Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6

7

8

9

10

11 (numerical value)

12

13

14 In calculating, you will find the total distance traveled. Displacement problems will find the distance from the starting point to the ending point.

15

16

17

18 *Calculate the total amount traveled

19 What formula for triangles?

20

21

22

23

24

25 *Here we have to consider the direction

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 Bellringer-9/4/14 1. What is the difference between distance and displacement? 2. Solve for distance and displacement: A 7 B 8 C

42 Motion & Forces Describing Motion Motion Speed & Velocity Acceleration

43 Newton s First Law Newton s First Law of Motion An object at rest will remain at rest and an object in motion will continue moving at a constant velocity unless acted upon by a net force.

44 A. Motion Problem: Is your desk moving? We need a reference point... nonmoving point from which motion is measured

45 A. Motion Motion Change in position in relation to a reference point. Reference point Motion

46 A. Motion Problem: You are a passenger in a car stopped at a stop sign. Out of the corner of your eye, you notice a tree on the side of the road begin to move forward. You have mistakenly set yourself as the reference point.

47 B. Speed & Velocity Speed rate of motion Speed is the distance traveled per unit time If you know the distance an object traveled in a set time, you can calculate speed speed distance time v d t

48 B. Speed & Velocity Instantaneous Speed speed at a given instant Average Speed avg. speed total distance total time

49 B. Speed & Velocity Problem: A storm is 10 km away and is moving at a speed of 60 km/h. Should you be worried? It depends on the storm s direction!

50 B. Speed & Velocity Velocity speed in a given direction (it is a vector!) can change even when the speed is constant! (storms!)

51 Speed v. Velocity 1. How are speed and velocity similar? They both measure how fast something is moving 2. How are speed and velocity different? Velocity includes the direction of motion and speed does not (the car is moving 5mph East) 3. Is velocity more like distance or displacement? Why? Displacement, because both are vectors which include an amount and a direction.

52 C. Acceleration Acceleration a v f - v i t rate at which velocity changes change in speed or direction a v f t v i a: acceleration v f : final velocity v i : initial velocity t: time

53 C. Acceleration Positive acceleration speeding up Negative acceleration slowing down

54 GIVEN: D. Calculations Your neighbor skates at a speed of 4 m/s. You can skate 100 m in 20 s. Who skates faster? WORK: d = 100 m v = d t t = 20 s v =? d v = (100 m) (20 s) v = 5 m/s v t You skate faster!

55 GIVEN: D. Calculations A roller coaster starts down a hill at 10 m/s. Three seconds later, its speed is 32 m/s. What is the roller coaster s acceleration? WORK: v i = 10 m/s t = 3 s v f = 32 m/s a =? a v f - v i t a = (v f - v i ) t a = (32m/s - 10m/s) (3s) a = 22 m/s 3 s a = 7.3 m/s 2

56 GIVEN: D. Calculations Sound travels 330 m/s. If a lightning bolt strikes the ground 1 km away from you, how long will it take for you to hear it? WORK: v = 330 m/s d = 1km = 1000m t =? d t = d v t = (1000 m) (330 m/s) t = 3.03 s v t

57 GIVEN: D. Calculations How long will it take a car traveling 30 m/s to come to a stop if its acceleration is -3 m/s 2? WORK: t =? v i = 30 m/s v f = 0 m/s a = -3 m/s 2 v f - v i t t = (v f - v i ) a t = (0m/s-30m/s) (-3m/s 2 ) t = -30 m/s -3m/s 2 a t = 10 s

58 E. Graphing Motion Distance-Time Graph A B slope = speed steeper slope = faster speed straight line = constant speed flat line = no motion

59 E. Graphing Motion Distance-Time Graph A B Who started out faster? A (steeper slope) Who had a constant speed? A Describe B from min. B stopped moving Find their average speeds. A = (2400m) (30min) A = 80 m/min B = (1200m) (30min) B = 40 m/min

60 Distance (m) E. Graphing Motion Distance-Time Graph Acceleration is indicated by a curve on a Distance-Time graph Time (s) Changing slope = changing velocity

