W > 1/6) Pr(W 1/6) F W (1/6). We will therefore first find the cdf of W. To do this, we compute Pr(W w) Pr( X Y w), for < w < 1, where is the event (, y) ddy, (, y) R 2 5 PM < < 6 PM, 5 PM < y < 6 PM, y w}. This event is pictured in Figure 4. We then have that Pr(W w) ddy area(),

8 Math 151. Rumbos Spring 28 8 y 6 PM 5 + w 5 PM 5 PM 5 + w 6 PM Figure 4: Event in the y plane where the area of can be computed by subtracting from 1 the area of the two corder triangles shown in Figure 4: Pr(W w) 1 (1 w) 2 2w w 2. Consequently, F W (w) 2w w 2 for < w < 1. Thus the probability that the two persons will meet is F W (1/6) ( ) , or about 3.56%.

Math 151. Rumbos Spring Solutions to Review Problems for Exam 1

Math 151. Rumbos Spring Solutions to Review Problems for Exam 1 Math 5. Rumbos Spring 04 Solutions to Review Problems for Exam. There are 5 red chips and 3 blue chips in a bowl. The red chips are numbered,, 3, 4, 5 respectively, and the blue chips are numbered,, 3

More information

Math 151. Rumbos Spring Solutions to Review Problems for Exam 2

Math 151. Rumbos Spring Solutions to Review Problems for Exam 2 Math 5. Rumbos Spring 22 Solutions to Review Problems for Exam 2. Let X and Y be independent Normal(, ) random variables. Put Z = Y X. Compute the distribution functions (z) and (z). Solution: Since X,

More information

Math 151. Rumbos Spring Solutions to Review Problems for Exam 3

Math 151. Rumbos Spring Solutions to Review Problems for Exam 3 Math 151. Rumbos Spring 2014 1 Solutions to Review Problems for Exam 3 1. Suppose that a book with n pages contains on average λ misprints per page. What is the probability that there will be at least

More information

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam Math 5. Rumbos Fall 7 Solutions to Review Problems for Final Exam. Three cards are in a bag. One card is red on both sides. Another card is white on both sides. The third card is red on one side and white

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

CS145: Probability & Computing Lecture 11: Derived Distributions, Functions of Random Variables

CS145: Probability & Computing Lecture 11: Derived Distributions, Functions of Random Variables CS145: Probability & Computing Lecture 11: Derived Distributions, Functions of Random Variables Instructor: Erik Sudderth Brown University Computer Science March 5, 2015 Homework Submissions Electronic

More information

Solutions to Assignment #8 Math 501 1, Spring 2006 University of Utah

Solutions to Assignment #8 Math 501 1, Spring 2006 University of Utah Solutions to Assignment #8 Math 5, Spring 26 University of Utah Problems:. A man and a woman agree to meet at a certain location at about 2:3 p.m. If the man arrives at a time uniformly distributed between

More information

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam Math 5. Rumbos Fall 23 Solutions to Review Problems for Final Exam. Three cards are in a bag. One card is red on both sides. Another card is white on both sides. The third card in red on one side and white

More information

Math 30530: Introduction to Probability, Fall 2013

Math 30530: Introduction to Probability, Fall 2013 Math 353: Introduction to Probability, Fall 3 Midterm Exam II Practice exam solutions. I m taking part in the All-Ireland hay-tossing championship next week (hay-tossing is a real sport in Ireland & Scotland

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Math 416 Lecture 2 DEFINITION. Here are the multivariate versions: X, Y, Z iff P(X = x, Y = y, Z =z) = p(x, y, z) of X, Y, Z iff for all sets A, B, C,

Math 416 Lecture 2 DEFINITION. Here are the multivariate versions: X, Y, Z iff P(X = x, Y = y, Z =z) = p(x, y, z) of X, Y, Z iff for all sets A, B, C, Math 416 Lecture 2 DEFINITION. Here are the multivariate versions: PMF case: p(x, y, z) is the joint Probability Mass Function of X, Y, Z iff P(X = x, Y = y, Z =z) = p(x, y, z) PDF case: f(x, y, z) is

