Section A: Forces and Motion

Size: px
Start display at page:

Download "Section A: Forces and Motion"

Transcription

1 I is very useful o be able o make predicions abou he way moving objecs behave. In his chaper you will learn abou some equaions of moion ha can be used o calculae he speed and acceleraion of objecs, and he disances hey ravel in a cerain ime. Secion A: Forces and Moion Figure 1.1 The world is full of speeding objecs. Speed is a erm ha is used a grea deal in everyday life. Acion films ofen feaure high-speed chases. Speed is a cause of faal accidens on he road. Spriners srive for greaer speed in compeiion wih oher ahlees. Rockes mus reach a highenough speed o pu communicaions saellies in orbi around he Earh. This chaper will explain how speed is defined and measured and how disance ime graphs are used o show he movemen of an objec as ime passes. We shall hen look a changing speed acceleraion and deceleraion. We shall use velociy ime graphs o find he acceleraion of an objec. We shall also find how far an objec has ravelled using is velociy ime graph. You will find ou abou he difference beween speed and velociy on page 4. Speed If you were old ha a car ravelled 1 kilomeres in hours you would probably have no difficuly in working ou ha he speed (or sricly speaking he average speed see page ) of he car was 5 km/h. You would have done a simple calculaion using he following definiion of speed: disance ravelled speed = ime aken This is usually wrien using he symbol v for speed or velociy, d for disance ravelled and for ime: v = d 1

2 Unis of speed Typically he disance ravelled migh be measured in meres and ime aken in seconds, so he speed would be in meres per second (m/s). Oher unis can be used for speed, such as kilomeres per hour (km/h), or cenimeres per second (cm/s). In physics he unis we use are meric, bu you can measure speed in miles per hour (mph). Many cars show speed in boh mph and kph (km/h). Exam quesions should be in meric unis, so remember ha m is he abbreviaion for meres (and no miles). 1 v d Figure 1. You can use he riangle mehod for rearranging equaions like d = v. Reminder: To use he riangle mehod o rearrange an equaion, cover up he hing you wan o find. For example, in Figure 1., if you waned o work ou how long () i ook o ravel a disance (d) a a given speed (v), covering in Figure 1. leaves d/v, or disance divided by speed. If an examinaion quesion asks you o wrie ou he formula for calculaing speed, disance or ime, always give he acual equaion (such as d = v ). You may no ge he mark if you jus draw he riangle. Rearranging he speed equaion The speed equaion can be rearranged o give wo oher useful equaions: and disance ravelled, d = speed, v ime aken, ime aken, = Average speed disance ravelled, d speed, v The equaion you used o work ou he speed of he car, on page 1, gives you he average speed of he car during he journey. I is he oal disance ravelled, divided by he ime aken for he journey. If you look a he speedomeer in a car you will see ha he speed of he car changes from insan o insan as he acceleraor or brake is used. The speedomeer herefore shows he insananeous speed of he car. Speed rap! Suppose you wan o find he speed of cars driving down your road. You may have seen he police using speed guns o check ha drivers are keeping o he speed limi. Speed guns use microprocessors (compuers on a chip ) o produce an insan reading of he speed of a moving vehicle, bu you can conduc a very simple experimen o measure car speed. Measure he disance beween wo poins along a sraigh secion of road wih a ape measure or click wheel. Use a sopwach o measure he ime aken for a car o ravel he measured disance. Figure 1.3 shows you how o operae your speed rap. 1 Measure 5 m from a sar poin along he side of he road. Sar a sop clock when your parner signals ha he car is passing he sar poin. click click 3 Sop he clock when he car passes you a he finish poin. sar sop 3 Figure 1.3 Measuring he speed of a car.

