Work Order: Theoretical Calculations Needed for the LHC

Size: px
Start display at page:

Download "Work Order: Theoretical Calculations Needed for the LHC"

Transcription

1 Work Order: Theoretical Calculations Needed for the LHC Requestor: J. Huston Delivery location: Michigan State University Requested delivery date: before LHC data Total (CHF):free

2 Also online at ROP Some references Les Houches Physics at TeV colliders 2005, Standard Model and Higgs Working Group: Summary report. C. Buttar et al. hep-ph/ Standard Model benchmarks See Les_Houches_2005/Les_Houches_SM.html

3 Some background: what to expect at the LHC according to a theorist

4 What to expect at the LHC according to a theorist According to a current former Secretary of Defense known knowns known unknowns unknown unknowns

5 What to expect at the LHC according to a theorist According to a former Secretary of Defense known knowns SM at the Tevatron (most of) SM at the LHC known unknowns some aspects of SM at the LHC unknown unknowns???

6 Discovering the SM at the LHC We re all looking for BSM physics at the LHC Before we publish BSM discoveries from the early running of the LHC, we want to make sure that we measure/understand SM cross sections detector and reconstruction algorithms operating properly SM physics understood properly SM backgrounds to BSM physics correctly taken into account ATLAS/CMS will have a program to measure production of SM processes: inclusive jets, W/Z + jets, heavy flavor during first inverse femtobarn so experimenters need/have a program now of Monte Carlo production and studies to make sure that we understand what issues are important and we also need tool and algorithm and theoretical prediction developments (such as at NLO)

7 Cross sections at the LHC Experience at the Tevatron is very useful, but scattering at the LHC is not necessarily just rescaled scattering at the Tevatron Small typical momentum fractions x in many key searches dominance of gluon and sea quark scattering large phase space for gluon emission and thus for production of extra jets intensive QCD backgrounds or to summarize, lots of Standard Model to wade through to find the BSM pony BFKL?

8 Known known: Parton distribution functions Calculation of production cross sections at the LHC relies upon knowledge of pdf s in the relevant kinematic region Pdf s are determined by global analyses of data from DIS, DY and jet production Two major groups that provide semiregular updates to parton distributions when new data/theory becomes available MRS->MRST98->MRST99 >MRST2001->MRST2002 >MRST2003->MRST2004 ->MSTW CTEQ->CTEQ5->CTEQ6 >CTEQ6.1->CTEQ6.5 >CTEQ7) All of the above groups provide ways to estimate the error on the central pdf methodology enables full characterization of parton parametrization space in neighborhood of global minimum Hessian method Lagrange Multiplier both of above techniques used by CTEQ and MRST Hessian method accessible to general user NB: the error estimate only covers experimental sources of errors theory uncertainties higher twist/non-perturbative effects choose Q 2 and W cuts to avoid higher order effects (NNLO) heavy quark mass effects (not discussed)

9 Parton kinematics To serve as a handy look-up table, it s useful to define a parton-parton luminosity this is from the review paper and the Les Houches 2005 writeup Equation 3 can be used to estimate the production rate for a hard scattering at the LHC as the product of a differential parton luminosity and a scaled hard scatter matrix element

10 Cross section estimates gg gq for p T =0.1* sqrt(s-hat) qq

11 PDF luminosities as a function of y

12 PDF uncertainties at the LHC gg Note that for much of the SM/discovery range, the pdf luminosity uncertainty is small Need similar level of precision in theory calculations It will be a while, i.e. not in the first fb -1, before the LHC data starts to constrain pdf s qq gq NB: the errors are determined using the Hessian method for a Δχ 2 of 100 using only experimental uncertainties

13 Ratios:LHC to Tevatron pdf luminosities Processes that depend on qq initial states (e.g. chargino pair production) have small enchancements Most backgrounds have gg or gq initial states and thus large enhancement factors (500 for W + 4 jets for example, which is primarily gq) at the LHC W+4 jets is a background to tt production both at the Tevatron and at the LHC tt production at the Tevatron is largely through a qq initial states and so qq->tt has an enhancement factor at the LHC of ~10 Luckily tt has a gg initial state as well as qq so total enhancement at the LHC is a factor of 100 but increased W + jets background means that a higher jet cut is necessary at the LHC known known: jet cuts have to be higher at LHC than at Tevatron gg gq qq

14 The LHC Environment

15 The LHC will be a very jetty place Total cross sections for tt and Higgs production saturated by tt (Higgs) + jet production for jet p T values of order GeV/c σ W+3 jets > σ W+2 jets Indication that can expect interesting events at LHC to be very jetty (especially from gg initial states) Also can be understood from point-ofview of Sudakov form factors

16 Sudakov form factors Sudakov form factor gives the probability for a gluon not to be emitted; basis of parton shower Monte Carlos Consider tt production In going from the Tevatron to the LHC, you are moving from primarily qq initial states to gg initial states and to smaller values of parton x so there s more phase space for gluon emission So significantly more extra jets associated with the tt final state

17 NLO is the first order for which the normalization, and sometimes the shape, is believable NLO is necessary for precision comparisons of data to theory Sometimes backgrounds to new physics can be extrapolated from nonsignal regions, but this is difficult to do for low cross section final states and/or final states where a clear separation of a signal and background region is difficult NLO corrections

18 NLO corrections Sometimes it is useful to define a K-factor (NLO/LO). Note the value of the K-factor depends critically on its definition. K-factors at LHC (mostly) similar to those at Tevatron. K-factors may differ from one because of new subprocesses/contributions at higher order and/or differences between LO and NLO pdf s

19 Counterexample:shape dependence of a K-factor Inclusive jet production probes very wide x,q 2 range along with varying mixture of gg,gq,and qq subprocesses Over limited range of p T and y, can approximate effect of NLO corrections by K-factor but not in general in particular note that for forward rapidities, K-factor <<1 LO predictions will be large overestimates see extra slides for discussion as to why

20 Another example, from the Tevatron Suppose you measure the high m tt region looking for new physics Suppose that your measurement agrees well with Pythia Have you missed something? Yes, because NLO prediction at high mass is about half of LO prediction partially pdf s partially matrix elements

21 What about tt at the LHC? The cross section is dominated by the gg subprocess so the K- factor is approximately constant and > 1 unlike the Tevatron

22 Now we come to the maligned experimenter s NLO wishlist almost 6 years to the day and yet not a single calculation finished! Shame

23 NLO calculation priority list from Les Houches 2005: theory benchmarks G. Heinrich and J. Huston + * + + * *completed since list +people are working What about time lag in going from availability of matrix elements to having a parton level Monte Carlo available? See e.g. H + 2 jets. Other processes are going to be just as complex.

