A General-Purpose Counting Filter: Making Every Bit Count. Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY

Size: px
Start display at page:

Download "A General-Purpose Counting Filter: Making Every Bit Count. Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY"

Transcription

1 A General-Purpose Counting Filter: Making Every Bit Count Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY

2 Approximate Membership Query (AMQ) insert(x) ismember(x) AMQ yes/no An AMQ is a lossy representation of a set. Operations: inserts and membership queries. Compact space: Often taking < 1 byte per item. Comes at the cost of occasional false positives.

3 Bloom filter [Bloom, 1970] m A Bloom filter is a bit-array + k hash functions. (Here k=2.)

4 Insertions in a Bloom filter m W A Bloom filter is a bit-array + k hash functions. (Here k=2.)

5 Insertions in a Bloom filter m W X A Bloom filter is a bit-array + k hash functions. (Here k=2.)

6 Insertions in a Bloom filter m W X Y A Bloom filter is a bit-array + k hash functions. (Here k=2.)

7 Membership query in a Bloom filter query(w) W X Y The Bloom filter has a bounded false-positive rate.

8 Membership query in a Bloom filter YES query(w) W X Y The Bloom filter has a bounded false-positive rate.

9 Membership query in a Bloom filter YES query(w) query(u) W X Y The Bloom filter has a bounded false-positive rate.

10 Membership query in a Bloom filter YES query(w) NO query(u) W X Y The Bloom filter has a bounded false-positive rate.

11 Membership query in a Bloom filter YES NO query(w) query(u) query(z) W X Y The Bloom filter has a bounded false-positive rate.

12 Membership query in a Bloom filter YES NO YES query(w) query(u) query(z) false positive W X Y The Bloom filter has a bounded false-positive rate.

13 Bloom filters are ubiquitous Streaming applications Networking Databases Computational biology Storage systems

14 Counting filters: AMQs for multisets insert(x) delete(x) getcount(x) count Counting filter A counting filter is a lossy representation of a multiset. Operations: inserts, count, and delete. Generalizes AMQs False positives over-counts.

15 Why is counting important? Counting filters have numerous applications: Computational biology, e.g., k-mer counting. Network anomaly detection. Natural language processing, e.g., n-gram counting. Counting enables AMQs to support deletes.

16 Many real data sets have skewed counts Number of items with the frequency Number of of items: ~19.6B Number of of distinct items: ~1.1B Frequency Counting filters should handle skewed data sets efficiently.

17 Many real data sets have skewed counts Number of items with the frequency Number of of items: ~19.6B Number of of distinct items: ~1.1B Frequency Counting filters should handle skewed data sets efficiently.

18 Counting Bloom filters [Fan et al., 2000] insert(w,4) insert(x,3) insert(y,1) Counters must be large enough to hold count of most frequent item. Counting Bloom filters are not space-efficient for skewed data sets.

19 Counting Bloom filters [Fan et al., 2000] insert(w,4) insert(x,3) insert(y,1) RNA-seq dataset Total number of items: 19.6 Billion Number of distinct items: 1.1 Billion 4 Maximum 0 frequency: 7 4 ~8 Million 0 1 Space usage of a CBF: ~38GB Counters must be large enough to hold count of most frequent item. Counting Bloom filters are not space-efficient for skewed data sets.

20 This paper: The counting quotient filter (CQF) A replacement for the (counting) Bloom filter. Space and computationally efficient. Uses variable-sized counters to handle skewed data sets efficiently. CQF space BF space + O( log c(x)) x S} Asymptotically optimal

21 This paper: The counting quotient filter (CQF) A replacement for the (counting) Bloom filter. RNA-seq dataset Total number of items: 19.6 Billion Number of distinct items: 1.1 Billion Maximum frequency: ~8 Million Space and computationally efficient. Uses variable-sized counters to handle skewed data sets efficiently. Space usage of a CQF: ~2.5GB CQF space BF space + O( log c(x)) x S } Asymptotically optimal

22 Other features of the CQF Smaller than many non-counting AMQs Bloom, cuckoo [Fan et al., 2014], and quotient [Bender et al., 2012] filters. Good cache locality Deletions Dynamically resizable Mergeable

23 Contributions New quotient filter metadata scheme Smaller and faster than original quotient filter Efficient variable-length counter encoding method Zero overhead for counters Fast implementation of bit-vector select on words Exploits new x86 bit-manipulation instructions

24 Quotienting: An alternative to Bloom filters Store fingerprint compactly in a hash table. Take a fingerprint h(x) for each element x. x h(x) Only source of false positives: Two distinct elements x and y, where h(x) = h(y). If x is stored and y isn t, query(y) gives a false positive.