3 Using he measuremens made wih your speed rap, you can work ou he speed of he car. Use he equaion: speed = =.5s disance ravelled ime aken So, if he ime measured is 3.9 s, he speed of he car in his experimen is: speed = 5 m = 1.8 m/s 3.9 s Disance ime graphs =.s = 1.5s Figure 1.4 A car ravelling a consan speed. = 1.s =.5s =.s Figure 1.4 shows a car ravelling along a road. I shows he car a.5 second inervals. The disances ha he car has ravelled from he sar posiion afer each.5 s ime inerval are marked on he picure. The picure provides a record of how far he car has ravelled as ime has passed. We can use he informaion in his sequence of picures o plo a graph showing he disance ravelled agains ime (Figure 1.5). You can conver a speed in m/s ino a speed in km/h. If he car ravels 1.8 meres in one second i will ravel meres in 6 seconds (ha is, one minue) and meres in 6 minues (ha is, 1 hour), which is 46 8 meres in an hour or 46.1 km/h (o one decimal place). We have muliplied by 36 (6 6) o conver from m/s o m/h, hen divided by 1 o conver from m/h o km/h (as here are 1 m in 1 km). Rule: o conver m/s o km/h simply muliply by 3.6. Disance (m) from sar (s) Disance ravelled from sar (m) The disance ime graph ells us abou how he car is ravelling in a much more convenien form han he sequence of drawings in Figure 1.4. We can see ha he car is ravelling equal disances in equal ime inervals i is moving a a seady or consan speed. This fac is shown immediaely by he fac ha he graph is a sraigh line. The slope or gradien of he line ells us he speed of he car he seeper he line he greaer he speed of he car. So, in his example: speed = gradien = disance ime Speed and velociy = 3 m =1 m/s.5 s Some disance ime graphs look like he one shown in Figure 1.6. I is a sraigh line, showing ha he objec is moving wih consan speed, bu he line is sloping down o he righ raher han up o he righ. The gradien of such a line is negaive Displacemen from sarimg poin (m) (s) Figure 1.5 Disance ime graph for he ravelling car in Figure 1.4. Noe ha his graph slopes down o he righ. We call his a NEGATIVE SLOPE or negaive gradien. (s) Figure 1.6 In his graph disance is decreasing wih ime. 3

4 A vecor is a quaniy ha has boh size and direcion. Displacemen is disance ravelled in a paricular direcion. Force is anoher example of a vecor. The size of a force and he direcion in which i acs are boh imporan. because he disance ha he objec is from he saring poin is now decreasing he objec is reracing is pah back owards he sar. Displacemen means disance ravelled in a paricular direcion from a specified poin. So if he objec was originally ravelling in a norherly direcion, he negaive gradien of he graph means ha i is now ravelling souh. Displacemen is an example of a vecor. Velociy is also a vecor. Velociy is speed in a paricular direcion. If a car ravels a 5 km/h around a bend is speed is consan bu is velociy will be changing for as long as he direcion ha he car is ravelling in is changing. velociy = increase in displacemen ime aken Worked example Example 1 B A Figure 1.7 The screen of a global posiioning sysem (GPS). A GPS is an aid o navigaion ha uses orbiing saellies o locae is posiion on he Earh s surface. The GPS in Figure 1.7 shows wo poins on a journey. The second poin is 3 km norh wes of he firs. If a walker akes 45 minues o ravel from he firs poin o he second, wha is he average velociy of he walker? Wrie down wha you know: increase in displacemen is 3 km norh wes ime aken is 45 min (45 min=.75 h). Use: velociy = increase in displacemen ime aken average velociy = 3 km.75 h = 4. km/h norh wes Acceleraion Figure 1.8 shows some objecs whose speed is changing. The plane mus accelerae o reach ake-off speed. In ice hockey, he puck deceleraes only very slowly when i Figure 1.8 Acceleraion consan speed and deceleraion. 4

5 slides across he ice. When he egg his he ground i is forced o decelerae (decrease is speed) very rapidly. Rapid deceleraion can have desrucive resuls. Acceleraion is he rae a which objecs change heir velociy. I is defined as follows: acceleraion = change in velociy ime aken This is wrien as an equaion: a = (v u) or final velociy iniial velociy ime aken where a = acceleraion, v = final velociy, u = iniial velociy and = ime. (Why u? Simply because i comes before v!) Acceleraion, like velociy, is a vecor because he direcion in which he acceleraion occurs is imporan as well as he size of he acceleraion. Unis of acceleraion Velociy is measured in m/s, so increase in velociy is also measured in m/s. Acceleraion, he rae of increase in velociy wih ime, is herefore measured in m/s/s (read as meres per second per second ). We normally wrie his as m/s (read as meres per second squared ). Oher unis may be used for example, cm/s. Example A car is ravelling a m/s. I acceleraes seadily for 5 s, afer which ime i is ravelling a 3 m/s. Wha is is acceleraion? Wrie down wha you know: iniial or saring velociy, u = m/s final velociy, v = 3 m/s ime aken, = 5 s Use: a = v u a = a = 3 m/s m/s 5 s 1 m/s 5 s = m/s The car is acceleraing a m/s. Worked example I is good pracice o include unis in equaions his will help you o supply he answer wih he correc uni. Deceleraion Deceleraion means slowing down. This means ha a deceleraing objec will have a smaller final velociy han is saring velociy. If you use he equaion for finding he acceleraion of an objec ha is slowing down, he answer will have a negaive sign. A negaive acceleraion simply means deceleraion. 5