24 ttj An important calculation at NLO that would have made the list, except we knew that Dittmaier, Uwer and Weinzierl were alread working on it see Stefan s talk on Mon NLO corrections are small with scale choice near m t Bonus feature: ttj asymmetry at Tevatron small at NLO bonus because tt and ttj asymmetries in opposite directions

25 From LHC theory initiative white paper Uli Baur Fermilab W&C Aug 18

26 Higgs production Perhaps no surprise that many of the calculations on the list relate to Higgs production and backgrounds thereof. Let s consider a few of the processes.

27 WWj In addition to backgrounds to SUSY processes, WWj is also one of primary backgrounds to Higgs(->WW)+jet where we re interested in both W s decaying semileptonically We ve seen that the Higgs is often accompanied by a jet, plus we want to make use of all channels (H+0 jet, H+1 jet, and H+2 jets) in searching for a Higgs signal ATLAS plan is to extrapolate from background-rich region primarily Δφ ll >1.2 + some other cuts to signal-rich region primarily Δφ ll <1.2 (spins anticorrelated) + some other cuts By far the largest systematic uncertainty in this analysis comes from the LO nature of the WWj background and the extrapolation into the signal region Improvement of this uncertainty from 20% to 5% would significantly improve discovery potential

28 Higgs + 2 jets production (Campbell, Ellis, Giele, Zanderighi) VBF production of Higgs is an important process that will allow measurements of Higgs couplings to vector bosons Large scale dependence at LO for H+2jets Larger cross section, though, from QCD production of Higgs plus two jets Little shape change in going from LO to NLO (K-factor of ~1.25, similar to Higgs+1 jet) but renormalization scale dependence still large different scales for α s at top/bottom and middle vertices? A cut of 40 GeV/c has been placed on each of the Jets. For lower p T jets, the renormalization scale dependence is even greater (and σ Higgs+3 jets > σ Higgs+2jets )

29 ttbb and ttjj tth(->bb) is a tough business, but may be useful for discovery of a low mass Higgs For one W decaying semileptonically and the other hadronically, the final state has at least 6 jets, a lepton and missing transverse momentum Large backgrounds from ttbb and ttjj and important to understand them well In order to suppress latter, require 4 b-tagged jets in event Even without backgrounds, large combinatorics from signal alone CMS Physics TDR

30 VVV critical for SUSY trilepton and other new physics involving multiple leptons, jets and missing E T in final state Calculated by Lazopoulos, Melnikov and Petriello see Kirill s talk on Monday on ZZZ Large increase in cross section, partially due to pdf s and partially to large virtual corrections Scale dependence of LO does not give indication of size of NLO corrections but similar to VV corrections at NLO Small shape changes at NLO, so K-factor works

31 Some issues/questions What if we don t finish every process on the Les Houches list in time? and/or we think of new ones Can we make some generalizations based on type of reaction, initial state partons, kinematics gg s-channel reactions have large K-factors? past experience ttg->ttbb? and data/(lo)theory at the Tevatron? Can we learn anything more about NLO multi-jet cross sections from threshold resummation? Calculate soft and collinear approximations to NLO (George Sterman)? collinear regions in phase and loop space universal (and fairly simple) soft gluon regions change with number of jets, but are also simple generate a relatively simple approximation to NLO following from same factorization formulas used to prove threshold resummation

32 Some issues/questions Once we have the calculations, how do we (experimentalists) use them? Best is to have NLO partonic level calculation interfaced to parton shower/hadronization but that has been done only for relatively simple processes and is very (theorist) labor intensive still waiting for inclusive jets in for example need more automation Even with partonic level calculations, need ability to write out ROOT ntuples of parton level events so that can generate once with loose cuts and distributions can be remade without the need for the lengthy re-running of the predictions what I do for example with MCFM but 10 s of Gbytes

33 Something (easy) for the Tevatron:Wcj A relatively simple process, Wcj production, is still known only at LO sensitive to the strange quark distribution Crucial for understanding W + jets, where one or more jets has been tagged as originating from heavy flavor Agreement is within systematics but not as good as we d like to see in the one and two jet bins Note that analytic form for Wc virtual amplitudes never published if they were made available John promises to put them in MCFM

34 Don t forget NNLO: we need to know some processes (such as inclusive jet production) at NNLO Resummation effects: affect important physics signatures mostly taken into account if NLO calculations can be linked with parton showering Monte Carlos

35 and BFKL logs: will we finally see them at the LHC? EW logs: α W log 2 (p T2 /m W2 ) can be a big number at the LHC see talk by Scharf

36 and jet algorithms For some events, the jet structure is very clear and there s little ambiguity about the assignment of towers/particles to the jet But for other events, there is ambiguity and the jet algorithm must make decisions that impact precision measurements If comparison is to hadronlevel Monte Carlo, then hope is that the Monte Carlo will reproduce all of the physics present in the data and influence of jet algorithms can be understood more difficulty when comparing to parton level calculations CDF Run II events

37 Jet algorithms at NLO Remember at LO, 1 parton = 1 jet At NLO, there can be two (or more) partons in a jet and life becomes more interesting Let s set the p T of the second parton = z that of the first parton and let them be separated by a distance d (=ΔR) Then in regions I and II (on the left), the two partons will be within R cone of the jet centroid and so will be contained in the same jet ~10% of the jet cross section is in Region II; this will decrease as the jet p T increases (and α s decreases) at NLO the k T algorithm corresponds to Region I (for D=R); thus at parton level, the cone algorithm is always larger than the k T algorithm d z=p T2 /p T1

38 Jets and you There is a need/desire to have available the results of more than one jet algorithm when analyzing an event A student of mine and I have assembled some jet algorithms together in a routine that runs on 4- vector files So far, the routine runs JetClu, Midpoint, k T (inclusive and exclusive), Cambridge/Aachen algorithm, SISCone and simple Pythia UA-1 type algorithm (CellJet) in a UA-1 type algorithm, the center of the jet is taken as the location of the highest pt tower; a cone is drawn around the jet and those towers are eliminated from the remaining jet clustering User specifies the parameters for the jet reconstruction (including whether to pre-cluster the 4-vectors together into towers), whether to add in extra min bias events (pending), and whether to make lego plots (with userspecified tower granularity) Available from /~huston/lhc_jet/lhc_jet.html