61 Speed (m/s) E. Graphing Motion Speed-Time Graph 3 2 slope = acceleration +ve = speeds up -ve = slows down Time (s) straight line = constant accel. flat line = no accel. (constant velocity)

62 Speed (m/s) E. Graphing Motion 3 2 Speed-Time Graph Specify the time period when the object was... slowing down 5 to 10 seconds speeding up 0 to 3 seconds Time (s) moving at a constant speed 3 to 5 seconds not moving 0 & 10 seconds

63 Newton s Second Law Gravity Air Resistance Calculations

64 Newton s Second Law of Motion The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. F = ma

65 a F m m F a F = ma F: force (N) m: mass (kg) a: accel (m/s 2 ) 1 N = 1 kg m/s 2

66 Gravity force of attraction between any two objects in the universe increases as... mass increases distance decreases

67 Who experiences more gravity - the astronaut or the politician? Which exerts more gravity - the Earth or the moon? less distance more mass

68 Weight the force of gravity on an object W = mg W: weight (N) m: mass (kg) g: acceleration due to gravity (m/s 2 ) MASS always the same (kg) VS WEIGHT depends on gravity (N)

69 Would you weigh more on Earth or Jupiter? Jupiter because... greater mass greater gravity greater weight

70 Accel. due to gravity (g) In the absence of air resistance, all falling objects have the same acceleration! On Earth: g = 9.8 m/s 2 W F g m a m elephant feather Animation from Multimedia Physics Studios.

71 Air Resistance a.k.a. fluid friction or drag force that air exerts on a moving object to oppose its motion depends on: speed surface area shape density of fluid

72 Terminal Velocity maximum velocity reached by a falling object reached when F grav = F air F air no net force no acceleration constant velocity F grav

73 Terminal Velocity increasing speed increasing air resistance until F air = F grav Animation from Multimedia Physics Studios.

74 Falling with air resistance heavier objects fall faster because they accelerate to higher speeds before reaching terminal velocity F grav = F air larger F grav need larger F air need higher speed Animation from Multimedia Physics Studios.

75 What force would be required to accelerate a 40 kg mass by 4 m/s 2? GIVEN: F =? m = 40 kg a = 4 m/s 2 F WORK: F = ma F = (40 kg)(4 m/s 2 ) F = 160 N m a

76 A 4.0 kg shotput is thrown with 30 N of force. What is its acceleration? GIVEN: m = 4.0 kg F = 30 N a =? F WORK: a = F m a = (30 N) (4.0 kg) a = 7.5 m/s 2 m a

77 Ms. F. weighs 557 N. What is her mass? GIVEN: F(W) = 557 N m =? a(g) = 9.8 m/s 2 F m a WORK: m = F a m = (557 N) (9.8 m/s 2 ) m = 56.8 kg

78 Is the following statement true or false? An astronaut has less mass on the moon since the moon exerts a weaker gravitational force. False! Mass does not depend on gravity, weight does. The astronaut has less weight on the moon.

79 Do Now How would you describe how fast an object is moving?

80 Speed, Velocity, and Acceleration

81 Goals: To investigate what is needed to describe motion completely. To compare and contrast speed and velocity. To learn about acceleration.

82 To describe motion accurately and completely, a frame of reference is needed.

83 An object is in motion if it changes position relative to a reference point. Objects that we call stationary such as a tree, a sign, or a building make good reference points. The passenger can use a tree as a reference point to decide if the train is moving. A tree makes a good reference point because it is stationary from the passenger s point of view.

84 Whether or not an object is in motion depends on the reference point you choose. Describing Motion

85 Distance When an object moves, it goes from point A to point B that is the DISTANCE it traveled. (SI unit is the meter) B A

86 Displacement Knowing how far something moves is not sufficient. You must also know in what direction the object moved. A quantity that has magnitude and direction is called a V E C T O R

87 Speed Calculating Speed: If you know the distance an object travels in a certain amount of time, you can calculate the speed of the object. What is instantaneous speed? Speed = Distance/time Average speed = Total distance/total time

88 Velocity Velocity is a description of an object s speed and direction. It is a vector. As the sailboat s direction changes, its velocity also changes, even if its speed stays the same. If the sailboat slows down at the same time that it changes direction, how will its velocity be changed?

