Chap. 3 MATH Annalisa Quaini Office : PGH 662 Lecture : MWF 11AM-12PM Office hours : W 8AM-10AM

Size: px
Start display at page:

Download "Chap. 3 MATH Annalisa Quaini Office : PGH 662 Lecture : MWF 11AM-12PM Office hours : W 8AM-10AM"

Transcription

1 Chap. 3 MATH Annalisa Quaini quaini@math.uh.edu Office : PGH 662 Lecture : MWF 11AM-12PM Office hours : W 8AM-10AM Daily quiz 6 is due on Friday at 11 AM. Exam 1 is coming - check the scheduler and registration on Courseware. quaini A. Quaini, UH MATH / 11

2 Given h(x) = x 2 x 1. Find: the points of horizontal tangents. x such that h (x) < 0 and x such that h (x) > 0. A. Quaini, UH MATH / 11

3 The high order derivatives are obtained by taking the derivatives several times in a row... f (x), f (x), f (x), f (x), f (4) (x), f (5) (x),... f (x), d dx f (x), d 2 dx 2 f (x), d 3 dx 3 f (x), d 4 dx 4 f (x), d 5 f (x) =second derivative of f (x) f (x) =third derivative of f (x) dx 5 f (x),... A. Quaini, UH MATH / 11

4 3.4 Derivative As a Rate of Change A. Quaini, UH MATH / 11

5 Example : volume of a sphere V (r) = 4 3 πr 3. Rate of change of the volume of the sphere with respect to the radius is V (r) = 4πr 2. To get the instantaneous rate of change, we take the derivative with respect to time. A. Quaini, UH MATH / 11

6 Velocity and Acceleration Given the position as a function of time x(t), the instantaneous rate of change of the position is the velocity of the object: x (t) = v(t). The instantaneous rate of change of the velocity is the acceleration of the object: x (t) = v (t) = a(t) Other notations: v = dx dt, a = dv dt = d 2 x dt 2 A. Quaini, UH MATH / 11

7 Definition Speed is the absolute value of velocity. Speed at time t = v(t). A. Quaini, UH MATH / 11

8 We can look at the sign of the velocity to determine in which direction the object is going. Positive sign: the object is going towards the positive x; Negative sign: the object is going towards the negative x; We can look at the sign of velocity and acceleration to determine if an object is speeding up or slowing down. If the signs are the same, the object is speeding up. If the signs are different, the object is slowing down. A. Quaini, UH MATH / 11

9 We can look at the sign of the velocity to determine in which direction the object is going. Positive sign: the object is going towards the positive x; Negative sign: the object is going towards the negative x; We can look at the sign of velocity and acceleration to determine if an object is speeding up or slowing down. If the signs are the same, the object is speeding up. If the signs are different, the object is slowing down. A. Quaini, UH MATH / 11

10 Examples Chap. 3 Sect. 3.3 Sect An object moves along a coordinate line, its position at each time t 0 is given by x(t) = 5t t 3. Find the position, velocity, speed and acceleration at time t 0 = 3. 2 A particle is moving along a horizontal coordinate line according to the formula x(t) = t 3 6t 2. Find v(t) and a(t). When is the particle moving to the left? When is the acceleration negative? 3 If x(t) = 1 2 t4 5t t 2, find the velocity of the moving object when its acceleration is zero. A. Quaini, UH MATH / 11

11 Examples Chap. 3 Sect. 3.3 Sect An object moves along a coordinate line, its position at each time t 0 is given by x(t) = 5t t 3. Find the position, velocity, speed and acceleration at time t 0 = 3. 2 A particle is moving along a horizontal coordinate line according to the formula x(t) = t 3 6t 2. Find v(t) and a(t). When is the particle moving to the left? When is the acceleration negative? 3 If x(t) = 1 2 t4 5t t 2, find the velocity of the moving object when its acceleration is zero. A. Quaini, UH MATH / 11