39 Jet sample with p T min >2 TeV/c (from website) except for exclusive k T (where jets are explicitly broken up) high E T distributions look similar

40 Jet masses from 2 TeV/c sample It s often useful to examine jet masses, especially if the jet might be some composite object, say a W/Z or even a top quark very popular in recent literature, LHC Olympics For 2 TeV jets, peak mass (from dynamical sources) is on order of 125 GeV/c 2, but with long tail Sudakov suppression for low jet masses fall-off as 1/m 2 due to hard gluon emission algorithm suppression at high masses jet algorithms tend to split high mass jets in two

41 Event from J8 file (5017, 49120) MidPoint Jets Et eta phi n mass A 2.6 TeV/c jet with the mass of a top quark But a real top quark would probably have jet energy distributed differently separate W and b clusters Need to be able to look inside structure of jet as well

42 LHC jet study We ve started an LHC working group on jets, with the intent to have ATLAS and CMS (and interested theorists) work on commonality of jet algorithms jet benchmarks we re running common events through the ATLAS/CMS machinery to note any differences continuing the work begun at the MC4LHC workshop last summer to be continued at Les Houches 2007 plus establishing the machinery to allow jet re-clustering to be easily done at the ntuple level (so no excuse not to compare the results of several different jet algorithms) See

43 Summary Physics will come flying hot and heavy when LHC turns on at full energy in 2008 Important to establish both the SM benchmarks and the tools we will need to properly understand this flood of data and in particular, the needed NLO calculations

44 WG NLO Multi-leg will address the issue of the theoretical predictions for multileg processes, in particular beyond leading order, and the possibility of implementing these calculations in Monte Carlos. This working group aims at a cross breeding between novel approaches (twistors, bootstraps,..) and improvements in standard techniques. Dave Soper, Borut Kersevan and I are leading a group dealing with NLO calculations and their use WG SM Handles and Candles will review and critically compare existing tools for SM processes, covering issues in pdf, jets and Higgs physics. WG New Physics is a beyond SM group, subdivided into SUSY and new models of symmetry breaking. It will also address the issue of model reconstruction and model independent searches based on topologies. There will also be an intergroup dedicated to Tools and Monte Carlos. This intergroup will liaise with all WG with the task of incorporating some of the issues and new techniques developed in these groups in view of improving Monte Carlos and setting standards and accords among the simulation codes to better meet the experimental needs.

45 CTEQ LHC Workshop May Kellogg Biological Station*, Michigan State University Program * The LHC environment * Benchmark QCD measurements * W/Z production as luminosity monitor * W/Z/photon+light/heavy-flavor jets * ttbar/single-top production * Simulation tools: from parton-level to full event * Next generation of parton shower models * The Tevatron reach to new physics * New physics searches with 1 fb -1 * Theory tools for new physics searches *no medical experiments will be performed on participants during their stay

46 Extra slides

47 Known known: underlying event at the Tevatron Define regions transverse to the leading jet in the event Label the one with the most transverse momentum the MAX region and that with the least the MIN region The transverse momentum in the MAX region grows as the momentum of the lead jet increases receives contribution from higher order perturbative contributions The transverse momentum in the MIN region stays basically flat, at a level consistent with minimum bias events no substantial higher order contributions Monte Carlos can be tuned to provide a reasonably good universal description of the data for inclusive jet production and for other types of events as well multiple interactions among low x gluons

48 Known unknown: underlying event at the LHC There s a great deal of uncertainty regarding the level of underlying event at 14 TeV, but it s clear that the UE is larger at the LHC than at the Tevatron Should be able to establish reasonably well with the first collisions in 2008 Rick Field is working on some new tunes fixing problems present in Tune A tunes for Jimmy tunes for CTEQ6.1 (NLO) see TeV4LHC writeup for details

49 Aside: Why K-factors < 1 for inclusive jet prodution? Write cross section indicating explicit scale-dependent terms First term (lowest order) in (3) leads to monotonically decreasing behavior as scale increases Second term is negative for µ<p T, positive for µ>p T Third term is negative for factorization scale M < p T Fourth term has same dependence as lowest order term Thus, lines one and four give contributions which decrease monotonically with increasing scale while lines two and three start out negative, reach zero when the scales are equal to p T, and are positive for larger scales At NLO, result is a roughly parabolic behavior (1) (2) (3) (4)

50 Why K-factors < 1? First term (lowest order) in (3) leads to monotonically decreasing behavior as scale increases Second term is negative for µ<p T, positive for µ>p T Third term is negative for factorization scale M < p T Fourth term has same dependence as lowest order term Thus, lines one and four give contributions which decrease monotonically with increasing scale while lines two and three start out negative, reach zero when the scales are equal to p T, and are positive for larger scales NLO parabola moves out towards higher scales for forward region Scale of E T /2 results in a K-factor of ~1 for low E T, <<1 for high E T for forward rapidities at Tevatron

51 SM benchmarks for the LHC pdf luminosities and uncertainties expected cross sections for useful processes inclusive jet production See Les_Houches_2005/Les_Houches_SM.html (includes CMS as well as ATLAS) simulated jet events at the LHC jet production at the Tevatron a link to a CDF thesis on inclusive jet production in Run 2 CDF results from Run II using the kt algorithm photon/diphoton Drell-Yan cross sections W/Z/Drell Yan rapidity distributions W/Z as luminosity benchmarks W/Z+jets, especially the Zeppenfeld plots top pairs ongoing work, list of topics (pdf file)

52 W + jets at the Tevatron Interesting for tests of perturbative QCD formalisms matrix element calculations parton showers or both Backgrounds to tt production and other potential new physics Observe up to 7 jets at the Tevatron Results from Tevatron to the right are in a form that can be easily compared to theoretical predictions (at hadron level) see www-cdf.fnal.gov QCD webpages in process of comparing to MCFM and CKKW predictions remember for a cone of 0.4, hadron level ~ parton level note emission of each jet suppressed by ~factor of α s agreement with MCFM for low jet multiplicity