6 Worked example Galileo was an Ialian scienis who was born in He developed a elescope, which he used o sudy he moion of he planes and oher celesial bodies. He also carried ou many experimens on moion. Example 3 An objec srikes he ground ravelling a 4 m/s. I is brough o res in. s. Wha is is acceleraion? Wrie down wha you know: iniial velociy, u = 4 m/s final velociy, v = m/s ime aken, =. s As before, use: a = v u a = a = m/s 4 m/s. s 4 m/s. s = m/s So he acceleraion is m/s. In Example 3, we would say ha he objec is deceleraing a m/s. This is a very large deceleraion. Laer, in Chaper 3, we shall discuss he consequences of such a rapid deceleraion! Measuring acceleraion When a ball is rolled down a slope i is clear ha is speed increases as i rolls ha is, i acceleraes. Galileo was ineresed in how and why objecs like he ball rolling down a slope speeded up, and he devised an ineresing experimen o learn more abou acceleraion. A version of his experimen is shown in Figure ball rolling down a slope, sriking small bells as i rolls Figure 1.9 Galileo s experimen. 6 Though Galileo did no have a clockwork imepiece (le alone an elecronic imer), he used his pulse and a ype of waer clock o achieve imings ha were accurae enough for his experimens. Galileo waned o discover how he disance ravelled by a ball depends on he ime i has been rolling. In his version of he experimen, a ball rolling down a slope srikes a series of small bells as i rolls. By adjusing he posiions of he bells carefully i is possible o make he bells ring a equal inervals of ime as he ball passes. Galileo noiced ha he disances ravelled in equal ime inervals increased, showing ha he ball was ravelling faser as ime passed. Galileo did no possess an accurae way of measuring ime (here were no digial sopwaches in seveneenh-cenury Ialy!) bu i was possible o judge equal ime inervals accuraely simply by lisening.

7 Galileo also noiced ha he disance ravelled by he ball increased in a predicable way. He showed ha he rae of increase of speed was seady or uniform. We call his uniform acceleraion. Mos acceleraion is non-uniform ha is, i changes from insan o insan bu we shall only deal wih uniformly acceleraed objecs in his chaper. Velociy ime graphs The able below shows he disances beween he bells in an experimen such as Galileo s. Bell (s) Disance of bell from sar (cm) We can calculae he average speed of he ball beween each bell by working ou he disance ravelled beween each bell, and he ime i ook o ravel his disance. For he firs bell: disance ravelled velociy = ime aken 3 cm =.5 seconds = 6 cm/s This is he average velociy over he.5 second ime inerval, so if we plo i on a graph we should plo i in he middle of he inerval, a.5 seconds. Repeaing he above calculaion for all he resuls gives us he following able of resuls. We can use hese resuls o draw a graph showing how he velociy of he ball is changing wih ime. The graph, shown in Figure 1.1, is called a velociyime graph. (s) Velociy (cm/s) The graph in Figure 1.1 is a sraigh line. This ells us ha he velociy of he rolling ball is increasing by equal amouns in equal ime periods. We say ha he acceleraion is uniform in his case. Velociy (cm/s) (s) Figure 1.1 Velociy ime graph for an experimen in which a ball is rolled down a slope. (Noe ha as we are ploing average velociy, he poins are ploed in he middle of each successive.5 s ime inerval.) A modern version of Galileo s experimen ligh gaes posiion posiion 1 sar inerruper posiion 4 posiion 3 air pumped in here sloping air rack elecronic imer or daa logger Figure 1.11 Measuring acceleraion. Today we can use daa loggers o make accurae direc measuremens ha are colleced and manipulaed by a compuer. A spreadshee programme can be used o produce a velociy ime graph. Figure 1.11 shows a glider on a slighly sloping air- 7