89 Speed v. Velocity 1. How are speed and velocity similar? They both measure how fast something is moving 2. How are speed and velocity different? Velocity includes the direction of motion and speed does not (the car is moving 5mph East) 3. Is velocity more like distance or displacement? Why? Displacement, because both are vectors which include an amount and a direction.

90 Graphing Speed D I S T A N C E Speed increasing Object is stopped Object begins moving at a different speed T I M E

91 The steepness of a line on a graph is called slope. The steeper the slope is, the greater the speed. A constant slope represents motion at constant speed. Using the points shown, the rise is 400 meters and the run is 2 minutes. To find the slope, you divide 400 meters by 2 minutes. The slope is 200 meters per minute.

92 Do Now: Set up formula triangles to find speed and velocity

93 Acceleration Acceleration is the rate at which velocity changes. Acceleration can result from a change in speed (increase or decrease), a change in direction (back, forth, up, down left, right), or changes in both. Like velocity, acceleration is a vector.

94 The pitcher throws. The ball speeds toward the batter. Off the bat it goes. It s going, going, gone! A home run! Before landing, the ball went through several changes in motion. It sped up in the pitcher s hand, and lost speed as it traveled toward the batter. The ball stopped when it hit the bat, changed direction, sped up again, and eventually slowed down. Most examples of motion involve similar changes. In fact, rarely does any object s motion stay the same for very long.

95 Understanding Acceleration 1. As the ball falls from the girl s hand, how does its speed change? 2. What happens to the speed of the ball as it rises from the ground back to her hand? 3. At what point does the ball have zero velocity? 4. How does the velocity of the ball change when it bounces on the floor?

96 You can feel acceleration! If you re moving at 500mph east without turbulence, there is no acceleration. But if the plane hits an air pocket and drops 500 feet in 2 seconds, there is a large change in acceleration and you will feel that! It does not matter whether you speed up or slow down; it is still considered a change in acceleration.

97 In science, acceleration refers to increasing speed, decreasing speed, or changing direction. A car that begins to move from a stopped position or speeds up to pass another car is accelerating. A car decelerates when it stops at a red light. A water skier decelerates when the boat stops pulling. A softball accelerates when it changes direction as it is hit.

98 Calculating Acceleration Acceleration = Change in velocity Total time Change in velocity = final velocity-initial velocity OR.. = final speed-initial speed So Acceleration = (Final speed Initial speed) Time

99 Calculating Acceleration As a roller-coaster car starts down a slope, its speed is 4 m/s. But 3 seconds later, at the bottom, its speed is 22 m/s. What is its average acceleration? What information have you been given? Initial speed = 4 m/s Final Speed = 22 m/s Time = 3 s

100 Calculating Acceleration What quantity are you trying to calculate? The average acceleration of the roller-coaster car. What formula contains the given quantities and the unknown quantity? Acceleration = (Final speed Initial speed)/time Perform the calculation. Acceleration = (22 m/s 4 m/s)/3 s = 18 m/s/3 s Acceleration = 6 m/s2 The roller-coaster car s average acceleration is 6 m/s2.

101 Graphing acceleration S P E E D Object accelerates Object moves at constant speed Object decelerates T i m e

102 The slanted, straight line on this speed-versus-time graph tells you that the cyclist is accelerating at a constant rate. The slope of a speedversus-time graph tells you the object s acceleration. Predicting How would the slope of the graph change if the cyclist were accelerating at a greater rate? At a lesser rate?

103 Since the slope is increasing, you can conclude that the speed is also increasing. You are accelerating. Distance-Versus- Time Graph The curved line on this distance-versus-time graph tells you that the cyclist is accelerating.

