1. Consider the following polyhedron of an LP problem: 2x 1 x 2 + 5x 3 = 1 (1) 3x 2 + x 4 5 (2) 7x 1 4x 3 + x 4 4 (3) x 1, x 2, x 4 0

Size: px
Start display at page:

Download "1. Consider the following polyhedron of an LP problem: 2x 1 x 2 + 5x 3 = 1 (1) 3x 2 + x 4 5 (2) 7x 1 4x 3 + x 4 4 (3) x 1, x 2, x 4 0"

Transcription

1 MA Linear Programming Tutorial 3 Solution. Consider the following polyhedron of an LP problem: x x + x 3 = ( 3x + x 4 ( 7x 4x 3 + x 4 4 (3 x, x, x 4 Identify all active constraints at each of the following points x = (x, x, x 3, x 4 T and determine whether it is a basic feasible solution. (a ; (b 3 ; (c ; (d. [Solution] NOTE: When checking for active constraints, students may overlook constraints: x, x, x 4. Active constraints rank Conclusion (a x, x 4, (3. 3 Not feasible & not basic (not satisfied Not basic Feasible solution (b only(active. Not feasible, not basic (not satisfied Not basic Feasible solution (c (, ( feasible but not basic Not basic Feasible solution (d (, (, x, x 4 feasible, basic A basic Feasible solution

2 . Suppose the feasible set P in R is described by the following constraints: x + 3x, 3x x, 3x x, x + 3x 3, x, x. (a Sketch the feasible set P and find all extreme points of P. (b For each of the following objective, (i min x + x (ii max 4x x (iii max 3x + x compute the corresponding objective value at each extreme point of P found in Part (a; and determine all optimal solutions if the LP is not unbounded. (Answers ( ( ( 4 (a 4,, (iii Unbounded. (b (i (, (ii λ ( 4 4 +( λ (, λ [, ] [Solution] A sketch of the polyhedral set shows that the polyhedral set does not contain a line. Thus, for an LP with feasible set P, if there is an optimal solution, then an optimal solution occurs at some extreme point. (a Graphically, all extreme points of P can be located and computed. (b Objective Extreme points ( ( 4 4 ( (i min x + x 9 8 (ii max 4x x 3 λ ( 4 4 Optimal Solution ( ( + ( λ, λ [, ] 4 (iii max 3x + x 4 unbounded objective value For Part (iii, note that the objective function 3x + x is not bounded from above (see graph. Alternatively, note that x and x are unbounded from above, thus, 3x + x is unbounded from above.

3 3. Consider the polyhedron P = {(x, x, x 3 T R 3 x + x + x 3, x, x }. Does P contain a line? [Solution] P contains a line if and only if P does not have an extreme point. The point x = is a basic feasible solution. (Check! Hence it is an extreme point. Thus P does not contain a line. Alternatively, suppose P contains a line say x + λd where x P and d R 3 {}. That is, x + λd P for all λ R. x Let x = x and d = d. x 3 Then, for all λ R, (x + λ + (x + λd + (x 3 + λ (x + λ (x + λd The last two inequalities imply that = and d =. From the first inequality, we have Thus, =, and hence d =. x + x + x 3 + λ λ This contradicts the choice of d. Therefore, P does not contain a line. 3

4 4. A vector d R n is said to be a feasible direction at x in a polyhedron P if there exists a θ > such that x + θd P. (a Let P = {x R n Ax = b, x } and x P. Prove that a vector d R n is a feasible direction at x if and only if Ad = and d i for every i such that x i =. (b Let P = {x R 3 x + x + x 3 =, x } and consider the vector x = (,, T. Find the set of feasible directions at x. [Solution] (a Let d be feasible at x. Then there exists θ > suth that x + θd P. This implies Ax + θad = b. Because Ax = b and θ >, we have Ad =. Because x + θd and θ >, x i = implies d i. Suppose Ad = and d i if x i =. From Ax = b and Ad =, it follows A(x + θd = b for all θ R. Now we are left to show that there exists a θ > such that x + θ d. Let I = {i d i < } and let θ = min{ x i d i i I}. Because d i if x i =, we have x i > for every i I. Thus, θ >. For any i I, d i implies x i + θ d i x i. For any i I, θ x i d i implies θ d i x i. Thus, x i + θ d i x i x i =. The above shows that x + θ d P with θ >. Therefore, d is a feasible direction at x. (b Using (a, the set of feasible directions at x = (,, T can be described as {d R 3 + d + =,, d }. 4