12 Examples Chap. 3 Sect. 3.3 Sect An object moves along a coordinate line, its position at each time t 0 is given by x(t) = 5t t 3. Find the position, velocity, speed and acceleration at time t 0 = 3. 2 A particle is moving along a horizontal coordinate line according to the formula x(t) = t 3 6t 2. Find v(t) and a(t). When is the particle moving to the left? When is the acceleration negative? 3 If x(t) = 1 2 t4 5t t 2, find the velocity of the moving object when its acceleration is zero. A. Quaini, UH MATH / 11

13 Free Fall of an object Chap. 3 Sect. 3.3 Sect. 3.4 Neglecting the friction of the air, the position of an object in free fall is y(t) = y 0 + v 0 t 1 2 gt2, where y 0 is the initial position. v 0 is the initial velocity. g is the gravitational constant (32 feet per second per second, or 9.8 meters per second per second). A. Quaini, UH MATH / 11

14 Examples Chap. 3 Sect. 3.3 Sect. 3.4 An object is dropped from a height of 16 feet. If we neglect air friction, how long will it take for the object to hit the ground? Give the velocity of the object on impact. An object is launched from a height of 20 feet. If we neglect air friction, and it takes 10 seconds for the object to hit the ground. Give the initial upward velocity of the object and the downward velocity of the object on impact. A. Quaini, UH MATH / 11

15 Examples Chap. 3 Sect. 3.3 Sect. 3.4 An object is dropped from a height of 16 feet. If we neglect air friction, how long will it take for the object to hit the ground? Give the velocity of the object on impact. An object is launched from a height of 20 feet. If we neglect air friction, and it takes 10 seconds for the object to hit the ground. Give the initial upward velocity of the object and the downward velocity of the object on impact. A. Quaini, UH MATH / 11

10.3 Parametric Equations. 1 Math 1432 Dr. Almus

10.3 Parametric Equations. 1 Math 1432 Dr. Almus Math 1432 DAY 39 Dr. Melahat Almus almus@math.uh.edu OFFICE HOURS (212 PGH) MW12-1:30pm, F:12-1pm. If you email me, please mention the course (1432) in the subject line. Check your CASA account for Quiz

More information

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension

Course Name : Physics I Course # PHY 107. Note - 3 : Motion in One Dimension Course Name : Physics I Course # PHY 107 Note - 3 : Motion in One Dimension Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is unlawful

More information

Lecture 9. Section 3.4 Derivative as a Rate of Change Section 3.8 Rates of Change per Unit Time. Jiwen He

Lecture 9. Section 3.4 Derivative as a Rate of Change Section 3.8 Rates of Change per Unit Time. Jiwen He Review Section 3.4 Section 3.8 Lecture 9 Section 3.4 Derivative as a Rate of Change Section 3.8 Rates of Change per Unit Time Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu

More information

Math 1314 Lesson 7 Applications of the Derivative

Math 1314 Lesson 7 Applications of the Derivative Math 1314 Lesson 7 Applications of the Derivative Recall from Lesson 6 that the derivative gives a formula for finding the slope of the tangent line to a function at any point on that function. Example

More information

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday Going over HW3.05 Announcement Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday As the red ball rolls off the edge, a green ball is dropped from rest from the same height at the same

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture.

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture. Math 1431 DAY 14 BUBBLE IN PS ID VERY CAREFULLY! If you make a bubbling mistake, your scantron will not be saved in the system and you will not get credit for it even if you turned it in. Be considerate

More information

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture.

Math 1431 DAY 14. Be considerate of others in class. Respect your friends and do not distract anyone during the lecture. Math 1431 DAY 14 BUBBLE IN PS ID VERY CAREFULLY! If you make a bubbling mistake, your scantron will not be saved in the system and you will not get credit for it even if you turned it in. Be considerate

More information

Your exam contains 5 problems. The entire exam is worth 70 points. Your exam should contain 6 pages; please make sure you have a complete exam.