53 High p T tops At the LHC, there are many interesting physics signatures for BSM that involve highly boosted top pairs This will be an interesting/challenging environment for trying to optimize jet algorithms each top will be a single jet Even at the Tevatron have tops with up to 300 GeV/c of transverse momentum

Bearing Standard Model Benchmarks to the LHC

Bearing Standard Model Benchmarks to the LHC Bearing Standard Model Benchmarks to the LHC Joey Huston Michigan State University originally for Epiphany Workshop on Precision Physics for the LHC Krakow Jan.6 2007 CERN Bearing Standard Model Benchmarks

More information

CTEQ6.6 pdf s etc. J. Huston Michigan State University

CTEQ6.6 pdf s etc. J. Huston Michigan State University CTEQ6.6 pdf s etc J. Huston Michigan State University 1 Parton distribution functions and global fits Calculation of production cross sections at the LHC relies upon knowledge of pdf s in the relevant

More information

K-factors and jet algorithms. J. Huston

K-factors and jet algorithms. J. Huston K-factors and jet algorithms J. Huston 4. Identifying important missing processes The Les Houches wishlist from 2005/2007 is filling up slowly but progressively. Progress should be reported and a discussion

More information

Les Houches SM and NLO multi-leg group: experimental introduction and charge. J. Huston, T. Binoth, G. Dissertori, R. Pittau

Les Houches SM and NLO multi-leg group: experimental introduction and charge. J. Huston, T. Binoth, G. Dissertori, R. Pittau Les Houches SM and NLO multi-leg group: experimental introduction and charge J. Huston, T. Binoth, G. Dissertori, R. Pittau Understanding cross sections at the LHC LO, NLO and NNLO calculations K-factors

More information

Les Houches SM and NLO multi-leg group: experimental introduction and charge. J. Huston, T. Binoth, G. Dissertori, R. Pittau

Les Houches SM and NLO multi-leg group: experimental introduction and charge. J. Huston, T. Binoth, G. Dissertori, R. Pittau Les Houches SM and NLO multi-leg group: experimental introduction and charge J. Huston, T. Binoth, G. Dissertori, R. Pittau Understanding cross sections at the LHC LO, NLO and NNLO calculations K-factors

More information

QCD for the LHC. PDFs for the LHC Jets and Photons for the LHC Matrix Elements for the LHC the week of Joey

QCD for the LHC. PDFs for the LHC Jets and Photons for the LHC Matrix Elements for the LHC the week of Joey QCD for the LHC PDFs for the LHC Jets and Photons for the LHC Matrix Elements for the LHC the week of Joey J. Huston Michigan State University (huston@msu.edu) Sparty Two advertisements Excitement about

More information

NLM introduction and wishlist

NLM introduction and wishlist 1. NLM introduction and wishlist he LHC will be a very complex environment with most of the interesting physics signals, and their backgrounds, consisting of multi-parton (and lepton/photon) final states.

More information

Matrix Elements for the LHC. J. Huston Michigan State University, IPPP Durham

Matrix Elements for the LHC. J. Huston Michigan State University, IPPP Durham Matrix Elements for the LHC J. Huston Michigan State University, IPPP Durham Some references CHS over 1500 downloads so far goal is to provide a reasonably global picture of LHC calculations (with rules

More information

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy Tevatron & Experiments 2 Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy Tevatron performing very well 6.5 fb 1 delivered (per experiment) 2 fb 1 recorded in 2008 alone

More information

W/Z + jets and W/Z + heavy flavor production at the LHC

W/Z + jets and W/Z + heavy flavor production at the LHC W/Z + jets and W/Z + heavy flavor production at the LHC A. Paramonov (ANL) on behalf of the ATLAS and CMS collaborations Moriond QCD 2012 Motivation for studies of jets produced with a W or Z boson Standard

More information

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Theoretical Predictions For Top Quark Pair Production At NLO QCD Theoretical Predictions For Top Quark Pair Production At NLO QCD Malgorzata Worek Wuppertal Uni. HP2: High Precision for Hard Processes, 4-7 September 2012, MPI, Munich 1 Motivations Successful running

More information

QCD at the LHC Joey Huston Michigan State University

QCD at the LHC Joey Huston Michigan State University QCD at the LHC Joey Huston Michigan State University Some references CHS over 1500 downloads so far arxiv:07122447 Dec 14, 2007 goal is to provide a reasonably global picture of LHC calculations (with

More information

The inclusive jet cross section, jet algorithms, underlying event and fragmentation corrections. J. Huston Michigan State University

The inclusive jet cross section, jet algorithms, underlying event and fragmentation corrections. J. Huston Michigan State University The inclusive jet cross section, jet algorithms, underlying event and fragmentation corrections J. Huston Michigan State University Tevatron in Run II 36 bunches (396 ns crossing time) 2 CDF in Run II

More information

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab 1 Understanding Cross Sections @ LHC: many pieces to the puzzle LO, NLO and NNLO calculations K-factors Benchmark cross sections and pdf correlations

More information

Lecture 2. QCD at the LHC Joey Huston Michigan State University

Lecture 2. QCD at the LHC Joey Huston Michigan State University Lecture 2 QCD at the LHC Joey Huston Michigan State University NLO calculations NLO calculation requires consideration of all diagrams that have an extra factor of α s real radiation, as we have just discussed

More information

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration QCD at CDF Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration Jet Inclusive Cross-Section Underlying event studies Jet Shapes Specific processes _ W+Jets, γ + γ, γ + b/c, b-jet / bb jet Diffraction

More information

QCD Studies at the Tevatron

QCD Studies at the Tevatron QCD Studies at the Tevatron Results from the CDF and DØ Collaborations Markus Wobisch, Louisiana Tech University DESY Seminar, June 24, 2008 Fermilab Tevatron - Run II CDF Chicago pp at 1.96 TeV DØ 36x36

More information

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations Precision QCD at the Tevatron Markus Wobisch, Fermilab for the CDF and DØ Collaborations Fermilab Tevatron - Run II Chicago Ecm: 1.8 1.96 TeV more Bunches 6 36 Bunch Crossing 3500 396ns CDF Booster Tevatron

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Lecture 5. QCD at the LHC Joey Huston Michigan State University

Lecture 5. QCD at the LHC Joey Huston Michigan State University Lecture 5 QCD at the LHC Joey Huston Michigan State University Tevatron data Wealth of data from the Tevatron, both Run 1 and Run 2, that allows us to test/add to our pqcd formalism with analysis procedures/

More information

Jets (and photons) at the LHC. J. Huston LPC March 10, 2010

Jets (and photons) at the LHC. J. Huston LPC March 10, 2010 Jets (and photons) at the LHC J. Huston LPC March 10, 2010 More references Understanding cross sections at the LHC we have to understand QCD (at the LHC) PDF s, PDF luminosities and PDF uncertainties LO,

More information

Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production.

Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production. Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production. Early discoveries? Conclusions. 2 First collisions

More information

Top production measurements using the ATLAS detector at the LHC

Top production measurements using the ATLAS detector at the LHC Top production measurements using the ATLAS detector at the LHC INFN, Sezione di Bologna and University of Bologna E-mail: romano@bo.infn.it This paper is an overview of recent results on top-quark production

More information

Standard Model Handles and Candles WG (session 1)

Standard Model Handles and Candles WG (session 1) Standard Model Handles and Candles WG (session 1) Conveners: Experiment: Craig Buttar, Jorgen d Hondt, Markus Wobisch Theory: Michael Kramer, Gavin Salam This talk: the jets sub-group 1. Background + motivation

More information

Physics at Hadron Colliders Part II

Physics at Hadron Colliders Part II Physics at Hadron Colliders Part II Marina Cobal Università di Udine 1 The structure of an event One incoming parton from each of the protons enters the hard process, where then a number of outgoing particles

More information

Precision Calculations for Collider Physics

Precision Calculations for Collider Physics SFB Arbeitstreffen März 2005 Precision Calculations for Collider Physics Michael Krämer (RWTH Aachen) Radiative corrections to Higgs and gauge boson production Combining NLO calculations with parton showers

More information

PDFs, the LHC and the Higgs

PDFs, the LHC and the Higgs PDFs, the LHC and the Higgs J. Huston Michigan State University MCTP Spring Symposium on Higgs Physics April 17, 2012 Some references and companion website at http://mstwpdf.hepforge.org/pdf4lhc/ Some

More information

ATLAS Discovery Potential of the Standard Model Higgs Boson

ATLAS Discovery Potential of the Standard Model Higgs Boson ATLAS Discovery Potential of the Standard Model Higgs Boson Christian Weiser University of Freiburg (on behalf of the ATLAS Collaboration) 14th Lomonosov Conference on Elementary Particle Physics Moscow,

More information

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve QCD and jets physics at the LHC with CMS during the first year of data taking Pavel Demin UCL/FYNU Louvain-la-Neuve February 8, 2006 Bon appétit! February 8, 2006 Pavel Demin UCL/FYNU 1 Why this seminar?

More information

Testing QCD at the LHC and the Implications of HERA DIS 2004

Testing QCD at the LHC and the Implications of HERA DIS 2004 Testing QCD at the LHC and the Implications of HERA DIS 2004 Jon Butterworth Impact of the LHC on QCD Impact of QCD (and HERA data) at the LHC Impact of the LHC on QCD The LHC will have something to say

More information

High p T physics at the LHC Lecture III Standard Model Physics

High p T physics at the LHC Lecture III Standard Model Physics High p T physics at the LHC Lecture III Standard Model Physics Miriam Watson, Juraj Bracinik (University of Birmingham) Warwick Week, April 2011 1. LHC machine 2. High PT experiments Atlas and CMS 3. Standard

More information

Predictions and PDFs for the LHC

Predictions and PDFs for the LHC Predictions and PDFs for the LHC J. Huston Michigan State University (huston@msu.edu) Sparty we ll talk more about Sparty tomorrow Two advertisements Excitement about my visit Understanding cross sections

More information

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017 Tests of QCD Using Jets at CMS Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM-2017 24/10/2017 2/25 Outline Introduction QCD at LHC QCD measurements on the LHC data Jets The strong

More information

Jets at LHCb. Gavin Salam. LHCb, CERN, 21 January CERN, Princeton & LPTHE/CNRS (Paris)

Jets at LHCb. Gavin Salam. LHCb, CERN, 21 January CERN, Princeton & LPTHE/CNRS (Paris) Jets at LHCb Gavin Salam CERN, Princeton & LPTHE/CNRS (Paris) LHCb, CERN, 21 January 2011 Jets @ LHCb (G. Salam) CERN, 2011-01-21 2 / 16 Any process that involves final-state partons gives jets Examples

More information

Higgs-related SM Measurements at ATLAS

Higgs-related SM Measurements at ATLAS Higgs-related SM Measurements at ATLAS Junjie Zhu University of Michigan 2 nd MCTP Spring Symposium on Higgs Boson Physics Outline Introduction Isolated γγ cross section (37 pb -1, Phys. Rev. D 85, 012003

More information

QCD Jets at the LHC. Leonard Apanasevich University of Illinois at Chicago. on behalf of the ATLAS and CMS collaborations

QCD Jets at the LHC. Leonard Apanasevich University of Illinois at Chicago. on behalf of the ATLAS and CMS collaborations QCD Jets at the LHC Leonard Apanasevich University of Illinois at Chicago on behalf of the ATLAS and CMS collaborations Outline Physics at the LHC Jet Reconstruction and Performance Clustering Algorithms

More information

Electroweak Physics at the Tevatron

Electroweak Physics at the Tevatron Electroweak Physics at the Tevatron Adam Lyon / Fermilab for the DØ and CDF collaborations 15 th Topical Conference on Hadron Collider Physics June 2004 Outline Importance Methodology Single Boson Measurements

More information

Jet Substructure. Adam Davison. University College London

Jet Substructure. Adam Davison. University College London Jet Substructure Adam Davison University College London 1 Outline Jets at the LHC Machine and ATLAS detector What is a jet? Jet substructure What is it? What can it do for us? Some ATLAS/Higgs bias here

More information

Understanding the backgrounds to WW->H at the LHC: the Zeppenfeld plots

Understanding the backgrounds to WW->H at the LHC: the Zeppenfeld plots Understanding the backgrounds to WW->H at the LHC: the Zeppenfeld plots Ben Cooper University College London Joey Huston Michigan State University -Monte Carlo studies here -Comparisons to data next meeting

More information

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration Measurements with electroweak bosons at LHCb PANIC August 28, 2014 on behalf of the LHCb collaboration Outline LHCb detector Measurements with electroweak bosons Motivation Z production Z plus jets, Z