5 . Consider the following LP: (a Maximize 4x + 3x x 3 Subject to x + x + x 3 = x + x + 4x 3 + x 4 = x, x, x 3, x 4 (i Verify that columns A and A 4 are linearly independent. (ii Determine the inverse A B of the associated basis matrix A B = (A, A 4. Identify all basic variables and all nonbasic variables. (iii Construct the associated basic solution. Is this solution feasible, i.e. x B? (b Determine all basic feasible solutions of the LP problem and their corresponding objective values. ( (Answers(a (ii A B = [Solution] (a (i [ A A 4 ] = [ ] [ Thus, A and A 4 are linearly independent. ( (ii B =. ( ( ( ( x (iii x B = = B x b = 4 =. 4 Thus the basic solution is x =. Since x 4 <, x is not a feasible 4 solution. (b All basic feasible solutions: ]

6 B B x B c ( ( ( T Bx B ( A A = 8 8 ( ( ( ( A A 3 = ( ( ( ( A A 4 = 3 ( ( ( ( A3 A 4 = 4 Note that columns A & A 3 are linearly dependent. Thus they cannot form a basis matrix.

7 . Consider the following linear programming problem, where b and A i are 3 column matrices for i =,, 3, 4. minimize c x + c x + c 3 x 3 + c 4 x 4 Subject to A x + A x + A 3 x 3 + A 4 x 4 = b x, x, x 3, x 4 Suppose x = (x,, x 3, x 4 T is a basic feasible solution, where A B = [A, A 3, A 4 ] is the basis matrix. Let d = (,,, T such that x + d is a feasible solution. Prove that = A B A. [Solution] Note that x + d is feasible if and only if A(x + d = b & x + θd A(x + d = b Ad =, since Ax = b. (A, A, A 3, A 4 = A + A + A 3 + A 4 = A + A 3 + A 4 = A (A, A 3, A 4 = A A B = A 3 = A B A 3 since A B is nonsingular. 7

8 7. Refer to Question. Prove that the change in the objective value from x to x + d is ( c (c, c 3, c 4 A B A. [Solution] Change in the objective value = c T (x + d c T (x = c T d = (c, c, c 3, c 4 d 4 = c + (c, c 3, c 4 = ( c (c, c 3, c 4 A since B A = A B A 3 from Q. 8

Discrete Optimization

Discrete Optimization Prof. Friedrich Eisenbrand Martin Niemeier Due Date: April 15, 2010 Discussions: March 25, April 01 Discrete Optimization Spring 2010 s 3 You can hand in written solutions for up to two of the exercises

More information

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming

CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming CSCI 1951-G Optimization Methods in Finance Part 01: Linear Programming January 26, 2018 1 / 38 Liability/asset cash-flow matching problem Recall the formulation of the problem: max w c 1 + p 1 e 1 = 150

More information

3 Development of the Simplex Method Constructing Basic Solution Optimality Conditions The Simplex Method...

3 Development of the Simplex Method Constructing Basic Solution Optimality Conditions The Simplex Method... Contents Introduction to Linear Programming Problem. 2. General Linear Programming problems.............. 2.2 Formulation of LP problems.................... 8.3 Compact form and Standard form of a general

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Simplex Method for

More information

Operations Research Lecture 2: Linear Programming Simplex Method

Operations Research Lecture 2: Linear Programming Simplex Method Operations Research Lecture 2: Linear Programming Simplex Method Notes taken by Kaiquan Xu@Business School, Nanjing University Mar 10th 2016 1 Geometry of LP 1.1 Graphical Representation and Solution Example

More information

Week 2. The Simplex method was developed by Dantzig in the late 40-ties.

