APPENDIX 1. THE ATOMIC, NUCLEAR AND BLACK HOLE DENSITIES

Size: px
Start display at page:

Download "APPENDIX 1. THE ATOMIC, NUCLEAR AND BLACK HOLE DENSITIES"

Transcription

1 7 February ore APPENDIX 1. THE ATOMIC, NUCLEAR AND BLACK HOLE DENSITIES The Schwarzschild formula remains as it is despite all developments [1] in the physics of Black Holes including what has been discovered by RQST. If we put in (1) the masses of the Sun, m, of our Earth, m #$!, of our Moon, m "#, the result is R 3 km R #$! 0,9 cm R "# 0,1 mm. The Schwarzschild formula establishes a relation between gravitational masses and Radius of a Black Hole. If we were able to put the mass of our Sun inside a sphere of radius of about 3 km, the Sun will become a Black Hole. The same holds for the masses of our Earth and of our Moon, if we were able to concentrate these masses, insides spheres of radii, approximately equal to 0,9 cm and 0,1 mm, respectively. 1

2 The reason why none of these bodies will ever became a Black Hole is due to the fact that their masses consist of protons, neutrons and electrons which have to obey the laws established by the existence of the Fundamental Forces which are not Gravitational, i.e. SU(3) SU(2) U(1). If these forces would not to be there, the three masses, m, m #$!, m "# would indeed be Black Holes, if concentrated in the correspondent spheres with the radii given by Schwarzschild formula (1). In a Universe where the Fundamental Forces were only the Einstein Gravitational Forces, the spectrum of all possible masses obeys the Schwarzschild formula (1). This equation has as the smallest limit the Planck conditions. No limit is given for the largest Black Hole. No conditions to this limit are imposed by RQST. The very instant of the Big Bang is the Planck Time and the corresponding density of the Universe is the Planck density. THE ATOMIC DENSITY: ρ atomic In our world the density is dictated by the fact that we are made by atoms and therefore the basic quantities are the mass 2

3 of the nucleon (m N gr) and the radius of the atom (10 8 cm) which is dictated by the electric charge and the mass of the electron. Let us call the value of this density the atomic density : ρ #$%& M #$%&!! R #$ 10! gr 10!! cm! = 10! gr 10! cm! = 1 gr cm!. The density of water is typical of the atomic density. In the above formula we neglect details like [(4/3) π] in front of! R #$ to estimate the atomic volume. When we go from water to lead the atomic density increases by an order of magnitude. This is due to the increase in the mass of the nucleus by two orders of magnitude m nucleus Pb 10 2 M nucleon and a correspondent increase by an order of magnitude in the atomic volume. THE NUCLEAR DENSITY: ρ nuclear The next possible density many orders of magnitudes higher is the nuclear density: times greater than the atomic density. 3

4 The reason being the value of the nuclear radius, which is of the order of one Fermi-unit (10 13 cm), i.e. five orders of magnitude smaller than the atomic radius. Atomic and nuclear bindings are specific for a given Element of the Mendeleev Table and do not change when the amount of the given Element changes. For both forms of matter, atomic and nuclear, the density does not change when the amount of matter increases: one ton of lead has the same density as one kilogram of lead. THE BLACK HOLES DENSITIES: ρ Black Holes For matter where the binding force is gravitational (without any other forces being involved), the density decreases when the amount of mass increases. More precisely the density decreases with the square of the mass. This is the great discovery of Schwarzschild and is coming from the relation (1) which exists between the Radius of a Black Hole, R, and the mass of the same Black Hole, M. 4

5 REFERENCES [1] Quantum Gravity without Space-Time Singularities or Horizons G. t Hooft, in Proceedings Subnuclear Physics Erice School 2009, Vol. 47, World Scientific (2011); Latest News from Black-Holes Physics G. t Hooft, in Proceedings Subnuclear Physics Erice School 2010, Vol. 48, World Scientific (2013); Using Black Holes to Understand Quantum Gravity G. t Hooft, in Proceedings Subnuclear Physics Erice School 2011, Vol. 49, World Scientific (2013); Beyond Relativistic Quantum String Theory G. t Hooft, in Proceedings Subnuclear Physics Erice School 2012, Vol. 50, World Scientific (2014). 5