More information

QCD at/for the LHC Joey Huston Michigan State University. 21 June seminar at Orsay

QCD at/for the LHC Joey Huston Michigan State University. 21 June seminar at Orsay QCD at/for the LHC Joey Huston Michigan State University 21 June seminar at Orsay Some references CHS over 1500 downloads so far arxiv:07122447 Dec 14, 2007 goal is to provide a reasonably global picture

More information

Constraints on Higgs-boson width using H*(125) VV events

Constraints on Higgs-boson width using H*(125) VV events Constraints on Higgs-boson width using H*(125) VV events Roberto Covarelli ( University / INFN of Torino ) on behalf of the CMS and ATLAS collaborations 25th International Workshop on Weak Interactions

More information

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Higgs Physics and Other Essentials [Lecture 22, April 29, 2009] Organization Next week lectures: Monday 2pm and Tuesday 9:30am (which room?) Project

More information

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract CERN-PH-TH-2015-192 TTP15-030 Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD Fabrizio Caola, 1, Kirill Melnikov, 2, and Markus Schulze

More information

CTEQ-TEA update +some discussion topics

CTEQ-TEA update +some discussion topics CTEQ-TEA update +some discussion topics J. Huston for the CTEQ-TEA group Michigan State University PDF4LHC meeting March 7, 2011 CTEQ6.6 Recent history published in 2008: in general use at LHC; one of

More information

W/Z production with 2b at NLO

W/Z production with 2b at NLO W/Z production with b at NLO Laura Reina Eugene, September 9 Motivations: main background to W H/ZH associated production; single-top production; H/A + b b and other signals of new physics; t t production;

More information

Direct measurement of the W boson production charge asymmetry at CDF

Direct measurement of the W boson production charge asymmetry at CDF Direct measurement of the boson production charge asymmetry at CDF Eva Halkiadakis Rutgers University For the CDF collaboration Joint Experimental-Theoretical Physics Seminar Fermilab May 22 2009 Outline

More information

Electroweak results. Luca Lista. INFN - Napoli. LHC Physics

Electroweak results. Luca Lista. INFN - Napoli. LHC Physics Electroweak results Luca Lista INFN - Napoli EWK processes at LHC p p W and Z production in pp collisions proceeds mainly form the scattering of a valence quark with a sea anti-quark The involved parton

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

Bound-state effects in ttbar production at the LHC

Bound-state effects in ttbar production at the LHC 1 Bound-state effects in ttbar production at the LHC Hiroshi YOKOYA (National Taiwan University) based on works in collaboration with K.Hagiwara(KEK) and Y.Sumino(Tohoku U) GGI workshop, Firenze, 2011.09.28

More information

The Heavy Quark Search at the LHC

The Heavy Quark Search at the LHC The Heavy Quark Search at the LHC The Heavy Quark Search at the LHC Backgrounds: estimating and suppressing tt, multijets,... jet mass technique NLO effects matrix elements for extra jets initial state

More information

Top Physics at CMS. Intae Yu. Sungkyunkwan University (SKKU), Korea Yonsei University, Sep 12 th, 2013

Top Physics at CMS. Intae Yu. Sungkyunkwan University (SKKU), Korea Yonsei University, Sep 12 th, 2013 Top Physics at CMS Intae Yu Sungkyunkwan University (SKKU), Korea Seminar @ Yonsei University, Sep 12 th, 2013 Outline Overview of CMS Operation Korea CMS Group Doing Top Physics at LHC Top Production

More information

Measurement of photon production cross sections also in association with jets with the ATLAS detector

Measurement of photon production cross sections also in association with jets with the ATLAS detector Nuclear and Particle Physics Proceedings 00 (07) 6 Nuclear and Particle Physics Proceedings Measurement of photon production cross sections also in association with jets with the detector Sebastien Prince

More information

Difficult calculations

Difficult calculations Difficult calculations The multi-loop and multi-leg calculations are very difficult but just compare them to the complexity of the sentences that Sarah Palin used in her run for the vice-presidency. loops

More information

Measurements of the Vector boson production with the ATLAS Detector

Measurements of the Vector boson production with the ATLAS Detector Measurements of the Vector boson production with the ATLAS Detector Pavel Staroba for ATLAS Collaboration 1 W/Z measurements at ATLAS More than 50 publications in total. Wide range of topics is covered.

More information

W/Z+jet results from the Tevatron

W/Z+jet results from the Tevatron W/Z+jet results from the Tevatron Dmitry Bandurin Florida State University On behalf of D0 and CDF Collaborations Moriond QCD 2012, March 15, La Thuile, Italy Precision QCD tests Photon, W, Z etc. p parton

More information

Recent Results from the Tevatron

Recent Results from the Tevatron Recent Results from the Tevatron Simona Rolli Tufts University (on behalf of the CDF and D0 Collaborations) PPC 2010: IV INTERNATIONAL WORKSHOP ON THE INTERCONNECTION BETWEEN PARTICLE PHYSICS AND COSMOLOGY

More information

Jet reconstruction in W + jets events at the LHC

Jet reconstruction in W + jets events at the LHC Jet reconstruction in W + jets events at the LHC Ulrike Schnoor Michigan State University High Energy Physics Institutsseminar IKTP TU Dresden, Nov 4, 010 Jet reconstruction in W + jets events at the LHC

More information

Minimum Bias and Underlying Event Studies at CDF

Minimum Bias and Underlying Event Studies at CDF FERMILAB-CONF--531-E Minimum Bias and Underlying Event Studies at CDF INFN, Bologna E-mail: moggi@bo.infn.it Soft, non-perturbative, interactions are poorly understood from the theoretical point of view

More information

Superleading logarithms in QCD

Superleading logarithms in QCD Superleading logarithms in QCD Soft gluons in QCD: an introduction. Gaps between jets I: the old way (

More information

Highlights of top quark measurements in hadronic final states at ATLAS

Highlights of top quark measurements in hadronic final states at ATLAS Highlights of top quark measurements in hadronic final states at ATLAS Serena Palazzo 1,2,, on behalf of the ATLAS Collaboration 1 Università della Calabria 2 INFN Cosenza Abstract. Measurements of inclusive

More information

Double Parton Scattering in CMS. Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x th June 2017 Bari, Italy

Double Parton Scattering in CMS. Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x th June 2017 Bari, Italy Double Parton Scattering in CMS Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x 2017 17th June 2017 Bari, Italy Outline Introduction to DPS DPS measurements with CMS 2b +