Week 2. The Simplex method was developed by Dantzig in the late 40-ties. 1 The Simplex method Week 2 The Simplex method was developed by Dantzig in the late 40-ties. 1.1 The standard form The simplex method is a general description algorithm that solves any LPproblem instance.

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21 1 / 21 Linear Programming Operations Research Anthony Papavasiliou Contents 2 / 21 1 Primal Linear Program 2 Dual Linear Program Table of Contents 3 / 21 1 Primal Linear Program 2 Dual Linear Program Linear

More information

TIM 206 Lecture 3: The Simplex Method

TIM 206 Lecture 3: The Simplex Method TIM 206 Lecture 3: The Simplex Method Kevin Ross. Scribe: Shane Brennan (2006) September 29, 2011 1 Basic Feasible Solutions Have equation Ax = b contain more columns (variables) than rows (constraints),

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

Solutions to Review Questions, Exam 1

Solutions to Review Questions, Exam 1 Solutions to Review Questions, Exam. What are the four possible outcomes when solving a linear program? Hint: The first is that there is a unique solution to the LP. SOLUTION: No solution - The feasible

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.2. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Basic Feasible Solutions Key to the Algebra of the The Simplex Algorithm

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Introduction This dissertation is a reading of chapter 4 in part I of the book : Integer and Combinatorial Optimization by George L. Nemhauser & Laurence A. Wolsey. The chapter elaborates links between

More information

A Parametric Simplex Algorithm for Linear Vector Optimization Problems

A Parametric Simplex Algorithm for Linear Vector Optimization Problems A Parametric Simplex Algorithm for Linear Vector Optimization Problems Birgit Rudloff Firdevs Ulus Robert Vanderbei July 9, 2015 Abstract In this paper, a parametric simplex algorithm for solving linear

More information

Lecture 2: The Simplex method

Lecture 2: The Simplex method Lecture 2 1 Linear and Combinatorial Optimization Lecture 2: The Simplex method Basic solution. The Simplex method (standardform, b>0). 1. Repetition of basic solution. 2. One step in the Simplex algorithm.

More information

9.1 Linear Programs in canonical form

9.1 Linear Programs in canonical form 9.1 Linear Programs in canonical form LP in standard form: max (LP) s.t. where b i R, i = 1,..., m z = j c jx j j a ijx j b i i = 1,..., m x j 0 j = 1,..., n But the Simplex method works only on systems

More information

Math Models of OR: Extreme Points and Basic Feasible Solutions

Math Models of OR: Extreme Points and Basic Feasible Solutions Math Models of OR: Extreme Points and Basic Feasible Solutions John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 1180 USA September 018 Mitchell Extreme Points and Basic Feasible Solutions

More information

LP Relaxations of Mixed Integer Programs

LP Relaxations of Mixed Integer Programs LP Relaxations of Mixed Integer Programs John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA February 2015 Mitchell LP Relaxations 1 / 29 LP Relaxations LP relaxations We want

More information

ORF 522. Linear Programming and Convex Analysis

ORF 522. Linear Programming and Convex Analysis ORF 522 Linear Programming and Convex Analysis The Simplex Method Marco Cuturi Princeton ORF-522 1 Reminder: Basic Feasible Solutions, Extreme points, Optima Some important theorems last time for standard

More information

Introduction to linear programming

Introduction to linear programming Chapter 2 Introduction to linear programming 2.1 Single-objective optimization problem We study problems of the following form: Given a set S and a function f : S R, find, if possible, an element x S that

More information

Linear programs Optimization Geoff Gordon Ryan Tibshirani

Linear programs Optimization Geoff Gordon Ryan Tibshirani Linear programs 10-725 Optimization Geoff Gordon Ryan Tibshirani Review: LPs LPs: m constraints, n vars A: R m n b: R m c: R n x: R n ineq form [min or max] c T x s.t. Ax b m n std form [min or max] c