26 January 2014 BLACK HOLES AND GAP

26 January 2014 BLACK HOLES AND GAP 26 January 2014 BLACK HOLES AND GAP Antonino Zichichi INFN and University of Bologna, Italy CERN, Geneva, Switzerland Enrico Fermi Centre, Rome, Italy World Federation of Scientists, Beijing, Geneva, Moscow,

More information

THE GAP AND THE ORIGIN OF THE FUNDAMENTAL FORCES (GRAVITY AND QED, QFD, QCD)

THE GAP AND THE ORIGIN OF THE FUNDAMENTAL FORCES (GRAVITY AND QED, QFD, QCD) Istituto Nazionale di Fisica Nucleare Piano Triennale 2019-2021 Auditorium Manzoni, Bologna, 12-12 Ottobre 2018 THE GAP AND THE ORIGIN OF THE FUNDAMENTAL FORCES (GRAVITY AND QED, QFD, QCD) ANTONINO ZICHICHI

More information

Running head: EINSTEIN-HARAMEIN UNIFICATION HYPOTHESIS 1. Einstein-Haramein Unification Hypothesis. Chris Gilbert Waltzek. Northcentral University

Running head: EINSTEIN-HARAMEIN UNIFICATION HYPOTHESIS 1. Einstein-Haramein Unification Hypothesis. Chris Gilbert Waltzek. Northcentral University Running head: EINSTEIN-HARAMEIN UNIFICATION HYPOTHESIS 1 Einstein-Haramein Unification Hypothesis Chris Gilbert Waltzek Northcentral University September 28, 2013 EINSTEIN-HARAMEIN UNIFICATION HYPOTHESIS

More information

On the Mass Quantization of Black Holes

On the Mass Quantization of Black Holes On the Mass Quantization of Black Holes Black holes are relatively simple cosmic objects that are characterized by their mass, their angular momentum and their electric charge. However, the laws that govern

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis International Francqui Chair Inaugural Lecture Leuven, 11 February 2005 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Bohr s Correspondence Principle Bohr s Correspondence Principle states that quantum mechanics is in agreement with classical physics when the energy differences between quantized

More information

Newton s law of gravitation in 11 dimensions

Newton s law of gravitation in 11 dimensions Planck Units in 11 Dimensions Mikhail Vlasov 5 Casa Verde Foothill Ranch, CA 92610 vlasovm@hotmail.com September 20, 2011 Abstract Planck units are derived from five physical constants (Gravitational constant,

More information

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5 1 The End of Physics? RELATIVITY Updated 01Aug30 Dr. Bill Pezzaglia The following statement made by a Nobel prize winning physicist: The most important fundamental laws and facts of physical science have

More information

i>clicker Quiz #14 Which of the following statements is TRUE?

i>clicker Quiz #14 Which of the following statements is TRUE? i>clicker Quiz #14 Which of the following statements is TRUE? A. Hubble s discovery that most distant galaxies are receding from us tells us that we are at the center of the Universe B. The Universe started

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis Universitat Barcelona Miami, 23 April 2009 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model Basic building blocks, quarks,

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

Chapter 13: The Stellar Graveyard

Chapter 13: The Stellar Graveyard Chapter 13: The Stellar Graveyard Habbal Astro110 http://chandra.harvard.edu/photo/2001/1227/index.html Chapter 13 Lecture 26 1 Low mass star High mass (>8 M sun ) star Ends as a white dwarf. Ends in a

More information

How Do Stars Appear from Earth?

How Do Stars Appear from Earth? How Do Stars Appear from Earth? Magnitude: the brightness a star appears to have from Earth Apparent Magnitude depends on 2 things: (actual intrinsic brightness) The color of a star is related to its temperature:

More information

Exam #3. Final Exam. Exam 3 review. How do we measure properties of a star? A detailed outline of study topics is here:

Exam #3. Final Exam. Exam 3 review. How do we measure properties of a star? A detailed outline of study topics is here: Exam #3 Exam #3 is Thursday 4/9 in this room You can bring page of notes (front and back) Bring your calculator and a # pencil Exam 3 covers material from 4/1 onward (only 8 lectures) Consequently, no

More information

Quantum Gravity: A New Potential. By: Jason Lemrise Advisor: Dr. Guarav Khanna

Quantum Gravity: A New Potential. By: Jason Lemrise Advisor: Dr. Guarav Khanna Quantum Gravity: A New Potential By: Jason Lemrise Advisor: Dr. Guarav Khanna Gravity In Newton s Time is was considered to be the attraction of objects to each other due to their mass. Einstein later