More information

1 Probability Review. 1.1 Sample Spaces

1 Probability Review. 1.1 Sample Spaces 1 Probability Review Probability is a critical tool for modern data analysis. It arises in dealing with uncertainty, in randomized algorithms, and in Bayesian analysis. To understand any of these concepts

More information

Exam 2 Solutions October 12, 2006

Exam 2 Solutions October 12, 2006 Math 44 Fall 006 Sections and P. Achar Exam Solutions October, 006 Total points: 00 Time limit: 80 minutes No calculators, books, notes, or other aids are permitted. You must show your work and justify

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

Final Solutions Fri, June 8

Final Solutions Fri, June 8 EE178: Probabilistic Systems Analysis, Spring 2018 Final Solutions Fri, June 8 1. Small problems (62 points) (a) (8 points) Let X 1, X 2,..., X n be independent random variables uniformly distributed on

More information

ECON 5350 Class Notes Review of Probability and Distribution Theory

ECON 5350 Class Notes Review of Probability and Distribution Theory ECON 535 Class Notes Review of Probability and Distribution Theory 1 Random Variables Definition. Let c represent an element of the sample space C of a random eperiment, c C. A random variable is a one-to-one

More information

Math 131 Exam 2 Spring 2016

Math 131 Exam 2 Spring 2016 Math 3 Exam Spring 06 Name: ID: 7 multiple choice questions worth 4.7 points each. hand graded questions worth 0 points each. 0. free points (so the total will be 00). Exam covers sections.7 through 3.0

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES Contents 1. Continuous random variables 2. Examples 3. Expected values 4. Joint distributions

More information

1. Consider a random independent sample of size 712 from a distribution with the following pdf. c 1+x. f(x) =

1. Consider a random independent sample of size 712 from a distribution with the following pdf. c 1+x. f(x) = 1. Consider a random independent sample of size 712 from a distribution with the following pdf f(x) = c 1+x 0

More information

Probability. Lecture Notes. Adolfo J. Rumbos

Probability. Lecture Notes. Adolfo J. Rumbos Probability Lecture Notes Adolfo J. Rumbos October 20, 204 2 Contents Introduction 5. An example from statistical inference................ 5 2 Probability Spaces 9 2. Sample Spaces and σ fields.....................

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 1

Math 151. Rumbos Fall Solutions to Review Problems for Exam 1 Math 151. Rumbos Fall 017 1 Solutions to Review Problems for Exam 1 1. There are 5 red chips and 3 blue chips in a bowl. The red chips are numbered 1,, 3, 4, 5 respectively, and the blue chips are numbered

More information

Tufts University Math 13 Department of Mathematics April 2, 2012 Exam 2 12:00 pm to 1:20 pm

Tufts University Math 13 Department of Mathematics April 2, 2012 Exam 2 12:00 pm to 1:20 pm Tufts University Math Department of Mathematics April, Eam : pm to : pm Instructions: No calculators, notes or books are allowed. Unless otherwise stated, you must show all work to receive full credit.

More information

Probability (continued)

Probability (continued) DS-GA 1002 Lecture notes 2 September 21, 15 Probability (continued) 1 Random variables (continued) 1.1 Conditioning on an event Given a random variable X with a certain distribution, imagine that it is

More information

GOV 2001/ 1002/ Stat E-200 Section 1 Probability Review

GOV 2001/ 1002/ Stat E-200 Section 1 Probability Review GOV 2001/ 1002/ Stat E-200 Section 1 Probability Review Solé Prillaman Harvard University January 28, 2015 1 / 54 LOGISTICS Course Website: j.mp/g2001 lecture notes, videos, announcements Canvas: problem

More information

Statistics 100A Homework 1 Solutions

Statistics 100A Homework 1 Solutions Problem Statistics 00A Homework Solutions Ryan Rosario Suppose we flip a fair coin 4 times independently. () What is the sample space? By definition, the sample space, denoted as Ω, is the set of all possible

More information

Solution to Assignment 3

Solution to Assignment 3 The Chinese University of Hong Kong ENGG3D: Probability and Statistics for Engineers 5-6 Term Solution to Assignment 3 Hongyang Li, Francis Due: 3:pm, March Release Date: March 8, 6 Dear students, The