Your exam contains 5 problems. The entire exam is worth 70 points. Your exam should contain 6 pages; please make sure you have a complete exam. MATH 124 (PEZZOLI) WINTER 2017 MIDTERM #2 NAME TA:. Section: Instructions: Your exam contains 5 problems. The entire exam is worth 70 points. Your exam should contain 6 pages; please make sure you have

More information

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS PROBLEM SET #1 Related Rates ***Calculators Allowed*** 1. An oil tanker spills oil that spreads in a circular pattern whose radius increases at the rate of

More information

Physics 121 for Majors

Physics 121 for Majors Physics 121 for Majors 121M Tutors Tutorial Lab N-304 ESC Ethan Fletcher: M 1pm 3pm, T 3-6 pm, Th 3-10 pm, W 7-9pm, F 3pm 6-10 pm Spencer Vogel: M 1-4pm, W 1-5pm, F1-3 pm Schedule Do Post-Class Check #4

More information

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Using + or signs is not always sufficient to fully describe motion in more than one dimension Vectors can be used to more fully describe motion

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

Physics 201, Lecture 3

Physics 201, Lecture 3 Physics 201, Lecture 3 Today s Topics n Motion in One Dimension (chap 2) n n n One Dimensional Kinematics Kinematics of Constant Acceleration The Fun of Free Fall q Expected from Preview: Displacement,

More information

2. Which of the following is an equation of the line tangent to the graph of f(x) = x 4 + 2x 2 at the point where

2. Which of the following is an equation of the line tangent to the graph of f(x) = x 4 + 2x 2 at the point where AP Review Chapter Name: Date: Per: 1. The radius of a circle is decreasing at a constant rate of 0.1 centimeter per second. In terms of the circumference C, what is the rate of change of the area of the

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 8 of these questions. I reserve the right to change numbers and answers on

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Basic Applications. Equations of Tangent Lines

Basic Applications. Equations of Tangent Lines Math 1314 Some Applications of the Derivative Basic Applications Equations of Tangent Lines The first applications of the derivative involve finding the slope of the tangent line and writing equations

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

Antiderivatives and Indefinite Integrals

Antiderivatives and Indefinite Integrals Antiderivatives and Indefinite Integrals MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After completing this lesson we will be able to use the definition

More information

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0.

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0. Math Sample final problems Here are some problems that appeared on past Math exams. Note that you will be given a table of Z-scores for the standard normal distribution on the test. Don t forget to have

More information

Motion Along a Straight Line (Motion in One-Dimension)

Motion Along a Straight Line (Motion in One-Dimension) Chapter 2 Motion Along a Straight Line (Motion in One-Dimension) Learn the concepts of displacement, velocity, and acceleration in one-dimension. Describe motions at constant acceleration. Be able to graph

More information

Math 34B. Practice Exam, 3 hrs. March 15, 2012

Math 34B. Practice Exam, 3 hrs. March 15, 2012 Math 34B Practice Exam, 3 hrs March 15, 2012 9.3.4c Compute the indefinite integral: 10 x+9 dx = 9.3.4c Compute the indefinite integral: 10 x+9 dx = = 10 x 10 9 dx = 10 9 10 x dx = 10 9 e ln 10x dx 9.3.4c

More information

February 8, Week 4. Today: Chapter 3, Projectile Motion. Homework #1 now in boxes.

February 8, Week 4. Today: Chapter 3, Projectile Motion. Homework #1 now in boxes. February 8, Week 4 Today: Chapter 3, Projectile Motion Homework #1 now in boxes. No New homework assignment this week. Homework Solutions posted Thursday morning. Chapter 2 practice problems on Mastering

More information

Common Exam 3, Friday, April 13, :30 9:45 A.M. at KUPF 205 Chaps. 6, 7, 8. HW #8 and HW #9: Due tomorrow, April 6 th (Fri)

Common Exam 3, Friday, April 13, :30 9:45 A.M. at KUPF 205 Chaps. 6, 7, 8. HW #8 and HW #9: Due tomorrow, April 6 th (Fri) Common Exam 3, Friday, April 13, 2007 8:30 9:45 A.M. at KUPF 205 Chaps. 6, 7, 8 Bring calculators (Arrive by 8:15) HW #8 and HW #9: Due tomorrow, April 6 th (Fri) Today. Chapter 8 Hints for HW #9 Quiz

More information

PDF Created with deskpdf PDF Writer - Trial ::

PDF Created with deskpdf PDF Writer - Trial :: y 3 5 Graph of f ' x 76. The graph of f ', the derivative f, is shown above for x 5. n what intervals is f increasing? (A) [, ] only (B) [, 3] (C) [3, 5] only (D) [0,.5] and [3, 5] (E) [, ], [, ], and