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 5: The Simplex method, continued Prof. John Gunnar Carlsson September 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 22, 2010

More information

HMH Fuse Algebra correlated to the. Texas Essential Knowledge and Skills for Mathematics High School Algebra 2

HMH Fuse Algebra correlated to the. Texas Essential Knowledge and Skills for Mathematics High School Algebra 2 HMH Fuse Algebra 2 2012 correlated to the Texas Essential Knowledge and Skills for Mathematics High School Algebra 2 111.33. Algebra II (b) Knowledge and skills. (1) Foundations for functions. The student

More information

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502) Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 1 Homework Problems Exercise

More information

Lesson 27 Linear Programming; The Simplex Method

Lesson 27 Linear Programming; The Simplex Method Lesson Linear Programming; The Simplex Method Math 0 April 9, 006 Setup A standard linear programming problem is to maximize the quantity c x + c x +... c n x n = c T x subject to constraints a x + a x

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

Numerical Optimization

Numerical Optimization Linear Programming Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on min x s.t. Transportation Problem ij c ijx ij 3 j=1 x ij a i, i = 1, 2 2 i=1 x ij

More information

MAT-INF4110/MAT-INF9110 Mathematical optimization

MAT-INF4110/MAT-INF9110 Mathematical optimization MAT-INF4110/MAT-INF9110 Mathematical optimization Geir Dahl August 20, 2013 Convexity Part IV Chapter 4 Representation of convex sets different representations of convex sets, boundary polyhedra and polytopes:

More information

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS

Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Appendix PRELIMINARIES 1. THEOREMS OF ALTERNATIVES FOR SYSTEMS OF LINEAR CONSTRAINTS Here we consider systems of linear constraints, consisting of equations or inequalities or both. A feasible solution

More information

1 Review Session. 1.1 Lecture 2

1 Review Session. 1.1 Lecture 2 1 Review Session Note: The following lists give an overview of the material that was covered in the lectures and sections. Your TF will go through these lists. If anything is unclear or you have questions

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Linear Algebra Review: Linear Independence. IE418 Integer Programming. Linear Algebra Review: Subspaces. Linear Algebra Review: Affine Independence

Linear Algebra Review: Linear Independence. IE418 Integer Programming. Linear Algebra Review: Subspaces. Linear Algebra Review: Affine Independence Linear Algebra Review: Linear Independence IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 21st March 2005 A finite collection of vectors x 1,..., x k R n

More information

2. What is the x-intercept of line B? (a) (0, 3/2); (b) (0, 3); (c) ( 3/2, 0); (d) ( 3, 0); (e) None of these.

2. What is the x-intercept of line B? (a) (0, 3/2); (b) (0, 3); (c) ( 3/2, 0); (d) ( 3, 0); (e) None of these. Review Session, May 19 For problems 1 4 consider the following linear equations: Line A: 3x y = 7 Line B: x + 2y = 3 1. What is the y-intercept of line A? (a) ( 7/, 0); (b) (0, 7/); (c) (0, 7); (d) (7,

More information

OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM

OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM OPTIMISATION 3: NOTES ON THE SIMPLEX ALGORITHM Abstract These notes give a summary of the essential ideas and results It is not a complete account; see Winston Chapters 4, 5 and 6 The conventions and notation

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.433: Combinatorial Optimization Michel X. Goemans February 28th, 2013 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

Lesson 9 Exploring Graphs of Quadratic Functions

Lesson 9 Exploring Graphs of Quadratic Functions Exploring Graphs of Quadratic Functions Graph the following system of linear inequalities: { y > 1 2 x 5 3x + 2y 14 a What are three points that are solutions to the system of inequalities? b Is the point

More information

Algebra II (One-Half to One Credit).