More information

PoS(EPS-HEP 2013)215. WW, WZ, and ZZ production at CMS. Jordi DUARTE CAMPDERROS (on behalf of CMS collaboration)

PoS(EPS-HEP 2013)215. WW, WZ, and ZZ production at CMS. Jordi DUARTE CAMPDERROS (on behalf of CMS collaboration) (on behalf of CMS collaboration) Universidad de Cantabria/CSIC E-mail: jorge.duarte.campderros@cern.ch We present the WW, WZ and ZZ production cross sections measurements and constraints on anomalous triple-gauge

More information

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF of the Inclusive Isolated Cross at IFAE Barcelona HEP Seminar University of Virginia Outline Theoretical introduction Prompt photon production The The Photon detection prediction The pqcd NLO prediction

More information

Study of Higgs Boson Decaying to Four Muons at s =14 TeV

Study of Higgs Boson Decaying to Four Muons at s =14 TeV Study of Higgs Boson Decaying to Four Muons at s =14 TeV R.M. Aly 1, A.A. Abdelalim 1,2, M.N.El-Bakrey 1 and A. Mahrous 1 1 Department of physics, Faculty of science, Helwan University, Cairo, Egypt. 2

More information

Fully exclusive NNLO QCD computations

Fully exclusive NNLO QCD computations Fully exclusive NNLO QCD computations Kirill Melnikov University of Hawaii Loopfest V, SLAC, June 2006 Fully exclusive NNLO QCD computations p. 1/20 Outline Introduction Technology Higgs boson production

More information

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC Michele Cascella Graduate Course in Physics University of Pisa The School of Graduate Studies in Basic

More information

F λ A (x, m Q, M Q ) = a

F λ A (x, m Q, M Q ) = a Parton Distributions and their Uncertainties Jon Pumplin DPF22 Williamfburg 5/25/2 CTEQ6 PDF analysis (J. Pumplin, D. Stump, W.K. Tung, J. Huston, H. Lai, P. Nadolsky [hep-ph/21195]) include new data sets

More information

First V+jets results with CMS. Vitaliano Ciulli (Univ. & INFN Firenze) V+jets workshop, 8-10 Sep 2010, Durham

First V+jets results with CMS. Vitaliano Ciulli (Univ. & INFN Firenze) V+jets workshop, 8-10 Sep 2010, Durham First V+jets results with CMS Vitaliano Ciulli (Univ. & INFN Firenze) V+jets workshop, 8- Sep 20, Durham Outline Jet and missing energy reconstruction W and Z selections and cross-section measurement First

More information

Higgs Searches - Overview. Kétévi A. Assamagan BNL

Higgs Searches - Overview. Kétévi A. Assamagan BNL Higgs Searches - Overview Kétévi A. Assamagan BNL Outline SM Higgs MSSM Higgs Mass and coupling measurements Les Houches, June 11, 2009 Ketevi A. Assamagan 2 Improvement in Higgs Studies at the LHC Many

More information

Jet Energy Calibration. Beate Heinemann University of Liverpool

Jet Energy Calibration. Beate Heinemann University of Liverpool Jet Energy Calibration Beate Heinemann University of Liverpool Fermilab, August 14th 2006 1 Outline Introduction CDF and D0 calorimeters Response corrections Multiple interactions η-dependent corrections

More information

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS Fengwangdong Zhang Peking University (PKU) & Université Libre de Bruxelles (ULB)

More information

Search for gluino-mediated stop and sbottom pair production in events with b-jets and large missing transverse momentum

Search for gluino-mediated stop and sbottom pair production in events with b-jets and large missing transverse momentum Search for gluino-mediated stop and sbottom pair production in events with b-jets and large missing transverse momentum Chiara Rizzi On behalf of the ATLAS Collaboration ALPS 2017 Obergurgl Introduction

More information

Searching for the Higgs at the LHC

Searching for the Higgs at the LHC Searching for the Higgs at the LHC Philip Lawson Boston University - PY 898 - Special Topics in LHC Physics 3/16/2009 1 Outline Theory & Background of Higgs Mechanism Production Modes Decay Modes - Discovery

More information

Results on top physics by CMS

Results on top physics by CMS EPJ Web of Conferences 95, 04069 (2015) DOI: 10.1051/ epjconf/ 20159504069 C Owned by the authors, published by EDP Sciences, 2015 Results on top physics by CMS Silvano Tosi 1,2,a, on behalf of the CMS

More information

QCD in gauge-boson production at the LHC "

QCD in gauge-boson production at the LHC QCD in gauge-boson production at the LHC " " Matthias Schott " on behalf of the ATLAS and CMS Collaborations" Prof. Dr. Matthias Schott What can we learn " from those tests?" Inclusive and differential

More information

Parton-parton luminosity functions for the LHC

Parton-parton luminosity functions for the LHC Parton-parton luminosity functions for the LHC Alexander Belyaev, Joey Huston, Jon Pumplin Michigan State University, East Lansing, Michigan, USA Abstract In this short writeup, we discuss one of the LHC

More information

QCD at hadron colliders

QCD at hadron colliders QCD at hadron colliders Soushi Tsuno Okayama University Outline Introduction: Focus on current (Tevatron) and future (LHC) hadron colliders High pt pqcd phenomena & issues: PDF measurement Jet Physics

More information

Global QCD Analysis of Nucleon Structure: Progress and Prospects

Global QCD Analysis of Nucleon Structure: Progress and Prospects Global QCD Analysis of Nucleon Structure: Progress and Prospects Recent Past (say, up to DIS2002): Experiment: More precision DIS measurements (mainly HERA) and Tevatron inclusive jet production (CDF,

More information

La ricerca dell Higgs Standard Model a CDF

La ricerca dell Higgs Standard Model a CDF La ricerca dell Higgs Standard Model a CDF Melisa Rossi INFN-TS Giornata di seminari INFN Trieste - 7 Luglio 2009 FNAL: Fermi National Accelerator Lab Tevatron currently provides the highest energy proton-antiproton

More information

Vector boson + jets at NLO vs. LHC data

Vector boson + jets at NLO vs. LHC data Vector boson + jets at NLO vs. LHC data Lance Dixon (SLAC) for the BlackHat collaboration Z. Bern, LD, G. Diana, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maître, K. Ozeren LHC Theory Workshop