More information

MATH 32A: MIDTERM 1 REVIEW. 1. Vectors. v v = 1 22

MATH 32A: MIDTERM 1 REVIEW. 1. Vectors. v v = 1 22 MATH 3A: MIDTERM 1 REVIEW JOE HUGHES 1. Let v = 3,, 3. a. Find e v. Solution: v = 9 + 4 + 9 =, so 1. Vectors e v = 1 v v = 1 3,, 3 b. Find the vectors parallel to v which lie on the sphere of radius two

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

http://geocities.com/kenahn7/ Today in this class Chap.2, Sec.1-7 Motion along a straight line 1. Position and displacement 2. 3. Acceleration Example: Motion with a constant acceleration Position and

More information

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then 3.4 The Chain Rule To find the derivative of a function that is the composition of two functions for which we already know the derivatives, we can use the Chain Rule. The Chain Rule: Suppose F (x) = f(g(x)).

More information

Motion along a straight line. Lecture 2. Motion along a straight line. Motion. Physics 105; Summer 2006

Motion along a straight line. Lecture 2. Motion along a straight line. Motion. Physics 105; Summer 2006 Lecture 2 Motion along a straight line (HR&W, Chapter 2) Physics 105; Summer 2006 Motion along a straight line Motion Position and Displacement Average velocity and average speed Instantaneous velocity

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h 1 / 30 CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, August 21, 2012 2 / 30 INTRODUCTION

More information

Physics 201, Lecture 8

Physics 201, Lecture 8 Physics 01, Lecture 8 Today s Topics q Physics 01, Review 1 q Important Notes: v v v v This review is not designed to be complete on its own. It is not meant to replace your own preparation efforts Exercises

More information

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103

8/31/2018. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 PHY 7 Classical Mechanics and Mathematical Methods 0-0:50 AM MWF Olin 03 Plan for Lecture :. Brief comment on quiz. Particle interactions 3. Notion of center of mass reference fame 4. Introduction to scattering

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Much of the physics we ll learn this semester will deal with the motion of objects We start with the simple case of one-dimensional motion Or, motion in x: As always, we begin by

More information

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final. Tuesday January 24 Assignment 3: Due Friday, 11:59pm.like every Friday Pre-Class Assignment: 15min before class like every class Office Hours: Wed. 10-11am, 204 EAL Help Room: Wed. & Thurs. 6-9pm, here

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola KINEMATICS OF A PARTICLE Prepared by Engr. John Paul Timola Particle has a mass but negligible size and shape. bodies of finite size, such as rockets, projectiles, or vehicles. objects can be considered

More information

Motion Along a Straight Line

Motion Along a Straight Line Chapter 2 Motion Along a Straight Line PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright 2008 Pearson Education Inc., publishing

More information

Random sample problems

Random sample problems UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Spring 2009 Random sample problems 1. The position of a particle in meters can be described by x = 10t 2.5t 2, where t is in seconds.

More information

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13 General Physics (PHY 170) Chap 2 Acceleration motion with constant acceleration 1 Average Acceleration Changing velocity (non-uniform) means an acceleration is present Average acceleration is the rate

More information

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3. Motion in Two Dimensions 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.Projectile Motion The position of an object is described by its position

More information

Score on each problem:

Score on each problem: 95.141 Exam 1 Spring 2013 Section Number Section Instructor Name (last name first) Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 PackBack The first answer gives a good physical picture. The video was nice, and worth the second answer. https://www.youtube.com/w atch?v=m57cimnj7fc Slide 3-2 Slide 3-3

More information

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1).