More information

Summary of Random Variable Concepts March 17, 2000

Summary of Random Variable Concepts March 17, 2000 Summar of Random Variable Concepts March 17, 2000 This is a list of important concepts we have covered, rather than a review that devives or eplains them. Tpes of random variables discrete A random variable

More information

Math 123 Elem. Calculus Fall 2014 Name: Sec.: Exam 4 Bonus Questions

Math 123 Elem. Calculus Fall 2014 Name: Sec.: Exam 4 Bonus Questions Math 13 Elem. Calculus Fall 01 Name: Sec.: Exam Bonus Questions The questions below are bonus questions. You should write your answers on this page. BOTH THE STEPS YOU SHOW (YOUR WORK) AND YOUR FINAL ANSWER

More information

8.2. strong Markov property and reflection principle. These are concepts that you can use to compute probabilities for Brownian motion.

8.2. strong Markov property and reflection principle. These are concepts that you can use to compute probabilities for Brownian motion. 62 BROWNIAN MOTION 8.2. strong Markov property and reflection principle. These are concepts that you can use to compute proailities for Brownian motion. 8.2.. strong Markov property. a) Brownian motion

More information

ISyE 6644 Fall 2015 Test #1 Solutions (revised 10/5/16)

ISyE 6644 Fall 2015 Test #1 Solutions (revised 10/5/16) 1 NAME ISyE 6644 Fall 2015 Test #1 Solutions (revised 10/5/16) You have 85 minutes. You get one cheat sheet. Put your succinct answers below. All questions are 3 points, unless indicated. You get 1 point

More information

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 The Total Probability Theorem. Consider events E and F. Consider a sample point ω E. Observe that ω belongs to either F or

More information

Continuous Random Variables

Continuous Random Variables 1 Continuous Random Variables Example 1 Roll a fair die. Denote by X the random variable taking the value shown by the die, X {1, 2, 3, 4, 5, 6}. Obviously the probability mass function is given by (since

More information

Math 447. Introduction to Probability and Statistics I. Fall 1998.

Math 447. Introduction to Probability and Statistics I. Fall 1998. Math 447. Introduction to Probability and Statistics I. Fall 1998. Schedule: M. W. F.: 08:00-09:30 am. SW 323 Textbook: Introduction to Mathematical Statistics by R. V. Hogg and A. T. Craig, 1995, Fifth

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 7E Probability and Statistics Spring 6 Instructor : Class Meets : Office Hours : Textbook : İlker Bayram EEB 3 ibayram@itu.edu.tr 3.3 6.3, Wednesday EEB 6.., Monday D. B. Bertsekas, J. N. Tsitsiklis,

More information

Massachusetts Institute of Technology Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis

Massachusetts Institute of Technology Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis 6.04/6.43: Probabilistic Systems Analysis Question : Multiple choice questions. CLEARLY circle the best answer for each question below. Each question is worth 4 points each, with no partial credit given.

More information

Probability Midterm Exam 2:15-3:30 pm Thursday, 21 October 1999

Probability Midterm Exam 2:15-3:30 pm Thursday, 21 October 1999 Name: 2:15-3:30 pm Thursday, 21 October 1999 You may use a calculator and your own notes but may not consult your books or neighbors. Please show your work for partial credit, and circle your answers.

More information

Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data

Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data SUPPLEMENTARY MATERIAL A FACTORED DELETION FOR MAR Table 5: alarm network with MCAR data We now give a more detailed derivation

More information

Homework 9 (due November 24, 2009)

Homework 9 (due November 24, 2009) Homework 9 (due November 4, 9) Problem. The join probability density function of X and Y is given by: ( f(x, y) = c x + xy ) < x

More information

ISyE 6644 Fall 2016 Test #1 Solutions

ISyE 6644 Fall 2016 Test #1 Solutions 1 NAME ISyE 6644 Fall 2016 Test #1 Solutions This test is 85 minutes. You re allowed one cheat sheet. Good luck! 1. Suppose X has p.d.f. f(x) = 3x 2, 0 < x < 1. Find E[3X + 2]. Solution: E[X] = 1 0 x 3x2

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 71E Probability and Statistics Spring 013 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 1.30, Wednesday EEB 5303 10.00 1.00, Wednesday