8 1 Velociy (cm/s) Airrack a 1.5 Airrack a 3. (s) Av Vel. (cm/s) (s) Av Vel. (cm/s) Tips 1 When finding he gradien of a graph, draw a big riangle. Choose a convenien number of unis for he lengh of he base of he riangle o make he division easier. gradien = AB BC A (s) 3.5 Figure 1.1 Resuls of wo air-rack experimens. (Noe, once again, ha because we are ploing average velociy in he velociy ime graphs, he poins are ploed in he middle of each successive ime inerval.) rack. The air-rack reduces fricion because he glider rides on a cushion of air ha is pumped coninuously hrough holes along he air-rack. As he glider acceleraes down he sloping rack he whie card mouned on i breaks a ligh beam, and he ime ha he glider akes o pass is measured elecronically. If he lengh of he card is measured, and his is enered ino he spreadshee, he velociy of he glider can be calculaed by he spreadshee programme using v = d. Figure 1.1 shows some velociy ime graphs for wo experimens done using he air-rack apparaus. In each experimen he rack was given a differen slope. The seeper he slope of he air-rack he greaer he glider s acceleraion. This is clear from he graphs: he greaer he acceleraion he seeper he gradien of he graph. The gradien of a velociy ime graph gives he acceleraion. More abou velociy ime graphs Gradien The resuls of he air-rack experimens in Figure 1.1 show ha he slope of he velociy ime graph depends on he acceleraion of he glider. The slope or gradien of a velociy ime graph is found by dividing he increase in he velociy by he ime aken for he increase, as shown in Figure Increase in velociy divided by ime is, you will recall, he definiion of acceleraion (see page 5), so we can measure he acceleraion of an objec by finding he slope of is velociy ime graph. The meaning of he slope or gradien of a velociy ime graph is summarised in Figure Area under a velociy ime graph Velociy (m/s) 15 1 v v v v 5 8 B C (s) Figure 1.13 Finding he gradien of a velociy ime graph. a) shallow gradien low acceleraion b) seep gradien high acceleraion c) horizonal (zero gradien) no acceleraion d) negaive gradien negaive acceleraion (deceleraion) Figure 1.14 The gradien of a velociy ime graph gives you informaion abou he moion of an objec a a glance.

9 Figure 1.15a shows a velociy ime graph for an objec ha ravels wih a consan velociy of 5 m/s for 1 s. A simple calculaion shows ha in his ime he objec has ravelled 5 m. This is equal o he shaded area under he graph. Figure 1.15b shows a velociy ime graph for an objec ha has acceleraed a a consan rae. Is average velociy during his ime is given by: average velociy = iniial velociy + final velociy In his example he average velociy is, herefore: average velociy = m/s + 1 m/s or u + v which works ou o be 5 m/s. If he objec ravels, on average, 5 meres in each second i will have ravelled meres in 4 seconds. Noice ha his, oo, is equal o he shaded area under he graph (given by he area formula for a riangle: area = 1 base heigh). The area under a velociy ime graph is equal o he disance ravelled by (displacemen of) he objec in a paricular ime inerval. Speed invesigaions using icker ape A icker imer is a machine ha makes a series of dos on a paper ape moving hrough he machine. Mos icker imers used in school physics laboraories make 5 dos each second. If he ape is pulled slowly hrough he machine, he dos are close ogeher. If he ape is pulled hrough quickly, he dos are furher apar (Figure 1.16). Ticker ape can be used o invesigae speed or acceleraion. One end of he icker ape is fasened o a rolley or air rack glider, which pulls he ape hrough he machine as i moves. The ape can hen be cu up ino lenghs represening equal ime, and used o make speed-ime graphs. As each lengh of ape represens.1 seconds, you can work ou he velociy from he lengh of he piece of ape using he equaion velociy = disance (lengh of ape)/ime (.1 seconds). a) b) Velociy (m/s) Velociy (m/s) 5 1 s area = 5m/s 1s = 5 m = disance ravelled (s) 1 a) power inpu area of a riangle = 1/ base heigh 5 m/s 1 m/s area = disance ravelled 1 4 s 3 4 (s) Figure 1.15 a) An objec ravelling a consan velociy, b) An objec acceleraing a a consan rae. coil icker ape magne vibraing bar carbon paper disc a) 6 b) 6 c) b) speed (cm/s) speed (cm/s) speed (cm/s) sec c) d).1 sec.1..3 ime (s) ime (s) Figure 1.17 Disance-ime graphs made from icker ape. a) Consan speed, b) Acceleraing, c) Deceleraing ime (s).4.5 Figure 1.16 a) A icker imer, b) A ape pulled hrough a a seady, slow speed. The icker imer makes 5 dos each second, so every 5 dos show he disance moved in.1 second. c) A ape pulled hrough a a seady, faser speed. d) A ape being acceleraed hrough he imer. 9