More information

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 22 Astronomy Today 8th Edition Chaisson/McMillan Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Neutron-Star Binaries 22.4 Gamma-Ray

More information

Spacetime versus the Quantum

Spacetime versus the Quantum Spacetime versus the Quantum Joseph Polchinski UCSB Faculty Research Lecture, Dec. 12, 2014 God does not play dice with the world (Albert Einstein, 1926) vs. God does not play dice with the world (Albert

More information

Black Holes. Over the top? Black Holes. Gravity s Final Victory. Einstein s Gravity. Near Black holes escape speed is greater than the speed of light

Black Holes. Over the top? Black Holes. Gravity s Final Victory. Einstein s Gravity. Near Black holes escape speed is greater than the speed of light Black Holes Over the top? What if the remnant core is very massive? M core > 2-3 M sun (original star had M > 18 M sun ) Neutron degeneracy pressure fails. Nothing can stop gravitational collapse. Collapses

More information

THE ATOM. Announcements: First midterm is 7:30pm on Sept. 26. Plan for next few lectures:

THE ATOM. Announcements: First midterm is 7:30pm on Sept. 26. Plan for next few lectures: THE ATOM Announcements: First midterm is 7:30pm on Sept. 26 Today overview of the atom; a survey of 3.1-3.6 and 3.10-3.12. You are responsible for the ideas and vocabulary but not all of the math in the

More information

Black Holes. Jan Gutowski. King s College London

Black Holes. Jan Gutowski. King s College London Black Holes Jan Gutowski King s College London A Very Brief History John Michell and Pierre Simon de Laplace calculated (1784, 1796) that light emitted radially from a sphere of radius R and mass M would

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

The Time Arrow of Spacetime Geometry

The Time Arrow of Spacetime Geometry 5 The Time Arrow of Spacetime Geometry In the framework of general relativity, gravity is a consequence of spacetime curvature. Its dynamical laws (Einstein s field equations) are again symmetric under

More information

The Graviton in an Equilibrium Universe and the Holographic Principle

The Graviton in an Equilibrium Universe and the Holographic Principle The Graviton in an Equilibrium Universe and the Holographic Principle Introduction The difference between macro and micro physics arises specifically in reference to those (normally quantum law obeying)

More information

THE NUCLEUS: A CHEMIST S VIEW Chapter 20

THE NUCLEUS: A CHEMIST S VIEW Chapter 20 THE NUCLEUS: A CHEMIST S VIEW Chapter 20 "For a long time I have considered even the craziest ideas about [the] atom[ic] nucleus... and suddenly discovered the truth." [shell model of the nucleus]. Maria

More information

An Alternative Interpretation of the LIGO Data

An Alternative Interpretation of the LIGO Data Copyright 2016 by Sylwester Kornowski All rights reserved An Alternative Interpretation of the LIGO Data Sylwester Kornowski Abstract: There are at least three unsolved basic problems concerning the interpretation

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus

More information

Name Final Exam December 14, 2016

Name Final Exam December 14, 2016 Name Final Exam December 14, 016 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Part I: Multiple Choice (mixed new and review questions)

More information

Quantum Physics III (8.06) Spring 2008 Solution Set 1

Quantum Physics III (8.06) Spring 2008 Solution Set 1 Quantum Physics III (8.06) Spring 2008 Solution Set 1 February 12, 2008 1. Natural Units (a) (4 points) In cgs units we have the numbers a, b, c giving the dimensions of Q as [Q] = [gm] a [cm] b [s] c.

More information

Chapter 27 The Early Universe Pearson Education, Inc.

Chapter 27 The Early Universe Pearson Education, Inc. Chapter 27 The Early Universe Units of Chapter 27 27.1 Back to the Big Bang 27.2 The Evolution of the Universe More on Fundamental Forces 27.3 The Formation of Nuclei and Atoms 27.4 The Inflationary Universe

More information

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Overview What is gravity? Newton and Einstein What does gravity do? Extreme gravity The true power of gravity Getting things moving

More information

This is a vast field - here are some references for further reading

This is a vast field - here are some references for further reading This is a vast field - here are some references for further reading Dippers: Smale et al. 1988 MNRAS 232 647 Black hole transient lmxbs: Remillard and McClintock, 2006 ARAA 44, 49 Color-color diagrams