More information

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab University of Illinois Spring 1 ECE 313: Conflict Final Exam Tuesday, May 13, 1, 7: p.m. 1: p.m. Room 1 Everitt Lab 1. [18 points] Consider an experiment in which a fair coin is repeatedly tossed every

More information

Midterm Exam 1 Solution

Midterm Exam 1 Solution EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2015 Kannan Ramchandran September 22, 2015 Midterm Exam 1 Solution Last name First name SID Name of student on your left:

More information

MATH68181: EXTREME VALUES FIRST SEMESTER ANSWERS TO IN CLASS TEST

MATH68181: EXTREME VALUES FIRST SEMESTER ANSWERS TO IN CLASS TEST MATH688: EXTREME VALUES FIRST SEMESTER ANSWERS TO IN CLASS TEST ANSWER TO QUESTION If there are norming constants a n >, b n and a nondegenerate G such that the cdf of a normalized version of M n converges

More information

ECS /1 Part IV.2 Dr.Prapun

ECS /1 Part IV.2 Dr.Prapun Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology ECS35 4/ Part IV. Dr.Prapun.4 Families of Continuous Random Variables

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Exam Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the differential equation with the appropriate slope field. 1) y = x

More information

ISyE 2030 Practice Test 1

ISyE 2030 Practice Test 1 1 NAME ISyE 2030 Practice Test 1 Summer 2005 This test is open notes, open books. You have exactly 90 minutes. 1. Some Short-Answer Flow Questions (a) TRUE or FALSE? One of the primary reasons why theoretical

More information

( ) = 200e! 1. ( x) = ( y) = ( x, y) = 1 20! 1 20 = 1

( ) = 200e! 1. ( x) = ( y) = ( x, y) = 1 20! 1 20 = 1 Krs Ostasewski http://www.math.ilstu.edu/krsio/ Author of the BTDT Manual for Course P/ available at http://smarturl.it/krsiop or http://smarturl.it/krsiope Instructor for online Course P/ seminar: http://smarturl.it/onlineactuar

More information

2. This problem is very easy if you remember the exponential cdf; i.e., 0, y 0 F Y (y) = = ln(0.5) = ln = ln 2 = φ 0.5 = β ln 2.

2. This problem is very easy if you remember the exponential cdf; i.e., 0, y 0 F Y (y) = = ln(0.5) = ln = ln 2 = φ 0.5 = β ln 2. FALL 8 FINAL EXAM SOLUTIONS. Use the basic counting rule. There are n = number of was to choose 5 white balls from 7 = n = number of was to choose ellow ball from 5 = ( ) 7 5 ( ) 5. there are n n = ( )(

More information

Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April Give your name, TA and section number:

Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April Give your name, TA and section number: Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April 6 2018 Give your name, TA and section number: Name: TA: Section number: 1. There are 6 questions for a total of 100 points. The value of

More information

General Random Variables

General Random Variables 1/65 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Probability A general random variable is discrete, continuous, or mixed. A discrete random variable

More information

df dx = + Phys 23, Spring 2012a Basic Math Print LAST Name: RJ Bieniek Rec Sec Letter MiniTest Print First Name: Answers

df dx = + Phys 23, Spring 2012a Basic Math Print LAST Name: RJ Bieniek Rec Sec Letter MiniTest Print First Name: Answers Phs 23, Spring 2012a asic Math Print ST Name: RJ ieniek Rec Sec etter MiniTest Print First Name: nswers When ou answer, put the requested quantit on the left side of an equal sign & O it and our answer

More information

Continuous Distributions

Continuous Distributions Chapter 5 Continuous Distributions 5.1 Density and Distribution Functions In many situations random variables can take any value on the real line or in a certain subset of the real line. For concrete examples,

More information

STAT/MA 416 Midterm Exam 3 Monday, November 19, Circle the section you are enrolled in:

STAT/MA 416 Midterm Exam 3 Monday, November 19, Circle the section you are enrolled in: STAT/MA 46 Midterm Exam 3 Monday, November 9, 27 Name Purdue student ID ( digits) Circle the section you are enrolled in: STAT/MA 46-- STAT/MA 46-2- 9: AM :5 AM 3: PM 4:5 PM REC 4 UNIV 23. The testing