25 Storing compact fingerprints h(x) b(x) t(x) Tag Bucket index b(u) 0 q r q b(x) = location in the hash table t(x) = tag stored in the hash table 4 t(u) 5 6

26 Storing compact fingerprints h(x) b(x) t(x) Tag Bucket index b(v) b(u) q q r b(x) = location in the hash table t(x) = tag stored in the hash table Collisions in the hash table? t(v) 4 5 t(u) 6

27 Storing compact fingerprints h(x) b(x) t(x) Tag Bucket index b(v) b(u) t(v) t(u) t(v) 2 q q r b(x) = location in the hash table t(x) = tag stored in the hash table Collisions in the hash table? Linear probing. 6

28 Storing compact fingerprints h(x) b(x) t(x) Tag Bucket index b(v) b(u) q q r The home bucket for t(u) and t(v) is 4. t(v) t(u) t(v) Does t(v) belongs to bucket 4 or 5?

29 Resolving collisions in the CQF CQF uses two metadata bits to resolve collisions and identify the home bucket. 1 1 t(u) t(v) t(w) t(x) t(y) The metadata bits group tags by their home bucket. Metadata scheme supports efficient inserts/deletes.

30 Resolving collisions in the CQF CQF uses two metadata bits to resolve collisions and identify the home bucket. 1 1 insert v t(u) t(v) t(v) t(w) t(x) t(y) The metadata bits group tags by their home bucket. Metadata scheme supports efficient inserts/deletes.

31 Resolving collisions in the CQF CQF uses two metadata bits to resolve collisions and identify the home bucket. 1 1 insert v t(u) t(v) t(v) t(w) t(x) t(y) The metadata bits group tags by their home bucket. Metadata scheme supports efficient inserts/deletes. The metadata bits enable us to identify the slots holding the contents of each bucket.

32 Counting quotient filter (CQF) Implementation: 2 Meta-bits per slot. h(x) --> h 0 (x) h 1 (x) Abstract Representation 2 q runends occupieds 2 q

33 Counting quotient filter (CQF) Implementation: 2 Meta-bits per slot. h(x) --> h 0 (x) h 1 (x) Abstract Representation 2 q h(a) runends occupieds 1 1 h1(a) 2 q

34 Counting quotient filter (CQF) Implementation: 2 Meta-bits per slot. h(x) --> h 0 (x) h 1 (x) Abstract Representation 2 q h(a) runends occupieds 1 1 h1(a) h1(b) 2 q h(b)

35 Counting quotient filter (CQF) Implementation: 2 Meta-bits per slot. h(x) --> h 0 (x) h 1 (x) Abstract Representation 2 q h(a) h(d) runends occupieds h1(a) h1(b) h1(d) 2 q h(b)

36 Counting quotient filter (CQF) Implementation: 2 Meta-bits per slot. h(x) --> h 0 (x) h 1 (x) Abstract Representation 2 q h(a) h(d) runends occupieds h1(a) h1(b) h1(d) h1(e) 2 q h(b) h(e)

37 Counting quotient filter (CQF) Implementation: 2 Meta-bits per slot. h(x) --> h 0 (x) h 1 (x) Abstract Representation 2 q h(a) h(d) runends occupieds 2 q h(b) h(c) h1(a) h1(b) h1(c) h1(d) h1(e) h(e)

38 Counting quotient filter (CQF) Implementation: 2 Meta-bits per slot. h(x) --> h 0 (x) h 1 (x) Abstract Representation 2 q h(a) h(d) h(f) runends occupieds 2 q h(b) h(e) h(c) h1(a) h1(b) h1(c) h1(d) h1(e) h1(f)

39 Metadata operations occupieds run runends Rank(occupieds, 3) = 2 Select(runends, 2) = 5 Can accelerate metadata operations using x86 bit-manipulation instructions. Asymptotic improvement in query performance over the original QF.