104 Projectile Motion Circular Motion Free-fall

105 Projectile any object thrown in the air acted upon only by gravity follows a parabolic path called a trajectory has horizontal and vertical velocities PROJECTILE MINI-LAB

106 Projectile Velocities Horizontal and vertical velocities are independent of each other!

107 Horizontal Velocity depends on inertia remains constant Vertical Velocity depends on gravity accelerates downward at 9.8 m/s 2

108 A moving truck launches a ball vertically (relative to the truck). If the truck maintains a constant horizontal velocity after the launch, where will the ball land (ignore air resistance)? A) In front of the truck B) Behind the truck C) In the truck C) In the truck. The horizontal velocity of the ball remains constant and is unaffected by its vertical motion. Animation from Multimedia Physics Studios.

109 Centripetal Acceleration acceleration toward the center of a circular path caused by centripetal force B-BALL DEMO PLATE DEMO

110 On the ground... friction provides centripetal force (Centripetal force is a force that makes a body follow a curved path)

111 In orbit... gravity provides centripetal force ROUND LAB

112 In orbit... Which satellites travel faster? Near-Earth Satellites Geostationary Satellites

113 Free-Fall when an object is influenced only by the force of gravity Has a constant acceleration Weightlessness sensation produced when an object and its surroundings are in free-fall (no force of support on your body) object is not weightless! CUP DEMO

114 Weightlessness surroundings are falling at the same rate so they don t exert a force on the object

115 Go to NASA. Go to CNN.com. Go to Space Settlement Video Library. Space Shuttle Missions

116 TRUE or FALSE: An astronaut on the Space Shuttle feels weightless because there is no gravity in space. FALSE! There is gravity which is causing the Shuttle to free-fall towards the Earth. She feels weightless because she s free-falling at the same rate.

117 Describe the path of a marble as it leaves the spiral tube shown below. It will travel in a straight line since the tube is no longer exerting a net force on it.

118

119 Solve: 1. If Ms. Farris walks 3 blocks east, 5 blocks south, and 3 blocks west, what distance has she traveled? 2. If Ms. Farris walks 3 blocks east, 5 blocks south, and 3 blocks west, what is her displacement? 3. What is the momentum of a 3 kg toy truck that moves at 30 m/s? (2 points)

120 How do we cite articles in APA format? e-giant-black-hole-discovered-dwarf-galaxyn htm 0/01/ 1 paragraph should be a summary of your article; second paragraph should be your reaction (5-7 sentences)

121 An object at rest will remain at rest and an object in motion will continue moving at a constant velocity unless acted upon by a net force.

122 The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. F=MA What do those variables stand for?

123 When one object exerts force on a second object, the second one exerts a force on the first that is equal in strength and opposite in direction

124 Define the following on a sheet of paper in your own words Inertia Force Velocity Speed Terminal Velocity Mass Weight

125 Force-The push or pull exerted on an object Inertia-tendency of an object to resist motion Speed-Rate of motion; Rate of change in an objects position Velocity-Speed of object + it s direction Terminal Velocity-Largest velocity reached by falling object; point where gravity equals force Mass-amount of matter in an object; does not change Weight-changes based on gravity

Newton s Laws of Motion

Newton s Laws of Motion Motion & Forces Newton s Laws of Motion If I have seen far, it is because I have stood on the shoulders of giants. - Sir Isaac Newton (referring to Galileo) A. Newton s First Law Newton s First Law of

More information

Bellringer Day In your opinion, what are the five most important lab safety rules?

Bellringer Day In your opinion, what are the five most important lab safety rules? Bellringer Day 01 1. In your opinion, what are the five most important lab safety rules? Lab Safety Video Lab Safety Map See if you can identify the lab safety equipment around the room. You can discuss

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Practice Test Chapter 2 Forces and Motion

Practice Test Chapter 2 Forces and Motion Practice Test Chapter 2 Forces and Motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What happens when a moving bumper car hits a bumper car at rest?