More information

3.8 Functions of a Random Variable

3.8 Functions of a Random Variable STAT 421 Lecture Notes 76 3.8 Functions of a Random Variable This section introduces a new and important topic: determining the distribution of a function of a random variable. We suppose that there is

More information

Will Landau. Feb 21, 2013

Will Landau. Feb 21, 2013 Iowa State University Feb 21, 2013 Iowa State University Feb 21, 2013 1 / 31 Outline Iowa State University Feb 21, 2013 2 / 31 random variables Two types of random variables: Discrete random variable:

More information

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1 Math 8B Solutions Charles Martin March 6, Homework Problems. Let (X i, d i ), i n, be finitely many metric spaces. Construct a metric on the product space X = X X n. Proof. Denote points in X as x = (x,

More information

sheng@mail.ncyu.edu.tw Content Joint distribution functions Independent random variables Sums of independent random variables Conditional distributions: discrete case Conditional distributions: continuous

More information

Math 251, Spring 2005: Exam #2 Preview Problems

Math 251, Spring 2005: Exam #2 Preview Problems Math 5, Spring 005: Exam # Preview Problems. Using the definition of derivative find the derivative of the following functions: a) fx) = e x e h. Use the following lim =, e x+h = e x e h.) h b) fx) = x

More information

SPRING 2005 EXAM M SOLUTIONS. = When (as given in the problem), (x) dies in the second year from issue, the curtate future lifetime x + 1 is 0, so

SPRING 2005 EXAM M SOLUTIONS. = When (as given in the problem), (x) dies in the second year from issue, the curtate future lifetime x + 1 is 0, so SPRING 005 EXAM M SOLUTIONS Question # Key: B Let K be the curtate future lifetime of (x + k) K + k L 000v 000Px :3 ak + When (as given in the problem), (x) dies in the second year from issue, the curtate

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015 Midterm Exam Last name First name SID Rules. You have 80 mins (5:10pm - 6:30pm)

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

1 x 2 and 1 y 2. 0 otherwise. c) Estimate by eye the value of x for which F(x) = x + y 0 x 1 and 0 y 1. 0 otherwise

1 x 2 and 1 y 2. 0 otherwise. c) Estimate by eye the value of x for which F(x) = x + y 0 x 1 and 0 y 1. 0 otherwise Eample 5 EX: Which of the following joint density functions have (correlation) ρ XY = 0? (Remember that ρ XY = 0 is possible with symmetry even if X and Y are not independent.) a) b) f (, y) = π ( ) 2

More information

Continuous Probability Distributions

Continuous Probability Distributions 1 Chapter 5 Continuous Probability Distributions 5.1 Probability density function Example 5.1.1. Revisit Example 3.1.1. 11 12 13 14 15 16 21 22 23 24 25 26 S = 31 32 33 34 35 36 41 42 43 44 45 46 (5.1.1)

More information

MITOCW MITRES6_012S18_L23-05_300k

MITOCW MITRES6_012S18_L23-05_300k MITOCW MITRES6_012S18_L23-05_300k We will now go through a beautiful example, in which we approach the same question in a number of different ways and see that by reasoning based on the intuitive properties

More information

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory Chapter 1 Statistical Reasoning Why statistics? Uncertainty of nature (weather, earth movement, etc. ) Uncertainty in observation/sampling/measurement Variability of human operation/error imperfection

More information

EE 302 Division 1. Homework 6 Solutions.

EE 302 Division 1. Homework 6 Solutions. EE 3 Division. Homework 6 Solutions. Problem. A random variable X has probability density { C f X () e λ,,, otherwise, where λ is a positive real number. Find (a) The constant C. Solution. Because of the

More information

Math 134 Exam 2 November 5, 2009

Math 134 Exam 2 November 5, 2009 Math 134 Exam 2 November 5, 2009 Name: Score: / 80 = % 1. (24 Points) (a) (8 Points) Find the slope of the tangent line to the curve y = 9 x2 5 x 2 at the point when x = 2. To compute this derivative we

More information

ISyE 3044 Fall 2015 Test #1 Solutions

ISyE 3044 Fall 2015 Test #1 Solutions 1 NAME ISyE 3044 Fall 2015 Test #1 Solutions You have 85 minutes. You get one cheat sheet. Put your succinct answers below. All questions are 3 points, unless indicated. You get 1 point for writing your

More information

MATHEMATICAL METHODS (CAS) Written examination 1

MATHEMATICAL METHODS (CAS) Written examination 1 Victorian Certificate of Education 2010 SUPERVISOR TO ATTACH PROCESSING LABEL HERE STUDENT NUMBER Letter Figures Words MATHEMATICAL METHODS (CAS) Written examination 1 Friday 5 November 2010 Reading time:

More information

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days?