10 End of Chaper Checklis You will need o be able o do he following: undersand and use he equaion average speed, v = disance ravelled, d ime aken, recall ha he unis of speed are meres per second, m/s recall ha disance ime graphs for objecs moving a consan speed are sraigh lines undersand ha he gradien of a disance ime graph gives he speed recall ha disance ravelled in a specified direcion is called displacemen; displacemen is a vecor quaniy undersand ha velociy is speed in a specified direcion. I is also a vecor quaniy undersand and use he equaion acceleraion = change in velociy ime aken, or a = (v u) recall ha he unis of acceleraion are meres per second squared, m/s undersand ha acceleraion is a vecor undersand ha velociy ime graphs of objecs moving wih consan velociy are horizonal sraigh lines undersand ha he gradien of a velociy ime graph gives acceleraion; a negaive gradien (graph line sloping down o he righ) indicaes deceleraion work ou he disance ravelled from he area under a velociy ime graph undersand and use he equaion average velociy = explain how o use icker ape o measure speed. iniial velociy + final velociy or u + v Quesions More quesions on speed and acceleraion can be found a he end of Secion A on page A spriner runs 1 meres in 1.5 seconds. Work ou her speed in m/s. A je can ravel a 35 m/s. How far will i ravel a his speed in: a) 3 seconds b) 5 minues c) half an hour? 3 A snail crawls a a speed of.4 m/s. How long will i ake o climb a garden cane 1.6 m high? 4 Look a he following skeches of disance ime graphs of moving objecs. Disance A Disance B In which graph is he objec: a) moving backwards b) moving slowly c) moving quickly d) no moving a all? Disance C D 1

11 5 Skech a disance ime graph o show he moion of a person walking quickly, sopping for a momen, hen coninuing o walk slowly in he same direcion. 6 Plo a disance ime graph using he daa in he following able. Draw a line of bes fi and use your graph o find he speed of he objec concerned. Disance (m) (s) The diagram below shows a rail of oil drips made by a car as i ravels along a road. The oil is dripping from he car a a seady rae of one drip every.5 seconds. a) Wha can you ell abou he he way he car is moving? b) The disance beween he firs and he sevenh drip is 135 meres. Wha is he average speed of he car? 8 A car is ravelling a m/s. I acceleraes uniformly a 3 m/s for 5 s. a) Draw a velociy ime graph for he car during he period ha i is acceleraing. Include numerical deail on he axes of your graph. b) Calculae he disance he car ravels while i is acceleraing. 9 Explain he difference beween he following erms: a) average speed and insananeous speed b) speed and velociy. 1 A spors car acceleraes uniformly from res o 4 m/s in 6 s. Wha is he acceleraion of he car? 11 Skech velociy ime graphs for: a) an objec moving wih a consan velociy of 6 m/s b) an objec acceleraing uniformly a m/s for 1 s c) an objec deceleraing a 4 m/s for 5 s. 1 A plane saring from res acceleraes a 3 m/s for 5 s. By how much has he velociy increased afer: a) 1 s b) 5 s c) 5 s? 13 Look a he following skeches of velociy ime graphs of moving objecs. Velociy A Velociy B In which graph is he objec: a) no acceleraing b) acceleraing from res c) deceleraing Velociy d) acceleraing a he greaes rae? C Velociy D 14 Skech a velociy ime graph o show how he velociy of a car ravelling along a sraigh road changes if i acceleraes uniformly from res for 5 s, ravels a a consan velociy for 1 s, hen brakes hard o come o res in s. 15 Plo a velociy ime graph using he daa in he following able. Velociy (m/s) (s) Draw a line of bes fi and use your graph o find: a) he acceleraion during he firs 4 s b) he disance ravelled in i) he firs 4 s of he moion shown ii) he las 5 s of he moion shown c) he average speed during he 9 seconds of moion shown. 16 The leaky car from quesion 7 is sill on he road! I is sill dripping oil bu now a a rae of one drop per second. The rail of drips is shown on he diagram below as he car ravels from lef o righ. The disance beween he firs and second oil drip is.5 m. Does he spacing of he oil drips show ha he car is acceleraing a a seady rae? Explain how you would make and use measuremens from he oil drip rail o deermine his. Work ou he rae of acceleraion of he car. 11

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

15210 RECORDING TIMER - AC STUDENT NAME:

15210 RECORDING TIMER - AC STUDENT NAME: CONTENTS 15210 RECORDING TIMER - AC STUDENT NAME: REQUIRED ACCESSORIES o C-Clamps o Ruler or Meer Sick o Mass (200 g or larger) OPTIONAL ACCESSORIES o Ticker Tape Dispenser (#15225) o Consan Speed Vehicle

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average Overview Kinemaics: Descripion of Moion Posiion and displacemen velociy»insananeous acceleraion»insananeous Speed Velociy Speed and Velociy Speed & Velociy Velociy & Speed A physics eacher walks 4 meers

More information

Dynamics. Option topic: Dynamics

Dynamics. Option topic: Dynamics Dynamics 11 syllabusref Opion opic: Dynamics eferenceence In his cha chaper 11A Differeniaion and displacemen, velociy and acceleraion 11B Inerpreing graphs 11C Algebraic links beween displacemen, velociy

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16.