Algebra II (One-Half to One Credit). 111.33. Algebra II (One-Half to One Credit). T 111.33. Algebra II (One-Half to One Credit). (a) Basic understandings. (1) Foundation concepts for high school mathematics. As presented in Grades K-8, the

More information

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. Midterm Review Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapter 1-4, Appendices) 1 Separating hyperplane

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

MATHEMATICS. Units Topics Marks I Relations and Functions 10

MATHEMATICS. Units Topics Marks I Relations and Functions 10 MATHEMATICS Course Structure Units Topics Marks I Relations and Functions 10 II Algebra 13 III Calculus 44 IV Vectors and 3-D Geometry 17 V Linear Programming 6 VI Probability 10 Total 100 Course Syllabus

More information

Linear Programming Inverse Projection Theory Chapter 3

Linear Programming Inverse Projection Theory Chapter 3 1 Linear Programming Inverse Projection Theory Chapter 3 University of Chicago Booth School of Business Kipp Martin September 26, 2017 2 Where We Are Headed We want to solve problems with special structure!

More information

SECTION 3.2: Graphing Linear Inequalities

SECTION 3.2: Graphing Linear Inequalities 6 SECTION 3.2: Graphing Linear Inequalities GOAL: Graphing One Linear Inequality Example 1: Graphing Linear Inequalities Graph the following: a) x + y = 4 b) x + y 4 c) x + y < 4 Graphing Conventions:

More information

Simplex Algorithm Using Canonical Tableaus

Simplex Algorithm Using Canonical Tableaus 41 Simplex Algorithm Using Canonical Tableaus Consider LP in standard form: Min z = cx + α subject to Ax = b where A m n has rank m and α is a constant In tableau form we record it as below Original Tableau

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

LP. Lecture 3. Chapter 3: degeneracy. degeneracy example cycling the lexicographic method other pivot rules the fundamental theorem of LP

LP. Lecture 3. Chapter 3: degeneracy. degeneracy example cycling the lexicographic method other pivot rules the fundamental theorem of LP LP. Lecture 3. Chapter 3: degeneracy. degeneracy example cycling the lexicographic method other pivot rules the fundamental theorem of LP 1 / 23 Repetition the simplex algorithm: sequence of pivots starting

More information

MAT016: Optimization

MAT016: Optimization MAT016: Optimization M.El Ghami e-mail: melghami@ii.uib.no URL: http://www.ii.uib.no/ melghami/ March 29, 2011 Outline for today The Simplex method in matrix notation Managing a production facility The

More information

CO 602/CM 740: Fundamentals of Optimization Problem Set 4

CO 602/CM 740: Fundamentals of Optimization Problem Set 4 CO 602/CM 740: Fundamentals of Optimization Problem Set 4 H. Wolkowicz Fall 2014. Handed out: Wednesday 2014-Oct-15. Due: Wednesday 2014-Oct-22 in class before lecture starts. Contents 1 Unique Optimum

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems

Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16: Linear programming. Optimization Problems Optimization WS 13/14:, by Y. Goldstein/K. Reinert, 9. Dezember 2013, 16:38 2001 Linear programming Optimization Problems General optimization problem max{z(x) f j (x) 0,x D} or min{z(x) f j (x) 0,x D}

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming

Distributed Real-Time Control Systems. Lecture Distributed Control Linear Programming Distributed Real-Time Control Systems Lecture 13-14 Distributed Control Linear Programming 1 Linear Programs Optimize a linear function subject to a set of linear (affine) constraints. Many problems can

More information

CO350 Linear Programming Chapter 5: Basic Solutions

CO350 Linear Programming Chapter 5: Basic Solutions CO350 Linear Programming Chapter 5: Basic Solutions 1st June 2005 Chapter 5: Basic Solutions 1 On Monday, we learned Recap Theorem 5.3 Consider an LP in SEF with rank(a) = # rows. Then x is bfs x is extreme

More information

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min.

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min. MA 796S: Convex Optimization and Interior Point Methods October 8, 2007 Lecture 1 Lecturer: Kartik Sivaramakrishnan Scribe: Kartik Sivaramakrishnan 1 Conic programming Consider the conic program min s.t.