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days? IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2005, Professor Whitt, Second Midterm Exam Chapters 5-6 in Ross, Thursday, March 31, 11:00am-1:00pm Open Book: but only the Ross

More information

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x!

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x! Lectures 3-4 jacques@ucsd.edu 7. Classical discrete distributions D. The Poisson Distribution. If a coin with heads probability p is flipped independently n times, then the number of heads is Bin(n, p)

More information

ECE 650 Fall, /9 Homework Set 2 Solutions

ECE 650 Fall, /9 Homework Set 2 Solutions ECE 65 Fall, 14 1/9 Homework Set Solutions 1. Gamma with c = 1, from eq. 3.1a (tetbook): f() = ( / b) ep( / b) b () u() (1/b) ep(-/b) u(), which is eponential since gamma() = 1, either from MATLAB or from

More information

FACULTY OF ENGINEERING AND ARCHITECTURE. MATH 256 Probability and Random Processes. 04 Multiple Random Variables

FACULTY OF ENGINEERING AND ARCHITECTURE. MATH 256 Probability and Random Processes. 04 Multiple Random Variables OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Multiple Random Variables Fall 2012 Yrd. Doç. Dr. Didem Kivanc Tureli didem@ieee.org didem.ivanc@oan.edu.tr

More information

MATH 317 Fall 2016 Assignment 5

MATH 317 Fall 2016 Assignment 5 MATH 37 Fall 26 Assignment 5 6.3, 6.4. ( 6.3) etermine whether F(x, y) e x sin y îı + e x cos y ĵj is a conservative vector field. If it is, find a function f such that F f. enote F (P, Q). We have Q x

More information

MA 123 Calculus I Midterm II Practice Exam Answer Key

MA 123 Calculus I Midterm II Practice Exam Answer Key MA 1 Midterm II Practice Eam Note: Be aware that there may be more than one method to solving any one question. Keep in mind that the beauty in math is that you can often obtain the same answer from more

More information

Lecture 11: Probability, Order Statistics and Sampling

Lecture 11: Probability, Order Statistics and Sampling 5-75: Graduate Algorithms February, 7 Lecture : Probability, Order tatistics and ampling Lecturer: David Whitmer cribes: Ilai Deutel, C.J. Argue Exponential Distributions Definition.. Given sample space

More information

Time limit is 80 min.

Time limit is 80 min. Januar 5, 7 [: pm-:5 pm] Math / Retake Eam --α-) Page of 6 Your Name / Adınız - Soadınız Your Signature / İmza Student ID # / Öğrenci No Professor s Name / Öğretim Üesi Your Department / Bölüm Calculators,

More information

Econ 113. Lecture Module 2

Econ 113. Lecture Module 2 Econ 113 Lecture Module 2 Contents 1. Experiments and definitions 2. Events and probabilities 3. Assigning probabilities 4. Probability of complements 5. Conditional probability 6. Statistical independence

More information

Continuous Probability Distributions

Continuous Probability Distributions 1 Chapter 5 Continuous Probability Distributions 5.1 Probability density function Example 5.1.1. Revisit Example 3.1.1. 11 12 13 14 15 16 21 22 23 24 25 26 S = 31 32 33 34 35 36 41 42 43 44 45 46 (5.1.1)

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

Uniform Distribution. Uniform Distribution. Uniform Distribution. Graphs of Gamma Distributions. Gamma Distribution. Continuous Distributions CD - 1

Uniform Distribution. Uniform Distribution. Uniform Distribution. Graphs of Gamma Distributions. Gamma Distribution. Continuous Distributions CD - 1 Continuou Uniform Special Probability Denitie Definition 6.: The continuou random variable ha a uniform ditribution if it p.d.f. i equal to a contant on it upport. If the upport i the interval [a b] then

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique.