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Forces. Dynamics FORCEMAN

Forces. Dynamics FORCEMAN 1 Forces Dynamics FORCEMAN 2 What causes things to move? Forces What is a force? A push or a pull that one body exerts on another. 3 Balanced No change in motion 4 5 Unbalanced If the forces acting on

More information

Name Class Date. height. Which ball would land first according to Aristotle? Explain.

Name Class Date. height. Which ball would land first according to Aristotle? Explain. Skills Worksheet Directed Reading A Section: Gravity and Motion 1. Suppose a baseball and a marble are dropped at the same time from the same height. Which ball would land first according to Aristotle?

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

A scalar quantity has just magnitude A vector quantity has both magnitude and direction

A scalar quantity has just magnitude A vector quantity has both magnitude and direction Name Date Mods REVIEW FOR MIDYEAR ASSESSMENT 1. Physics is the most basic science because Physics supports chemistry, chemistry supports biology. The ideas of physics are fundamental to these more complicated

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Overview The Laws of Motion

Overview The Laws of Motion Directed Reading for Content Mastery Overview The Laws of Motion Directions: Fill in the blanks using the terms listed below. force inertia momentum sliding conservation of momentum gravitational ma mv

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

Table of Contents. Motion. Section 1 Describing Motion. Section 2 Velocity and Momentum. Section 3 Acceleration

Table of Contents. Motion. Section 1 Describing Motion. Section 2 Velocity and Momentum. Section 3 Acceleration Table of Contents Motion 1 Describing Motion 2 Velocity and Momentum 3 Acceleration 1 Describing Motion Motion Are distance and time important in describing running events at the track-and-field meets

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

Chapter 6 Study Questions Name: Class:

Chapter 6 Study Questions Name: Class: Chapter 6 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A feather and a rock dropped at the same time from

More information

Broughton High School of Wake County

Broughton High School of Wake County Name: Section: 1 Section 1: Which picture describes Newton s Laws of Motion? 5. Newton s Law 1. Newton s Law 2. Newton s Law 6. Newton s Law 3. Newton s Law 7. Newton s Law 4. Newton s Law 8. Newton s

More information

Do Now: Why are we required to obey the Seat- Belt law?

Do Now: Why are we required to obey the Seat- Belt law? Do Now: Why are we required to obey the Seat- Belt law? Newton s Laws of Motion Newton s First Law An object at rest remains at rest and an object in motion remains in motion with the same speed and direction.

More information

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

Chapter Introduction. Motion. Motion. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Motion Graphing Motion Forces Chapter Wrap-Up What is the relationship between motion and forces? What do you think? Before you begin, decide

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12 Observing Motion CHAPTERS 11 & 12 MOTION & FORCES Everything surrounding us is in motion, but it is relative to other object that remain in place. Motion is observed using a frame of reference. Motion

More information

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

Chapter Introduction. Motion. Motion. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Motion Graphing Motion Forces Chapter Wrap-Up What is the relationship between motion and forces? What do you think? Before you begin, decide

More information

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Matter in Motion Preview Section 1 Measuring Motion Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Section 4 Gravity: A Force of Attraction Concept Mapping Section 1 Measuring

More information

Unit Assessment: Relationship Between Force, Motion, and Energy

Unit Assessment: Relationship Between Force, Motion, and Energy Assessment Unit Assessment: Relationship Between Force, Motion, and Energy Instructions Check your understanding with this assessment. 1) Lifting a 20,000 N anvil one meter requires 20,000 joules (newtons/meter).

More information

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3 FORCES Chapter 2: Section 3, Chapter 3: Sections 1-3 Vocab: 2.3-3.3 DEFINE THESE Force Net force Balanced force Inertia Newton s second law of motion Friction Law of gravitation Weight Newton s third law

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Chapter 3 Laws of Motion

Chapter 3 Laws of Motion Conceptual Physics/ PEP Name: Date: Chapter 3 Laws of Motion Section Review 3.1 1. State Newton s first law in your own words. An object at rest will stay at rest until an outside force acts on it to move.