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.05 Recitation 8 TAs: Giacomo Nannicini, Ebrahim Nasrabadi At the end of this recitation, students should be able to: 1. Derive Gomory cut from fractional

More information

9.5. Polynomial and Rational Inequalities. Objectives. Solve quadratic inequalities. Solve polynomial inequalities of degree 3 or greater.

9.5. Polynomial and Rational Inequalities. Objectives. Solve quadratic inequalities. Solve polynomial inequalities of degree 3 or greater. Chapter 9 Section 5 9.5 Polynomial and Rational Inequalities Objectives 1 3 Solve quadratic inequalities. Solve polynomial inequalities of degree 3 or greater. Solve rational inequalities. Objective 1

More information

Linear programs, convex polyhedra, extreme points

Linear programs, convex polyhedra, extreme points MVE165/MMG631 Extreme points of convex polyhedra; reformulations; basic feasible solutions; the simplex method Ann-Brith Strömberg 2015 03 27 Linear programs, convex polyhedra, extreme points A linear

More information

Lecture 6 Simplex method for linear programming

Lecture 6 Simplex method for linear programming Lecture 6 Simplex method for linear programming Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University,

More information

Optimization methods NOPT048

Optimization methods NOPT048 Optimization methods NOPT048 Jirka Fink https://ktiml.mff.cuni.cz/ fink/ Department of Theoretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics Charles University in Prague

More information

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0.

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0. ) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to

More information

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 Answer the questions in the spaces provided on the question sheets. You must show your work to get credit for your answers. There will

More information

MATHEMATICAL PROGRAMMING I

MATHEMATICAL PROGRAMMING I MATHEMATICAL PROGRAMMING I Books There is no single course text, but there are many useful books, some more mathematical, others written at a more applied level. A selection is as follows: Bazaraa, Jarvis

More information

Fundamental Theorems of Optimization

Fundamental Theorems of Optimization Fundamental Theorems of Optimization 1 Fundamental Theorems of Math Prog. Maximizing a concave function over a convex set. Maximizing a convex function over a closed bounded convex set. 2 Maximizing Concave

More information

Chapter 3, Operations Research (OR)

Chapter 3, Operations Research (OR) Chapter 3, Operations Research (OR) Kent Andersen February 7, 2007 1 Linear Programs (continued) In the last chapter, we introduced the general form of a linear program, which we denote (P) Minimize Z

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans April 5, 2017 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information

LINEAR PROGRAMMING I. a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm

LINEAR PROGRAMMING I. a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm Linear programming Linear programming. Optimize a linear function subject to linear inequalities. (P) max c j x j n j= n s. t. a ij x j = b i i m j= x j 0 j n (P) max c T x s. t. Ax = b Lecture slides

More information

Linear Programming and the Simplex method

Linear Programming and the Simplex method Linear Programming and the Simplex method Harald Enzinger, Michael Rath Signal Processing and Speech Communication Laboratory Jan 9, 2012 Harald Enzinger, Michael Rath Jan 9, 2012 page 1/37 Outline Introduction

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 3: Linear Programming, Continued Prof. John Gunnar Carlsson September 15, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 15, 2010

More information

Lecture slides by Kevin Wayne

Lecture slides by Kevin Wayne LINEAR PROGRAMMING I a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm Lecture slides by Kevin Wayne Last updated on 7/25/17 11:09 AM Linear programming

More information

4. Duality and Sensitivity

4. Duality and Sensitivity 4. Duality and Sensitivity For every instance of an LP, there is an associated LP known as the dual problem. The original problem is known as the primal problem. There are two de nitions of the dual pair

More information

Lecture 7 Duality II

Lecture 7 Duality II L. Vandenberghe EE236A (Fall 2013-14) Lecture 7 Duality II sensitivity analysis two-person zero-sum games circuit interpretation 7 1 Sensitivity analysis purpose: extract from the solution of an LP information