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique. MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #4 Part I: Cauchy Sequence Definition (Cauchy Sequence): A sequence of real number { n } is Cauchy if and only if for any ε >

More information

Continuous distributions

Continuous distributions CHAPTER 7 Continuous distributions 7.. Introduction A r.v. X is said to have a continuous distribution if there exists a nonnegative function f such that P(a X b) = ˆ b a f(x)dx for every a and b. distribution.)

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 4.30 Introduction to Statistical Methods in Economics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Math 34B. Practice Exam, 3 hrs. March 15, 2012

Math 34B. Practice Exam, 3 hrs. March 15, 2012 Math 34B Practice Exam, 3 hrs March 15, 2012 9.3.4c Compute the indefinite integral: 10 x+9 dx = 9.3.4c Compute the indefinite integral: 10 x+9 dx = = 10 x 10 9 dx = 10 9 10 x dx = 10 9 e ln 10x dx 9.3.4c

More information

Chapter 5. Random Variables (Continuous Case) 5.1 Basic definitions

Chapter 5. Random Variables (Continuous Case) 5.1 Basic definitions Chapter 5 andom Variables (Continuous Case) So far, we have purposely limited our consideration to random variables whose ranges are countable, or discrete. The reason for that is that distributions on

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 03 The Chi-Square Distributions Dr. Neal, Spring 009 The chi-square distributions can be used in statistics to analyze the standard deviation of a normally distributed measurement and to test the

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 271E Probability and Statistics Spring 2011 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 16.30, Wednesday EEB? 10.00 12.00, Wednesday

More information

STAT515, Review Worksheet for Midterm 2 Spring 2019

STAT515, Review Worksheet for Midterm 2 Spring 2019 STAT55, Review Worksheet for Midterm 2 Spring 29. During a week, the proportion of time X that a machine is down for maintenance or repair has the following probability density function: 2( x, x, f(x The

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Math 353, Section 1 Fall 212 Homework 9 Solutions 1. During a season, a basketball team plays 7 home games and 6 away games. The coach estimates at the beginning of the season

More information

UNIT Define joint distribution and joint probability density function for the two random variables X and Y.

UNIT Define joint distribution and joint probability density function for the two random variables X and Y. UNIT 4 1. Define joint distribution and joint probability density function for the two random variables X and Y. Let and represent the probability distribution functions of two random variables X and Y

More information

LSU AP Calculus Practice Test Day

LSU AP Calculus Practice Test Day LSU AP Calculus Practice Test Day AP Calculus AB 2018 Practice Exam Section I Part A AP CALCULUS AB: PRACTICE EXAM SECTION I: PART A NO CALCULATORS ALLOWED. YOU HAVE 60 MINUTES. 1. If y = ( 1 + x 5) 3

More information

Independent random variables

Independent random variables Will Monroe July 4, 017 with materials by Mehran Sahami and Chris Piech Independent random variables Announcements: Midterm Tomorrow! Tuesday, July 5, 7:00-9:00pm Building 30-105 (main quad, Geology Corner)

More information

PRACTICE FINAL 2 MATH 16b

PRACTICE FINAL 2 MATH 16b PRACTICE FINAL MATH 6b Find possible relative maxima and minima of the function f (x, y) = x + y + y + In each case apply the second derivative test if possible Evaluate the integral 0 (x + ) 00dx Describe

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundamental Theorem of Calculus MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Summer 208 Remarks The Fundamental Theorem of Calculus (FTC) will make the evaluation of definite integrals

More information

Simulating events: the Poisson process

Simulating events: the Poisson process Simulating events: te Poisson process p. 1/15 Simulating events: te Poisson process Micel Bierlaire micel.bierlaire@epfl.c Transport and Mobility Laboratory Simulating events: te Poisson process p. 2/15

More information

MATH 180A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM #2 FALL 2018

MATH 180A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM #2 FALL 2018 MATH 8A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM # FALL 8 Name (Last, First): Student ID: TA: SO AS TO NOT DISTURB OTHER STUDENTS, EVERY- ONE MUST STAY UNTIL THE EXAM IS COMPLETE. ANSWERS TO THE

More information