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16. 1. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? A) A jogger is running around a circular pah. B) A ball is rolling down an inclined plane. C) A rain ravels

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Conceptual Physics Review (Chapters 2 & 3)

Conceptual Physics Review (Chapters 2 & 3) Concepual Physics Review (Chapers 2 & 3) Soluions Sample Calculaions 1. My friend and I decide o race down a sraigh srech of road. We boh ge in our cars and sar from res. I hold he seering wheel seady,

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

Topic 1: Linear motion and forces

Topic 1: Linear motion and forces TOPIC 1 Topic 1: Linear moion and forces 1.1 Moion under consan acceleraion Science undersanding 1. Linear moion wih consan elociy is described in erms of relaionships beween measureable scalar and ecor

More information

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time +v Today: Graphing v (miles per hour ) 9 8 7 6 5 4 - - Time Noe: I hope his joke will be funnier (or a leas make you roll your eyes and say ugh ) afer class. Do yourself a favor! Prof Sarah s fail-safe

More information

Chapter 1 Rotational dynamics 1.1 Angular acceleration

Chapter 1 Rotational dynamics 1.1 Angular acceleration Chaper Roaional dynamics. Angular acceleraion Learning objecives: Wha do we mean by angular acceleraion? How can we calculae he angular acceleraion of a roaing objec when i speeds up or slows down? How

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2

9702/1/O/N/02. are set up a vertical distance h apart. M 1 M 2. , it is found that the ball takes time t 1. to reach M 2 ) 2 PhysicsndMahsTuor.com 7 car is ravelling wih uniform acceleraion along a sraigh road. The road has marker poss every 1 m. When he car passes one pos, i has a speed of 1 m s 1 and, when i passes he nex

More information

Practicing Problem Solving and Graphing

Practicing Problem Solving and Graphing Pracicing Problem Solving and Graphing Tes 1: Jan 30, 7pm, Ming Hsieh G20 The Bes Ways To Pracice for Tes Bes If need more, ry suggesed problems from each new opic: Suden Response Examples A pas opic ha

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Unit 1 - Descriptive Models for Linear Motion

Unit 1 - Descriptive Models for Linear Motion Uni 1 - Descripive Models for Linear Moion A workbook and noebook for sudens aking Physics wih Mr. Lonon. Version 3. 212 1 Aciviy 1 - Umm, which way did he go? Designing an invesigaion for our buggy. You

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

6th Year Applied Maths Higher Level Kieran Mills

6th Year Applied Maths Higher Level Kieran Mills 6h Year Applied Mahs Higher Level Kieran Mills Uniform Acceleraed Moion No par of his publicaion may be copied, reproduced or ransmied in any form or by any means, elecronic, mechanical, phoocopying, recording,

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

Uniform Accelerated Motion. 6 th Year. Applied Maths Higher Level Kieran Mills

Uniform Accelerated Motion. 6 th Year. Applied Maths Higher Level Kieran Mills 6 h Year Applied Mahs Higher Level Kieran Mills Uniform Acceleraed Moion No par of his publicaion may be copied, reproduced or ransmied in any form or by any means, elecronic, mechanical, phoocopying,

More information

Kinematics Motion in 1 Dimension and Graphs

Kinematics Motion in 1 Dimension and Graphs Kinemaics Moion in 1 Dimension and Graphs Lana Sheridan De Anza College Sep 27, 2017 Las ime moion in 1-dimension some kinemaic quaniies graphs Overview velociy and speed acceleraion more graphs Kinemaics

More information

Summary:Linear Motion

Summary:Linear Motion Summary:Linear Moion D Saionary objec V Consan velociy D Disance increase uniformly wih ime D = v. a Consan acceleraion V D V = a. D = ½ a 2 Velociy increases uniformly wih ime Disance increases rapidly

More information

Equations of motion for constant acceleration

Equations of motion for constant acceleration Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

More information

72 Calculus and Structures

72 Calculus and Structures 72 Calculus and Srucures CHAPTER 5 DISTANCE AND ACCUMULATED CHANGE Calculus and Srucures 73 Copyrigh Chaper 5 DISTANCE AND ACCUMULATED CHANGE 5. DISTANCE a. Consan velociy Le s ake anoher look a Mary s