More information

Schwarzschild radius - Wikipedia, the free encyclopedia

Schwarzschild radius - Wikipedia, the free encyclopedia Page 1 of 7 Schwarzschild radius From Wikipedia, the free encyclopedia The Schwarzschild radius (sometimes historically referred to as the gravitational radius) is the distance from the center of an object

More information

Neutron Star) Lecture 22

Neutron Star) Lecture 22 Neutron Star) Lecture 22 1 Neutron star A neutron star is a stellar object held together by gravity but kept from collapsing by electromagnetic (atomic) and strong (nuclear including Pauli exclusion) forces.

More information

18.3 Black Holes: Gravity's Ultimate Victory

18.3 Black Holes: Gravity's Ultimate Victory 18.3 Black Holes: Gravity's Ultimate Victory Our goals for learning: What is a black hole? What would it be like to visit a black hole? Do black holes really exist? What is a black hole? Gravity, Newton,

More information

Chapter 3. Atom. Table of Contents. 1. Atom and History of Atom 2. Subatomic Particles 3. Isotopes 4. Ions 5. Atomic Terminology

Chapter 3. Atom. Table of Contents. 1. Atom and History of Atom 2. Subatomic Particles 3. Isotopes 4. Ions 5. Atomic Terminology Atom Table of Contents 1. Atom and History of Atom 2. Subatomic Particles 3. Isotopes 4. Ions 5. Atomic Terminology The History of The Atom Warm up Make a list of inferences about any properties of objects

More information

Coulomb s Law & Electric Field Intensity

Coulomb s Law & Electric Field Intensity Electromagnetic Fields and Waves Chinnawat, Ph.D. Coulomb s Law & Electric Field Intensity Email: pop@alum.mit.edu L2-1 L2-2 Atoms Atom: smallest constituent unit of ordinary matter Atom = nucleus + surrounding

More information

Physics 107: Ideas of Modern Physics

Physics 107: Ideas of Modern Physics Physics 107: Ideas of Modern Physics Exam 3 Nov. 30, 2005 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section

More information

Relative Sizes of Stars. Today Exam#3 Review. Hertzsprung-Russell Diagram. Blackbody Radiation

Relative Sizes of Stars. Today Exam#3 Review. Hertzsprung-Russell Diagram. Blackbody Radiation Today Exam#3 Review Exam #3 is Thursday April 4th in this room, BPS 40; Extra credit is due 8:00 am Tuesday April 9 Final Exam is 3:00pm Monday April 8 in BPS 40 The exam is 40 multiple choice questions.

More information

The Charged Liquid Drop Model Binding Energy and Fission

The Charged Liquid Drop Model Binding Energy and Fission The Charged Liquid Drop Model Binding Energy and Fission 103 This is a simple model for the binding energy of a nucleus This model is also important to understand fission and how energy is obtained from

More information

High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101

High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101 High Mass Stars and then Stellar Graveyard 7/16/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool Betelgeuse Astronomy 101 Outline for Today Astronomy Picture of the Day Something

More information

The nucleus and its structure

The nucleus and its structure The nucleus and its structure Presently no complete theory to fully describe structure and behavior of nuclei based solely on knowledge of force between nucleons (although tremendous progress for A < 12

More information

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Brock University Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

Nuclear mass density in strong gravity and grand unification

Nuclear mass density in strong gravity and grand unification Nuclear mass density in strong gravity and grand unification U. V. S. Seshavatharam Honorary faculty, I-SERVE Alakapuri, Hyderabad-5, India e-mail: seshavatharam.uvs@gmail.com Prof. S. Lakshminarayana

More information

Lecture 32 April

Lecture 32 April Lecture 32 April 08. 2016. Hydrogen Discharge Tube and Emission of Discrete Wavelengths Description of the discrete Hydrogen Emission Spectrum by the Balmer (1884) Rydberg Ritz formula (1908) Cathode Ray

More information

Physics. Chapter 9 Gravity

Physics. Chapter 9 Gravity Physics Chapter 9 Gravity The Newtonian Synthesis Gravity is a Universal Force The Newtonian Synthesis According to legend, Newton discovered gravity while sitting under an apple tree. The Falling Moon