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

A101 ASSESSMENT Quadratics, Discriminant, Inequalities 1

A101 ASSESSMENT Quadratics, Discriminant, Inequalities 1 Do the questions as a test circle questions you cannot answer Red (1) Solve a) 7x = x 2-30 b) 4x 2-29x + 7 = 0 (2) Solve the equation x 2 6x 2 = 0, giving your answers in simplified surd form [3] (3) a)

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

1 The linear algebra of linear programs (March 15 and 22, 2015)

1 The linear algebra of linear programs (March 15 and 22, 2015) 1 The linear algebra of linear programs (March 15 and 22, 2015) Many optimization problems can be formulated as linear programs. The main features of a linear program are the following: Variables are real

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP Different spaces and objective functions but in general same optimal

More information

Linear Programming: Simplex Algorithm. A function of several variables, f(x) issaidtobelinear if it satisþes the two

Linear Programming: Simplex Algorithm. A function of several variables, f(x) issaidtobelinear if it satisþes the two Linear Programming: Simplex Algorithm A function of several variables, f(x) issaidtobelinear if it satisþes the two conditions: (i) f(x + Y )f(x) +f(y )and(ii)f(αx) αf(x), where X and Y are vectors of

More information

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science

The Simplex Method. Lecture 5 Standard and Canonical Forms and Setting up the Tableau. Lecture 5 Slide 1. FOMGT 353 Introduction to Management Science The Simplex Method Lecture 5 Standard and Canonical Forms and Setting up the Tableau Lecture 5 Slide 1 The Simplex Method Formulate Constrained Maximization or Minimization Problem Convert to Standard

More information

Fixed Perimeter Rectangles

Fixed Perimeter Rectangles Rectangles You have a flexible fence of length L = 13 meters. You want to use all of this fence to enclose a rectangular plot of land of at least 8 square meters in area. 1. Determine a function for the

More information

Solve by factoring and applying the Zero Product Property. Review Solving Quadratic Equations. Three methods to solve equations of the

Solve by factoring and applying the Zero Product Property. Review Solving Quadratic Equations. Three methods to solve equations of the Topic 0: Review Solving Quadratic Equations Three methods to solve equations of the form ax 2 bx c 0. 1. Factoring the expression and applying the Zero Product Property 2. Completing the square and applying

More information

Review Solving Quadratic Equations. Solve by factoring and applying the Zero Product Property. Three methods to solve equations of the

Review Solving Quadratic Equations. Solve by factoring and applying the Zero Product Property. Three methods to solve equations of the Topic 0: Review Solving Quadratic Equations Three methods to solve equations of the form ax bx c 0. 1. Factoring the expression and applying the Zero Product Property. Completing the square and applying

More information

MAT 2009: Operations Research and Optimization 2010/2011. John F. Rayman

MAT 2009: Operations Research and Optimization 2010/2011. John F. Rayman MAT 29: Operations Research and Optimization 21/211 John F. Rayman Department of Mathematics University of Surrey Introduction The assessment for the this module is based on a class test counting for 1%

More information

Integer Programming, Part 1

Integer Programming, Part 1 Integer Programming, Part 1 Rudi Pendavingh Technische Universiteit Eindhoven May 18, 2016 Rudi Pendavingh (TU/e) Integer Programming, Part 1 May 18, 2016 1 / 37 Linear Inequalities and Polyhedra Farkas

More information

Linear programming: algebra

Linear programming: algebra : algebra CE 377K March 26, 2015 ANNOUNCEMENTS Groups and project topics due soon Announcements Groups and project topics due soon Did everyone get my test email? Announcements REVIEW geometry Review geometry

More information

Optimization (168) Lecture 7-8-9

Optimization (168) Lecture 7-8-9 Optimization (168) Lecture 7-8-9 Jesús De Loera UC Davis, Mathematics Wednesday, April 2, 2012 1 DEGENERACY IN THE SIMPLEX METHOD 2 DEGENERACY z =2x 1 x 2 + 8x 3 x 4 =1 2x 3 x 5 =3 2x 1 + 4x 2 6x 3 x 6