More information

QCD at hadron colliders

QCD at hadron colliders QCD at hadron colliders This will be a brief experimentalist s view, with a concentration on the two hadron-hadron colliders mentioned in the previous talk If you want a good reference book for graduate

More information

HIGGS Bosons at the LHC

HIGGS Bosons at the LHC ATLAS HIGGS Bosons at the LHC Standard Model Higgs Boson - Search for a light Higgs at the LHC - Vector boson fusion - Comparison to the Tevatron potential Measurement of Higgs boson parameters The MSSM

More information

QCD Measurements at DØ

QCD Measurements at DØ QCD Measurements at DØ University of Texas -Arlington- Seminar, University of Virginia January 24th 27 TeVatron Collider at Fermilab Proton-Antiproton Collisions at Center-of-Mass s = 1.96 TeV Two Multi-Purpose

More information

Don Lincoln. QCD Results from the Tevatron

Don Lincoln. QCD Results from the Tevatron Recent Don Lincoln Fermilab DØ Calorimeter Uranium-Liquid Argon Calorimeter stable, uniform response, radiation hard Compensating: e/π 1 Uniform hermetic coverage η 4.2, recall η ln[tan(θ/2)] Longitudinal

More information

from D0 collaboration, hep-ex/

from D0 collaboration, hep-ex/ At present at the Tevatron is extracted from the transverse-mass distribution Events / GeV/c 2 2000 1500 1000 500 Fit region 0 50 60 70 80 90 100 110 120 from D0 collaboration, hep-ex/0007044 Transverse

More information

Progress in CTEQ-TEA (Tung et al.) PDF Analysis

Progress in CTEQ-TEA (Tung et al.) PDF Analysis Progress in CTEQ-TEA (Tung et al.) PDF Analysis Sayipjamal Dulat Xinjiang University University In collaboration with CTEQ-TEA Group April 4, 2016 QCD Study Group CTEQ-TEA group CTEQ Tung et al. (TEA)

More information

Min-Bias Data: Jet Evolution and Event Shapes

Min-Bias Data: Jet Evolution and Event Shapes Min-Bias Data: Jet Evolution and Event Shapes Rick Field and David Stuart July 1, 1999 Abstract The Min-Bias data are used to study the transition between soft and hard collisions. We study this transition

More information

PDF4LHC update +SCET re-weighting update

PDF4LHC update +SCET re-weighting update PDF4LHC update +SCET re-weighting update J. Huston Michigan State University Tevatron Higgs meeting April 18, 2011 PDF4LHC benchmarks/recommendations We ve called these interim. How/when do we want to

More information

Atlas results on diffraction

Atlas results on diffraction Atlas results on diffraction Alessia Bruni INFN Bologna, Italy for the ATLAS collaboration Rencontres du Viet Nam 14th Workshop on Elastic and Diffractive Scattering Qui Nhon, 16/12/2011 EDS 2011 Alessia

More information

Understanding Top and Its Backgrounds

Understanding Top and Its Backgrounds Understanding Top and Its Backgrounds Maximizing the Chances of Finding New Physics in Run2 Stephen Mrenna Computing Division Fermilab and MCTP University of Michigan Top Quark Symposium 2005 Stephen Mrenna

More information

QCD Studies at LHC with the Atlas detector

QCD Studies at LHC with the Atlas detector QCD Studies at LHC with the Atlas detector Introduction Sebastian Eckweiler - University of Mainz (on behalf of the ATLAS Collaboration) Examples of QCD studies Minimum bias & underlying event Jet-physics

More information

EW Physics at LHC. phi= mu_4: pt=7.9 GeV, eta=-1.13, phi=0.94. Toni Baroncelli:

EW Physics at LHC. phi= mu_4: pt=7.9 GeV, eta=-1.13, phi=0.94. Toni Baroncelli: EW Physics at LHC Event display of a 2e2mu candidate. EventNumber: 12611816 RunNumber: 205113 m_4l=123.9 GeV. m_12=87.9 GeV, m_34=19.6 GeV. e_1: pt=18.7 GeV, eta=-2.45, phi=1.68,. 15/09/17 e_2: pt=75.96

More information

THE STRONG COUPLING AND LHC CROSS SECTIONS

THE STRONG COUPLING AND LHC CROSS SECTIONS THE STRONG COUPLING AND LHC CROSS SECTIONS Frank Petriello Argonne National Laboratory and Northwestern University Workshop on Precision Measurements of α S February 11, 2011 Outline Focus of talk: customer

More information

Recent Results of + c + X and + b + X Production Cross Sections at DØ

Recent Results of + c + X and + b + X Production Cross Sections at DØ Recent Results of + c + X and + b + X Production Cross Sections at DØ Florida State University Wednesday March 18th Virginia HEP Seminar 1 The Standard Model (SM) The Standard Model (SM) describes the

More information

Precision Jet Physics At the LHC

Precision Jet Physics At the LHC Precision Jet Physics At the LHC Matthew Schwartz Harvard University JETS AT THE LHC An (almost) universal feature of SUSY is and Source: Atlas TDR SIGNAL VS. BACKGROUND Source: Atlas TDR Can we trust

More information

Back to theory: W production to NLO

Back to theory: W production to NLO Lecture 2 Back to theory: W production to NLO In 4-dimensions, the contribution of the real diagrams can be written (ignoring diagrams with incoming gluons for simplicity) M(ud W + g 2 u ˆ ~ g 2 C F t

More information

Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders

Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders 1 Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders Hiroshi YOKOYA (CERN-Japan Fellow) based on arxiv:1007.0075 in collaboration with Y. Sumino (Tohoku univ.) 2 Outline

More information

CT10, CT14 and META parton distributions

CT10, CT14 and META parton distributions 4 th Hi-X workshop, Frascati, November 21, 2014 CT10, CT14 and META parton distributions Pavel Nadolsky Southern Methodist University On behalf of CTEQ-TEA group S. Dulat, J. Gao, M. Guzzi, T.-J. Hou,

More information

Non-perturbative effects for QCD jets at hadron colliders

Non-perturbative effects for QCD jets at hadron colliders Non-perturbative effects for QCD jets at hadron colliders Lorenzo Magnea Università di Torino INFN, Sezione di Torino Work in collaboration with M. Dasgupta and G. Salam. Milano 03/04/08 Outline Jets at

More information