More information

Evolution of High Mass stars

Evolution of High Mass stars Evolution of High Mass stars Neutron Stars A supernova explosion of a M > 8 M Sun star blows away its outer layers. The central core will collapse into a compact object of ~ a few M Sun. Pressure becomes

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information

The Role of Powers of 2 in Physics

The Role of Powers of 2 in Physics The Role of Powers of 2 in Physics The purpose of this article is to highlight the role of powers of 2 in physics. by Rodolfo A. Frino Electronics Engineer Degree from the National University of Mar del

More information

GRAVITATIONAL COLLAPSE

GRAVITATIONAL COLLAPSE GRAVITATIONAL COLLAPSE Landau and Chandrasekhar first realised the importance of General Relativity for Stars (1930). If we increase their mass and/or density, the effects of gravitation become increasingly

More information

Gravitation. Adrian Ferent. This is a new quantum gravity theory which breaks the wall of Planck scale. Abstract

Gravitation. Adrian Ferent. This is a new quantum gravity theory which breaks the wall of Planck scale. Abstract Gravitation Adrian Ferent This is a new quantum gravity theory which breaks the wall of Planck scale. My Nobel Prize Idea Abstract The Photon Graviton pair (coupled) has the same speed and frequency, and

More information

Black Holes Mysteries

Black Holes Mysteries Black Holes Mysteries Classical description Schwartzchild radius No entropy, temperature, stable! Quantum mechanics The smallest we can measure: Planck length Hawking radiation Entropy of a black hole

More information

Black Holes. Introduction: Stable stars which balance pressure due to gravity by quantum pressure(qp) are:

Black Holes. Introduction: Stable stars which balance pressure due to gravity by quantum pressure(qp) are: Black Holes Introduction: Stable stars which balance pressure due to gravity by quantum pressure(qp) are: 1. White Dwarfs (WD) : QP = electron degeneracy pressure. Mass < 1.4 M_sun This upper limit is

More information

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich LECTURE 23 NUCLEI Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 32.1 to 32.2 Nucleus Radioactivity Mass and energy 3 The famous equation by Einstein tells us that mass is a form of energy. E =

More information

ASTR 200 : Lecture 21. Stellar mass Black Holes

ASTR 200 : Lecture 21. Stellar mass Black Holes 1 ASTR 200 : Lecture 21 Stellar mass Black Holes High-mass core collapse Just as there is an upper limit to the mass of a white dwarf (the Chandrasekhar limit), there is an upper limit to the mass of a

More information

The Search for a Fundamental Theory of the Universe

The Search for a Fundamental Theory of the Universe The Search for a Fundamental Theory of the Universe Lecture 1- History & basic concepts, including Newton, Maxwell, Einstein & Quantum Mechanics Lecture 2 - Where are we now? General relativity & the Standard

More information

PHGN 422: Nuclear Physics Lecture 3: Nuclear Radii, Masses, and Binding Energies

PHGN 422: Nuclear Physics Lecture 3: Nuclear Radii, Masses, and Binding Energies PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 3: Nuclear Radii, Masses, and Binding Energies Prof. Kyle Leach August 29, 2017 Slide 1 Last Week... The atomic nucleus is a very dense, positively

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Lecture PowerPoints. Chapter 6 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 6 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 6 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

A BRIEF TOUR OF STRING THEORY

A BRIEF TOUR OF STRING THEORY A BRIEF TOUR OF STRING THEORY Gautam Mandal VSRP talk May 26, 2011 TIFR. In the beginning... The 20th century revolutions: Special relativity (1905) General Relativity (1915) Quantum Mechanics (1926) metamorphosed

More information

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS

EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS EXCISION TECHNIQUE IN CONSTRAINED FORMULATIONS OF EINSTEIN EQUATIONS Journée Gravitation et Physique Fondamentale Meudon, 27 May 2014 Isabel Cordero-Carrión Laboratoire Univers et Théories (LUTh), Observatory

More information

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014 I. Antoniadis CERN IAS CERN Novice Workshop, NTU, 7 Feb 2014 1 2 3 the Large Hadron Collider (LHC) Largest scientific instrument ever built, 27km of circumference >10 000 people involved in its design

More information

Hawking & the Universe

Hawking & the Universe Hawking & the Universe This is a supplement to the lecture given on Jan 26, 2015, by Dr. Mounib El Eid, Physics department, AUB. It may motivate the reader to explore some of the presented issues. There