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

University Physics with Modern Physics 14th Edition Young TEST BANK

University Physics with Modern Physics 14th Edition Young TEST BANK Universi Phsics wih Modern Phsics 14h Ediion Young SOLUTIONS MANUAL Full clear download (no formaing errors) a: hps://esbankreal.com/download/universi-phsics-modern-phsics- 14h-ediion-oung-soluions-manual-/

More information

Linear Motion I Physics

Linear Motion I Physics Linear Moion I Physics Objecives Describe he ifference beween isplacemen an isance Unersan he relaionship beween isance, velociy, an ime Describe he ifference beween velociy an spee Be able o inerpre a

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Kinematics in One Dimension

Kinematics in One Dimension Kinemaics in One Dimension PHY 7 - d-kinemaics - J. Hedberg - 7. Inroducion. Differen Types of Moion We'll look a:. Dimensionaliy in physics 3. One dimensional kinemaics 4. Paricle model. Displacemen Vecor.

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Best test practice: Take the past test on the class website

Best test practice: Take the past test on the class website Bes es pracice: Take he pas es on he class websie hp://communiy.wvu.edu/~miholcomb/phys11.hml I have posed he key o he WebAssign pracice es. Newon Previous Tes is Online. Forma will be idenical. You migh

More information

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018 UCLA: Mah 3B Problem se 3 (soluions) Fall, 28 This problem se concenraes on pracice wih aniderivaives. You will ge los of pracice finding simple aniderivaives as well as finding aniderivaives graphically

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension Physics for Scieniss and Engineers Chaper Kinemaics in One Dimension Spring, 8 Ho Jung Paik Kinemaics Describes moion while ignoring he agens (forces) ha caused he moion For now, will consider moion in

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

SOLUTIONS TO CONCEPTS CHAPTER 3

SOLUTIONS TO CONCEPTS CHAPTER 3 SOLUTIONS TO ONEPTS HPTER 3. a) Disance ravelled = 50 + 40 + 0 = 0 m b) F = F = D = 50 0 = 30 M His displacemen is D D = F DF 30 40 50m In ED an = DE/E = 30/40 = 3/4 = an (3/4) His displacemen from his

More information

Today: Falling. v, a

Today: Falling. v, a Today: Falling. v, a Did you ge my es email? If no, make sure i s no in your junk box, and add sbs0016@mix.wvu.edu o your address book! Also please email me o le me know. I will be emailing ou pracice

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions Farr High School NATIONAL 5 PHYSICS Uni Dynamics and Space Exam Quesions VELOCITY AND DISPLACEMENT D B D 4 E 5 B 6 E 7 E 8 C VELOCITY TIME GRAPHS (a) I is acceleraing Speeding up (NOT going down he flume

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

Q2.1 This is the x t graph of the motion of a particle. Of the four points P, Q, R, and S, the velocity v x is greatest (most positive) at

Q2.1 This is the x t graph of the motion of a particle. Of the four points P, Q, R, and S, the velocity v x is greatest (most positive) at Q2.1 This is he x graph of he moion of a paricle. Of he four poins P, Q, R, and S, he velociy is greaes (mos posiive) a A. poin P. B. poin Q. C. poin R. D. poin S. E. no enough informaion in he graph o

More information

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS FINAL EXAMINATION June 2010.

Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS FINAL EXAMINATION June 2010. Name: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 224 FINAL EXAMINATION June 21 Value: 1% General Insrucions This examinaion consiss of wo pars. Boh

More information

Kinematics. See if you can define distance. We think you ll run into the same problem.

Kinematics. See if you can define distance. We think you ll run into the same problem. Kinemaics Inroducion Moion is fundamenal o our lives and o our hinking. Moving from place o place in a given amoun of ime helps define boh who we are and how we see he world. Seeing oher people, objecs

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

Chapter 2. Motion in One-Dimension I

Chapter 2. Motion in One-Dimension I Chaper 2. Moion in One-Dimension I Level : AP Physics Insrucor : Kim 1. Average Rae of Change and Insananeous Velociy To find he average velociy(v ) of a paricle, we need o find he paricle s displacemen

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information

02. MOTION. Questions and Answers

02. MOTION. Questions and Answers CLASS-09 02. MOTION Quesions and Answers PHYSICAL SCIENCE 1. Se moves a a consan speed in a consan direcion.. Reprase e same senence in fewer words using conceps relaed o moion. Se moves wi uniform velociy.