More information

Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

More information

III. Linear Programming

III. Linear Programming III. Linear Programming Thomas Sauerwald Easter 2017 Outline Introduction Standard and Slack Forms Formulating Problems as Linear Programs Simplex Algorithm Finding an Initial Solution III. Linear Programming

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns L. Vandenberghe ECE133A (Winter 2018) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows

More information

The Simplex Algorithm and Goal Programming

The Simplex Algorithm and Goal Programming The Simplex Algorithm and Goal Programming In Chapter 3, we saw how to solve two-variable linear programming problems graphically. Unfortunately, most real-life LPs have many variables, so a method is

More information

3.1 Solving Linear Systems by Graphing 1. Graph and solve systems of linear equations in two variables. Solution of a system of linear equations

3.1 Solving Linear Systems by Graphing 1. Graph and solve systems of linear equations in two variables. Solution of a system of linear equations 3.1 Solving Linear Systems by Graphing Objectives 1. Graph and solve systems of linear equations in two variables. Key Terms System of linear equations Solution of a system of linear equations Check whether

More information

CO350 Linear Programming Chapter 6: The Simplex Method

CO350 Linear Programming Chapter 6: The Simplex Method CO50 Linear Programming Chapter 6: The Simplex Method rd June 2005 Chapter 6: The Simplex Method 1 Recap Suppose A is an m-by-n matrix with rank m. max. c T x (P ) s.t. Ax = b x 0 On Wednesday, we learned

More information

1 Overview. 2 Extreme Points. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Extreme Points. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 7 February 7th Overview In the previous lectures we saw applications of duality to game theory and later to learning theory. In this lecture

More information

Conic Linear Optimization and its Dual. yyye

Conic Linear Optimization and its Dual.   yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #04 1 Conic Linear Optimization and its Dual Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

More information

Notes taken by Graham Taylor. January 22, 2005

Notes taken by Graham Taylor. January 22, 2005 CSC4 - Linear Programming and Combinatorial Optimization Lecture : Different forms of LP. The algebraic objects behind LP. Basic Feasible Solutions Notes taken by Graham Taylor January, 5 Summary: We first

More information

Linear Programming. Murti V. Salapaka Electrical Engineering Department University Of Minnesota, Twin Cities

Linear Programming. Murti V. Salapaka Electrical Engineering Department University Of Minnesota, Twin Cities Linear Programming Murti V Salapaka Electrical Engineering Department University Of Minnesota, Twin Cities murtis@umnedu September 4, 2012 Linear Programming 1 The standard Linear Programming (SLP) problem:

More information

Optimization. Yuh-Jye Lee. March 21, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 29

Optimization. Yuh-Jye Lee. March 21, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 29 Optimization Yuh-Jye Lee Data Science and Machine Intelligence Lab National Chiao Tung University March 21, 2017 1 / 29 You Have Learned (Unconstrained) Optimization in Your High School Let f (x) = ax

More information

Signature: Name (PRINT CLEARLY) and ID number:

Signature: Name (PRINT CLEARLY) and ID number: AMS 540 / MBA 540 (Fall, 2008) Estie Arkin Linear Programming - Midterm Do all problems. Write your answers on the exam. You are permitted to use the text, your notes and any material handed out in class.

More information

4.5 Simplex method. min z = c T x s.v. Ax = b. LP in standard form

4.5 Simplex method. min z = c T x s.v. Ax = b. LP in standard form 4.5 Simplex method min z = c T x s.v. Ax = b x 0 LP in standard form Examine a sequence of basic feasible solutions with non increasing objective function value until an optimal solution is reached or

More information

Planning and Optimization

Planning and Optimization Planning and Optimization C23. Linear & Integer Programming Malte Helmert and Gabriele Röger Universität Basel December 1, 2016 Examples Linear Program: Example Maximization Problem Example maximize 2x

More information