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

Motion and Forces study Guide

Motion and Forces study Guide Motion and Forces study Guide Completion Complete each statement. 1. The motion of an object looks different to observers in different. 2. The SI unit for measuring is the meter. 3. The direction and length

More information

Describing Motion. Motion. Are distance and time important in describing running events at the track-and-field meets in the Olympics?

Describing Motion. Motion. Are distance and time important in describing running events at the track-and-field meets in the Olympics? Describing Motion Section 1 Motion Are distance and time important in describing running events at the track-and-field meets in the Olympics? Comstock/JupiterImages Describing Motion Section 1 Motion Distance

More information

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a. Question: Are distance and time important when describing motion? DESCRIBING MOTION Motion occurs when an object changes position relative to a. DISTANCE VS. DISPLACEMENT Distance Displacement distance

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Physics Pre-comp diagnostic Answers

Physics Pre-comp diagnostic Answers Name Element Physics Pre-comp diagnostic Answers Grade 8 2017-2018 Instructions: THIS TEST IS NOT FOR A GRADE. It is to help you determine what you need to study for the precomps. Just do your best. Put

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

Phys , Fall04,Term 1 Exercise Problems

Phys , Fall04,Term 1 Exercise Problems Page 1 1. The number of significant figures in the number 0.00593 is a. 5 b. 2 c. 3 d.6 2. The product of 10-4 and 105 is a. 1 b. 10 c. 0.1 d.100 3. The length of a car is given as 4.57 m. The percent

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Station 1 Block, spring scale

Station 1 Block, spring scale Station 1 Block, spring scale Place the wooden block on Surface A with the metal loop facing you. Hook the green force gauge to the metal loop on the block. With the force gauge held horizontal, pull it

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

According to Newton s 2 nd Law

According to Newton s 2 nd Law According to Newton s 2 nd Law If the force is held constant the relationship between mass and acceleration is direct/inverse. If the mass is held constant the relationship between force and acceleration

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

Newton s Third Law of Motion

Newton s Third Law of Motion Newton s Third Law of Motion Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first. Figure 17 The action force and reaction force are

More information

Forces & Newton s Laws. Honors Physics

Forces & Newton s Laws. Honors Physics Forces & Newton s Laws Honors Physics Newton s 1 st Law An object in motion stays in motion, and an object at rest stays at rest, unless an unbalanced force acts on it. An object will maintain a constant

More information

The Laws of Motion. Before You Read. Science Journal

The Laws of Motion. Before You Read. Science Journal The Laws of Motion Before You Read Before you read the chapter, use the What I know column to list three things you know about motion. Then list three questions you have about motion in the What I want

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

5 th Grade Force and Motion Study Guide

5 th Grade Force and Motion Study Guide Name: Date of Test: Vocabulary 5 th Grade Force and Motion Study Guide Motion- a change in position relative to a point of reference, a change in speed, or a change in distance. Point of Reference (Reference

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

The force of gravity holds us on Earth and helps objects in space stay

The force of gravity holds us on Earth and helps objects in space stay 96 R E A D I N G The force of gravity holds us on Earth and helps objects in space stay in orbit. The planets in the Solar System could not continue to orbit the Sun without the force of gravity. Astronauts

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

Final Exam Review Answers

Final Exam Review Answers Weight (Pounds) Final Exam Review Answers Questions 1-8 are based on the following information: A student sets out to lose some weight. He made a graph of his weight loss over a ten week period. 180 Weight

More information

Provincial Exam Review: Motion

Provincial Exam Review: Motion Section 8.1 Provincial Exam Review: Motion 1. Identify each of the following quantities as either vector or scalar. (a) 10 kg (b) 20 m [S] (c) 5 hours driving in a car (d) swimming for 100 m [N] (e) 15

More information

Chapter 5 Matter in Motion Focus Notes

Chapter 5 Matter in Motion Focus Notes Chapter 5 Matter in Motion Focus Notes Section 1 Define the following terms: Motion, Speed, Velocity, and Acceleration Motion: an object s change in position relative to a reference point. Speed: the distance

More information

Motion, Forces, and Energy

Motion, Forces, and Energy Motion, Forces, and Energy What is motion? Motion - when an object changes position Types of Motion There are 2 ways of describing motion: Distance Displacement Distance Distance is the total path traveled.