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1). Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20 # 18, page 18: If f(x) = x2 x 2 1, find f( 1 2 ), f( 1 2 ), and f(a + 1). # 22, page 18: When a solution of acetylcholine

More information

Math 1431 DAY 16. Dr. Melahat Almus. OFFICE HOURS: MWF 11-11:30am, MW 1-2:15pm at 621 PGH

Math 1431 DAY 16. Dr. Melahat Almus. OFFICE HOURS: MWF 11-11:30am, MW 1-2:15pm at 621 PGH Math 1431 DAY 16 Dr. Melahat Almus almus@math.uh.edu OFFICE HOURS: MWF 11-11:30am, MW 1-:15pm at 61 PGH If you e-mail me, please mention your course (1431) in the subject line. Check your CASA account

More information

3.4 Solutions.notebook March 24, Horizontal Tangents

3.4 Solutions.notebook March 24, Horizontal Tangents Note Fix From 3.3 Horizontal Tangents Just for fun, sketch y = sin x and then sketch its derivative! What do you notice? More on this later 3.4 Velocity and Other Rates of Change A typical graph of the

More information

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 3 Solutions

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 3 Solutions University of Alabama Department of Physics and Astronomy PH 105 LeClair Summer 2012 Instructions: Problem Set 3 Solutions 1. Answer all questions below. All questions have equal weight. 2. Show your work

More information

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2 Answer Key Calculus I Math 141 Fall 2003 Professor Ben Richert Exam 2 November 18, 2003 Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences M E C H A N I C S I D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T N O V E M B E R 0 1 3 Definition Mechanics

More information

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN EMU Physics Department Motion along a straight line q Motion q Position and displacement q Average velocity and average speed q Instantaneous velocity and

More information

MODULE 9 (Stewart, Sections 13.3, 13.4) VARIABLE ACCELERATION, ARC LENGTH & TANGENT VECTOR

MODULE 9 (Stewart, Sections 13.3, 13.4) VARIABLE ACCELERATION, ARC LENGTH & TANGENT VECTOR MODULE 9 (Stewart, Sections 13.3, 13.4) VARIABLE ACCELERATION, ARC LENGTH & TANGENT VECTOR INTRO: In this Module we will introduce four different kinds of problems. First we will discuss projectile problems

More information

MATH CALCULUS I 2.2: Differentiability, Graphs, and Higher Derivatives

MATH CALCULUS I 2.2: Differentiability, Graphs, and Higher Derivatives MATH 12002 - CALCULUS I 2.2: Differentiability, Graphs, and Higher Derivatives Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 /

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Physics 201, Lecture 2. The Big Picture. Kinematics: Position and Displacement. Today s Topics

Physics 201, Lecture 2. The Big Picture. Kinematics: Position and Displacement. Today s Topics Physics 01, Lecture Today s Topics n Kinematics (Chap..1-.) n Position, Displacement (, and distance) n Time and Time Interval n Velocity (, and speed) n Acceleration *1-Dimension for today,,3-d later.

More information

Remember... Average rate of change slope of a secant (between two points)

Remember... Average rate of change slope of a secant (between two points) 3.7 Rates of Change in the Natural and Social Sciences Remember... Average rate of change slope of a secant (between two points) Instantaneous rate of change slope of a tangent derivative We will assume

More information

Physics 1010: The Physics of Everyday Life. TODAY More Acceleration Newton s Second Law Gravity

Physics 1010: The Physics of Everyday Life. TODAY More Acceleration Newton s Second Law Gravity Physics 11: The Physics of Everyday Life TODAY More Acceleration Newton s Second Law Gravity 1 Help, Office and Tutorial Hours TUTORIALS (G1B75/77/79) Isidoros: 12:32:3 Thursday (same as office hours)

More information

MA Lesson 25 Notes Section 5.3 (2 nd half of textbook)

MA Lesson 25 Notes Section 5.3 (2 nd half of textbook) MA 000 Lesson 5 Notes Section 5. ( nd half of tetbook) Higher Derivatives: In this lesson, we will find a derivative of a derivative. A second derivative is a derivative of the first derivative. A third

More information

Math 1314 Lesson 7 Applications of the Derivative. rate of change, instantaneous rate of change, velocity, => the derivative

Math 1314 Lesson 7 Applications of the Derivative. rate of change, instantaneous rate of change, velocity, => the derivative Math 1314 Lesson 7 Applications of the Derivative In word problems, whenever it s anything about a: rate of change, instantaneous rate of change, velocity, => the derivative average rate of change, difference

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively A couple of house rules Be on time Switch off mobile phones Put away laptops Being present = Participating actively http://www.phys.tue.nl/nfcmr/natuur/collegenatuur.html Het basisvak Toegepaste Natuurwetenschappen

More information

Math 102. Krishanu Sankar. October 23, 2018

Math 102. Krishanu Sankar. October 23, 2018 Math 102 Krishanu Sankar October 23, 2018 Announcements Review Sessions for Thursday 10/25 Midterm Monday 10/22 in Buchanan A201, 3-7pm Tuesday 10/23 in CHBE 101, 3-7pm Bring questions if you have them!