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Mah 6 Pracice for Exam Generaed Ocober 3, 7 Name: SOLUTIONS Insrucor: Secion Number:. This exam has 5 quesions. Noe ha he problems are no of equal difficuly, so you may wan o skip over and reurn o a problem

More information

CHAPTER 1. Motion. CHAPTER s Objectives

CHAPTER 1. Motion. CHAPTER s Objectives 1 CHAPTER 1 Moion CHAPTER s Objecives Moion was he firs naural even ha riggered human ineres o sudy naural phenomena long before recording ime. To he ancien people, everyhing in he universe seems o move

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

SPH3U1 Lesson 03 Kinematics

SPH3U1 Lesson 03 Kinematics SPH3U1 Lesson 03 Kinemaics GRAPHICAL ANALYSIS LEARNING GOALS Sudens will Learn how o read values, find slopes and calculae areas on graphs. Learn wha hese values mean on boh posiion-ime and velociy-ime

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

Principle of Least Action

Principle of Least Action The Based on par of Chaper 19, Volume II of The Feynman Lecures on Physics Addison-Wesley, 1964: pages 19-1 hru 19-3 & 19-8 hru 19-9. Edwin F. Taylor July. The Acion Sofware The se of exercises on Acion

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

(c) Several sets of data points can be used to calculate the velocity. One example is: distance speed = time 4.0 m = 1.0 s speed = 4.

(c) Several sets of data points can be used to calculate the velocity. One example is: distance speed = time 4.0 m = 1.0 s speed = 4. Inquiry an Communicaion 8. (a) ensiy eermine by Group A is he mos reasonable. (b) When roune off o wo significan igis, Group B has he same alue as Group A. Howeer, saing an experimenal measuremen o six

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Testing What You Know Now

Testing What You Know Now Tesing Wha You Know Now To bes each you, I need o know wha you know now Today we ake a well-esablished quiz ha is designed o ell me his To encourage you o ake he survey seriously, i will coun as a clicker

More information

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS For more deails see las page or conac @aimaiims.in Physics Mock Tes Paper AIIMS/NEET 07 Physics 06 Saurday Augus 0 Uni es : Moion in

More information

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012 Physics 5A Review 1 Eric Reichwein Deparmen of Physics Universiy of California, Sana Cruz Ocober 31, 2012 Conens 1 Error, Sig Figs, and Dimensional Analysis 1 2 Vecor Review 2 2.1 Adding/Subracing Vecors.............................

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

Variable acceleration, Mixed Exercise 11

Variable acceleration, Mixed Exercise 11 Variable acceleraion, Mixed Exercise 11 1 a v 1 P is a res when v 0. 0 1 b s 0 0 v d (1 ) 1 0 1 0 7. The disance ravelled by P is 7. m. 1 a v 6+ a d v 6 + When, a 6+ 0 The acceleraion of P when is 0 m

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

KEEP IT SIMPLE SCIENCE OnScreen Format. Physics Module 1 Kinematics. Usage & copying is permitted only according to the following

KEEP IT SIMPLE SCIENCE OnScreen Format. Physics Module 1 Kinematics. Usage & copying is permitted only according to the following keep i simple science KEEP IT IMPLE CIENCE Oncreen Forma Physics Year 11 Module 1 Kinemaics Usage & copying is permied only according o he following ie Licence Condiions for chools A school (or oher recognised

More information

Physics 218 Exam 1. with Solutions Fall 2010, Sections Part 1 (15) Part 2 (20) Part 3 (20) Part 4 (20) Bonus (5)

Physics 218 Exam 1. with Solutions Fall 2010, Sections Part 1 (15) Part 2 (20) Part 3 (20) Part 4 (20) Bonus (5) Physics 18 Exam 1 wih Soluions Fall 1, Secions 51-54 Fill ou he informaion below bu o no open he exam unil insruce o o so! Name Signaure Suen ID E-mail Secion # ules of he exam: 1. You have he full class

More information

WELCOME TO 1103 PERIOD 3. Homework Exercise #2 is due at the beginning of class. Please put it on the stool in the front of the classroom.

WELCOME TO 1103 PERIOD 3. Homework Exercise #2 is due at the beginning of class. Please put it on the stool in the front of the classroom. WELCOME TO 1103 PERIOD 3 Homework Exercise #2 is due a he beginning of class. Please pu i on he sool in he fron of he classroom. Ring of Truh: Change 1) Give examples of some energy ransformaions in he

More information