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

Physics Midterm Review Sheet

Physics Midterm Review Sheet Practice Problems Physics Midterm Review Sheet 2012 2013 Aswers 1 Speed is: a a measure of how fast something is moving b the distance covered per unit time c always measured in units of distance divided

More information

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d.

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d. Page 1 1. If you are driving 90 km/h along a straight road and you look to the side for 3.0 s, how far do you travel during this inattentive period? a. 30 m b. 25 m c. 50 m d. 75 m 2. A polar bear starts

More information

Physics 107: Ideas of Modern Physics

Physics 107: Ideas of Modern Physics 1 Physics 107: Ideas of Modern Physics Exam 1 Sep. 27, 2006 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section

More information

3 Acceleration. positive and one is negative. When a car changes direction, it is also accelerating. In the figure to the

3 Acceleration. positive and one is negative. When a car changes direction, it is also accelerating. In the figure to the What You ll Learn how acceleration, time, and velocity are related the different ways an object can accelerate how to calculate acceleration the similarities and differences between straight line motion,

More information

Forces and Motion Study Guide

Forces and Motion Study Guide Forces and Motion Study Guide Name 8 th Grade PSI 1. A snail travels 10 m in 3000 seconds. What is the snail s average speed? a. 60000 m/s b. 0.02 m/s c. 600 m/s d. 0.003 m/s 2. A blimp travels at 3 m/s

More information

Class Worksheet 3.1_Answer Forces and Newton s 1 st Law. Name: ( ) Date:

Class Worksheet 3.1_Answer Forces and Newton s 1 st Law. Name: ( ) Date: Class Worksheet 3.1_Answer Forces and Newton s 1 st Law Name: ( ) Date: Class: Sec 3/ Marks: Definition of a force: A force is defined as an influence which changes, or tries to change, the state of motion

More information

Unit 4 Forces (Newton s Laws)

Unit 4 Forces (Newton s Laws) Name: Pd: Date: Unit Forces (Newton s Laws) The Nature of Forces force A push or pull exerted on an object. newton A unit of measure that equals the force required to accelerate kilogram of mass at meter

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0 PHYSICS 5 TEST 2 REVIEW 1. A car slows down as it travels from point A to B as it approaches an S curve shown to the right. It then travels at constant speed through the turn from point B to C. Select

More information

8. The graph below shows a beetle s movement along a plant stem.

8. The graph below shows a beetle s movement along a plant stem. Name: Block: Date: Introductory Physics: Midyear Review 1. Motion and Forces Central Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it.

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it. Forces 12.1 Name 1 A is a push or a pull that on an. How do forces affect the motion of an object? Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

Chapter 2 Motion Speed Speed. Definitions: Speed The rate at which something moves a given distance. Faster speeds = greater distances

Chapter 2 Motion Speed Speed. Definitions: Speed The rate at which something moves a given distance. Faster speeds = greater distances Chapter 2 Motion 2-1. Speed 2-2. Vectors 2-3. Acceleration 2-4. Distance, Time, and Acceleration 2-5. Free Fall System 2-6. Air Resistance 2-7. First Law of Motion 2-8. Mass 2-9. Second Law of Motion 2-10.

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 6: GRAVITY, PROJECTILES, AND SATELLITES This lecture will help you understand: The Universal Law of Gravity The Universal Gravitational Constant, G Gravity and Distance:

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.)

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.) Newton s Laws 1) Inertia - objects in motion stay in motion 2) F=ma 3) Equal and opposite reactions Newton's 1 st Law What is the natural state of motion of an object? An object at rest remains at rest,

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Physics Mid-Term Practice Exam

Physics Mid-Term Practice Exam Physics Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics? a.

More information