More information

What will you learn?

What will you learn? Section 2.2 Basic Differentiation Rules & Rates of Change Calc What will you learn? Find the derivative using the Constant Rule Find the derivative using the Power Rule Find the derivative using the Constant

More information

MATH 2554 (Calculus I)

MATH 2554 (Calculus I) MATH 2554 (Calculus I) Dr. Ashley K. University of Arkansas February 21, 2015 Table of Contents Week 6 1 Week 6: 16-20 February 3.5 Derivatives as Rates of Change 3.6 The Chain Rule 3.7 Implicit Differentiation

More information

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists).

1. Determine the limit (if it exists). + lim A) B) C) D) E) Determine the limit (if it exists). Please do not write on. Calc AB Semester 1 Exam Review 1. Determine the limit (if it exists). 1 1 + lim x 3 6 x 3 x + 3 A).1 B).8 C).157778 D).7778 E).137778. Determine the limit (if it exists). 1 1cos

More information

1. Write the definition of continuity; i.e. what does it mean to say f(x) is continuous at x = a?

1. Write the definition of continuity; i.e. what does it mean to say f(x) is continuous at x = a? Review Worksheet Math 251, Winter 15, Gedeon 1. Write the definition of continuity; i.e. what does it mean to say f(x) is continuous at x = a? 2. Is the following function continuous at x = 2? Use limits

More information

Math 111 Calculus I Fall 2005 Practice Problems For Final December 5, 2005

Math 111 Calculus I Fall 2005 Practice Problems For Final December 5, 2005 Math 111 Calculus I Fall 2005 Practice Problems For Final December 5, 2005 As always, the standard disclaimers apply In particular, I make no claims that all the material which will be on the exam is represented

More information

Math 106 Answers to Test #1 11 Feb 08

Math 106 Answers to Test #1 11 Feb 08 Math 06 Answers to Test # Feb 08.. A projectile is launched vertically. Its height above the ground is given by y = 9t 6t, where y is the height in feet and t is the time since the launch, in seconds.

More information

PARTICLE MOTION: DAY 2

PARTICLE MOTION: DAY 2 PARTICLE MOTION: DAY 2 Section 3.6A Calculus AP/Dual, Revised 2018 viet.dang@humbleisd.net 7/30/2018 1:24 AM 3.6A: Particle Motion Day 2 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest

More information

Wednesday 9/27. Please open quizizz

Wednesday 9/27. Please open quizizz Wednesday 9/27 Please open quizizz Graphing Acceleration VT Graphs VELOCITY m/s VELOCITY TIME GRAPHS Moving in a positive direction, SPEEDING UP Constant speed NO ACCELERATION Moving in a positive direction,

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Spring /06/2009

Spring /06/2009 MA 123 Elementary Calculus FINAL EXAM Spring 2009 05/06/2009 Name: Sec.: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or

More information

Math Exam 02 Review

Math Exam 02 Review Math 10350 Exam 02 Review 1. A differentiable function g(t) is such that g(2) = 2, g (2) = 1, g (2) = 1/2. (a) If p(t) = g(t)e t2 find p (2) and p (2). (Ans: p (2) = 7e 4 ; p (2) = 28.5e 4 ) (b) If f(t)

More information

q = tan -1 (R y /R x )

q = tan -1 (R y /R x ) Vector Addition Using Vector Components = + R x = A x + B x B y R y = A y + B y R = (R x 2 + R y 2 ) 1/2 B x q = tan -1 (R y /R x ) Example 1.7: Vector has a magnitude of 50 cm and direction of 30º, and