More information

Black Holes, Quantum Mechanics, and Firewalls

Black Holes, Quantum Mechanics, and Firewalls Black Holes, Quantum Mechanics, and Firewalls Joseph Polchinski Simons Symposium, NYC 11/18/13 A Brief History of the Black Hole Information Paradox: A Brief History of the Black Hole Information Paradox:

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton

More information

From An Apple To Black Holes Gravity in General Relativity

From An Apple To Black Holes Gravity in General Relativity From An Apple To Black Holes Gravity in General Relativity Gravity as Geometry Central Idea of General Relativity Gravitational field vs magnetic field Uniqueness of trajectory in space and time Uniqueness

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

Lecture 18 : Black holes. Astronomy 111

Lecture 18 : Black holes. Astronomy 111 Lecture 18 : Black holes Astronomy 111 Gravity's final victory A star more massive than about 18 M sun would leave behind a post-supernova core this is larger than 2-3 M sun :Neutron degeneracy pressure

More information

Quantum Gravity and Einstein s Relativistic Kinetic Energy Formula

Quantum Gravity and Einstein s Relativistic Kinetic Energy Formula Quantum Gravity and Einstein s Relativistic Kinetic Energy Formula The goal of this paper is to highlight the deep connection between Einstein's relativistic kinetic energy formula and two quantum gravity

More information

If you cannot solve the whole problem, write down all relevant equations and explain how you will approach the solution. Show steps clearly.

If you cannot solve the whole problem, write down all relevant equations and explain how you will approach the solution. Show steps clearly. Letter ID Comprehensive Exam Session I Modern Physics (Including Stat.Mech) Physics Department- Proctor: Dr. Chris Butenhoff (Sat. Jan. 11 th, 2014) (3 hours long 9:00 to 12:00 AM) If you cannot solve

More information

Chapter 4. Dynamics: Newton s Laws of Motion

Chapter 4. Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview In nature there are two general types of forces, fundamental and nonfundamental. Fundamental Forces -- three have been identified,

More information

What does Dark Matter have to do with the Big Bang Theory?

What does Dark Matter have to do with the Big Bang Theory? MSC Bethancourt Lecture What does Dark Matter have to do with the Big Bang Theory? Prof. David Toback Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy Prologue We live in a

More information

Name Final Exam December 7, 2015

Name Final Exam December 7, 2015 Name Final Exam December 7, 015 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Part I: Multiple Choice (mixed new and review questions)

More information

Einstein, Black Holes and the Discovery of Gravitational Waves. Malcolm Longair University of Cambridge

Einstein, Black Holes and the Discovery of Gravitational Waves. Malcolm Longair University of Cambridge Einstein, Black Holes and the Discovery of Gravitational Waves Malcolm Longair University of Cambridge Programme What are Black holes? Astronomical Evidence What are Gravitational Waves? The LIGO experiment

More information

Chapter 18. Cosmology. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 18. Cosmology. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 18 Cosmology Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cosmology Cosmology is the study of the structure and evolution of the Universe as a whole

More information

Astronomy in the news?

Astronomy in the news? Monday, December 2, 2013 Fifth exam, Friday, December 6 Fifth sky watch due. You can do any object mentioned throughout the term that you have not done before. Review sheet posted Review Session Thursday,

More information

The Atomic Nucleus. Bloomfield Sections 14.1, 14.2, and 14.3 (download) 4/13/04 ISP A 1

The Atomic Nucleus. Bloomfield Sections 14.1, 14.2, and 14.3 (download) 4/13/04 ISP A 1 The Atomic Nucleus Bloomfield Sections 14.1, 14., and 14. (download) 4/1/04 ISP 09-1A 1 What is matter made of? Physics is a reductionist science. Beneath the surface, nature is simple! All matter is composed

More information

Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field.

Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field. Nature of Singularities in (n+2)-dimensional Gravitational Collapse of Vaidya Space-time in presence of monopole field. 1 C. S. Khodre, 2 K. D.Patil, 3 S. D.Kohale and 3 P. B.Jikar 1 Department of Mathematics,

More information

Forces: Explained and Derived by Energy Wave Equations

Forces: Explained and Derived by Energy Wave Equations Forces: Explained and Derived by Energy Wave Equations Summary Jeff Yee jeffsyee@gmail.com August 11, 016 In current physics, there are four fundamental forces that can cause a change in the motion of

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS OPTION E-6 GALAXIES Introductory Video: The Big Bang Theory Objectives Understand the Hubble classification scheme of galaxies and describe the

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc. Chapter 14: The Bizarre Stellar Graveyard Assignments 2 nd Mid-term to be held Friday Nov. 3 same basic format as MT1 40 mult. choice= 80 pts. 4 short answer = 20 pts. Sample problems on web page Origin

More information

Wave properties of light

Wave properties of light Wave properties of light Light is energy whose wavelength is the distance traveled in order to complete one cycle. The frequency of light refers to the number of cycles in one second. Low-energy light

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Methods in Experimental Particle Physics

Methods in Experimental Particle Physics Methods in Experimental Particle Physics Antonio Di Domenico Dipartimento di Fisica, Sapienza Università di Roma II semester a.y. 2018-2019 (also I semester only this year) 1 Aim of these lectures * *

More information

Crab Nebula. Hubble Telescope (optical) Consists of Debris from 1054 Supernova in our Milky Way Galaxy

Crab Nebula. Hubble Telescope (optical) Consists of Debris from 1054 Supernova in our Milky Way Galaxy Crab Nebula Hubble Telescope (optical) Consists of Debris from 1054 Supernova in our Milky Way Galaxy The Crab Nebula is the remnant of a star which, at the end of its lifespan, exploded in a supernova,

More information

Singularities in String Theory

Singularities in String Theory Singularities in String Theory Hong Liu Massachusetts Institute of Technology Spacetime singularities Understanding the physics of spacetime singularities is a major challenge for theoretical physics.

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 5 REVIEW The Periodic Law SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. In the modern periodic table, elements are ordered (a) according to decreasing atomic mass.

More information

What You Should Know

What You Should Know What You Should Know 1.) Where did Schwartzchild derive his famous equation? 2.) What is the primary characteristic of a black hole. 3.) A black hole is both a tiny speck and incredibly heavy (an entire

More information

Outline. Black Holes. Schwartzchild radius River Model of a Black Hole Light in orbit Tidal forces

Outline. Black Holes. Schwartzchild radius River Model of a Black Hole Light in orbit Tidal forces Outline Black Holes Schwartzchild radius River Model of a Black Hole Light in orbit Tidal forces Black Holes Black Holes What happens as the star shrinks / its mass increases? How much can spacetime be

More information

The Cosmological Constant Problem

The Cosmological Constant Problem Physics 171 Fall 2015 The Cosmological Constant Problem 1 The numerical value of the vacuum energy density The cosmological constant Λ was introduced by Albert Einstein into general relativity in 1917

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

On the Interaction of Elementary Particles

On the Interaction of Elementary Particles H. Yukawa, PTP, 17, 48 1935 On the Interaction of Elementary Particles H. Yukawa (Received 1935) At the present stage of the quantum theory little is known about the nature of interaction of elementary

More information

The Quark Dirac Sea and the Contracted Universe. Cooperate to Produce the Big Bang with the Quark Energy

The Quark Dirac Sea and the Contracted Universe. Cooperate to Produce the Big Bang with the Quark Energy The Quark Dirac Sea and the Contracted Universe arxiv:0912.1104v1 [physics.gen-ph] 6 Dec 2009 Cooperate to Produce the Big Bang with the Quark Energy Jiao-Lin Xu The Center for Simulational Physics, The

More information

Entropic Force between Two Distant Black Holes in a Background Temperature

Entropic Force between Two Distant Black Holes in a Background Temperature Entropic Force between Two Distant Black Holes in a Background Temperature Davoud Kamani Faculty of Physics, Amirkabir University of Technology (Tehran Polytechnic) Tehran, Iran Abstract: We use the Newton

More information

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26 General Relativity Einstein s Theory of Gravitation Robert H. Gowdy Virginia Commonwealth University March 2007 R. H. Gowdy (VCU) General Relativity 03/06 1 / 26 What is General Relativity? General Relativity

More information

Lesson 6 - Earth and the Moon

Lesson 6 - Earth and the Moon Lesson 6 - Earth and the oon READING ASSIGNENT Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior ore Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s agnetosphere Chapter

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter 13.1 Neutron Stars Lecture Outline Chapter 13 Neutron Stars and After a Type I supernova, little or nothing remains of the original star. After a Type II supernova, part of the core may survive. It is

More information