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

MATH 1241 Common Final Exam Fall 2010

MATH 1241 Common Final Exam Fall 2010 MATH 1241 Common Final Exam Fall 2010 Please print the following information: Name: Instructor: Student ID: Section/Time: The MATH 1241 Final Exam consists of three parts. You have three hours for the

More information

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1 Coordinator: Abdelmonem Monday, October 30, 006 Page: 1 Q1. An aluminum cylinder of density.70 g/cm 3, a radius of.30 cm, and a height of 1.40 m has the mass of: A) 6.8 kg B) 45.1 kg C) 13.8 kg D) 8.50

More information

KINEMATICS IN ONE DIMENSION p. 1

KINEMATICS IN ONE DIMENSION p. 1 KINEMATICS IN ONE DIMENSION p. 1 Motion involves a change in position. Position can be indicated by an x-coordinate on a number line. ex/ A bumblebee flies along a number line... x = 2 when t = 1 sec 2

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

problem score possible Total 60

problem score possible Total 60 Math 32 A: Midterm 1, Oct. 24, 2008 Name: ID Number: Section: problem score possible 1. 10 2. 10 3. 10 4. 10 5. 10 6. 10 Total 60 1 1. Determine whether the following points are coplanar: a. P = (8, 14,

More information

(b) x = (d) x = (b) x = e (d) x = e4 2 ln(3) 2 x x. is. (b) 2 x, x 0. (d) x 2, x 0

(b) x = (d) x = (b) x = e (d) x = e4 2 ln(3) 2 x x. is. (b) 2 x, x 0. (d) x 2, x 0 1. Solve the equation 3 4x+5 = 6 for x. ln(6)/ ln(3) 5 (a) x = 4 ln(3) ln(6)/ ln(3) 5 (c) x = 4 ln(3)/ ln(6) 5 (e) x = 4. Solve the equation e x 1 = 1 for x. (b) x = (d) x = ln(5)/ ln(3) 6 4 ln(6) 5/ ln(3)

More information

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph.

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Physics Lecture #2: Position Time Graphs If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Suppose a

More information

Math3A Exam #02 Solution Fall 2017

Math3A Exam #02 Solution Fall 2017 Math3A Exam #02 Solution Fall 2017 1. Use the limit definition of the derivative to find f (x) given f ( x) x. 3 2. Use the local linear approximation for f x x at x0 8 to approximate 3 8.1 and write your

More information

Course Name : Physics I Course # PHY 107

Course Name : Physics I Course # PHY 107 Course Name : Physics I Course # PHY 107 Notes-3 : Motion in One Dimensions Abu Mohammad Khan Department of Mathematics and Physics North South University http://abukhan.weebly.com Copyright: It is unlawful

More information

AP Calculus Free-Response Questions 1969-present AB

AP Calculus Free-Response Questions 1969-present AB AP Calculus Free-Response Questions 1969-present AB 1969 1. Consider the following functions defined for all x: f 1 (x) = x, f (x) = xcos x, f 3 (x) = 3e x, f 4 (x) = x - x. Answer the following questions

More information

Chapter 2. Motion in One Dimension. AIT AP Physics C

Chapter 2. Motion in One Dimension. AIT AP Physics C Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Interactive Engagement via Thumbs Up. Today s class. Next class. Chapter 2: Motion in 1D Example 2.10 and 2.11 Any Question.

Interactive Engagement via Thumbs Up. Today s class. Next class. Chapter 2: Motion in 1D Example 2.10 and 2.11 Any Question. PHYS 01 Interactive Engagement via Thumbs Up 1 Chap.1 Sumamry Today s class SI units Dimensional analysis Scientific notation Errors Vectors Next class Chapter : Motion in 1D Example.10 and.11 Any Question

More information

Math 333 Exam 1. Name: On my honor, I have neither given nor received any unauthorized aid on this examination. Signature: Math 333: Diff Eq 1 Exam 1

Math 333 Exam 1. Name: On my honor, I have neither given nor received any unauthorized aid on this examination. Signature: Math 333: Diff Eq 1 Exam 1 Math 333 Exam 1 You have approximately one week to work on this exam. The exam is due at 5:00 pm on Thursday, February 28. No late exams will be accepted. During the exam, you are permitted to use your

More information