40 Encoding counts

41 Encoding counts Metadata scheme tells us the run of slots holding contents of a bucket. We can encode contents of buckets however we want. The original quotient filter used repetition (unary). 1 1 t(u) t(u) t(u) t(u) t(x) t(y)

42 Encoding counts We want to count in binary, not unary. Idea: use some of the space for tags to store counts. Issue: determine which are tags and which are counts without using even one control bit. 4 copies of t(u) 1 1 t(u) 4 t(x) 1 t(y) 1 }

43 Encoding counts Dataset: 2 copies of 0, 7 copies of 3, and 9 copies q An encoding scheme to count the multiplicity of items. Variable-sized counter. Using slots reserved for remainders to, instead, store count information.

44 Performance: In memory Inserts lookups The CQF insert performance in RAM is similar to that of state-ofthe-art non-counting AMQs. The CQF is significantly faster at low load factors and slightly slower on high load factors.

45 Performance: Skewed datasets Inserts lookups The CQF outperforms the CBF by a factor of 6x-10x on both inserts and lookups.

46 Conclusion The CQF is smaller and faster than other AMQs, even ones that can t count. The CQF also supports deletes, resizing, cache locality, and other features applications need. The CQF demonstrates the extensible design of the quotient filter.

47

48

49

50

51

52

53 Space analysis: Bloom Filter m = # of bits n = # of elements k = # of hash functions k = m/(n ln2) bits per element S = m/n false-positive rate = 2 -m/(n ln2) = 2 -Sln2

54 Space analysis: Cuckoo Filter f = # of fingerprint bits b = # of entries in each bucket α = load factor bits per element S = α/f false-positive rate = 2b/2 f = 2b/2 Sα

55 Space analysis: Quotient filter q = # of quotient bits r = # of remainder bits The quotient filter always takes less space than the c = cuckoo # of metadata filter bits and per offers slot better falsepositive rate than the Bloom filter whenever α = load S factor (c + lnα)/(α-ln2) # of slots = 2 q bits per element S = (r+c)/α false-positive rate = α2 -r = α2 -αs+c

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Tuesday, December 1, 2015 Outline 1 Recap Balls and bins 2 On randomized algorithms 3 Saving space: hashing-based

More information

1 Probability Review. CS 124 Section #8 Hashing, Skip Lists 3/20/17. Expectation (weighted average): the expectation of a random quantity X is:

1 Probability Review. CS 124 Section #8 Hashing, Skip Lists 3/20/17. Expectation (weighted average): the expectation of a random quantity X is: CS 24 Section #8 Hashing, Skip Lists 3/20/7 Probability Review Expectation (weighted average): the expectation of a random quantity X is: x= x P (X = x) For each value x that X can take on, we look at

More information

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15)

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15) Problem 1: Chernoff Bounds via Negative Dependence - from MU Ex 5.15) While deriving lower bounds on the load of the maximum loaded bin when n balls are thrown in n bins, we saw the use of negative dependence.

More information

Hash tables. Hash tables

Hash tables. Hash tables Dictionary Definition A dictionary is a data-structure that stores a set of elements where each element has a unique key, and supports the following operations: Search(S, k) Return the element whose key

More information

Lecture and notes by: Alessio Guerrieri and Wei Jin Bloom filters and Hashing

Lecture and notes by: Alessio Guerrieri and Wei Jin Bloom filters and Hashing Bloom filters and Hashing 1 Introduction The Bloom filter, conceived by Burton H. Bloom in 1970, is a space-efficient probabilistic data structure that is used to test whether an element is a member of

More information

Bloom Filters, general theory and variants

Bloom Filters, general theory and variants Bloom Filters: general theory and variants G. Caravagna caravagn@cli.di.unipi.it Information Retrieval Wherever a list or set is used, and space is a consideration, a Bloom Filter should be considered.

More information

Hash tables. Hash tables

Hash tables. Hash tables Dictionary Definition A dictionary is a data-structure that stores a set of elements where each element has a unique key, and supports the following operations: Search(S, k) Return the element whose key

More information

Lecture 24: Bloom Filters. Wednesday, June 2, 2010

Lecture 24: Bloom Filters. Wednesday, June 2, 2010 Lecture 24: Bloom Filters Wednesday, June 2, 2010 1 Topics for the Final SQL Conceptual Design (BCNF) Transactions Indexes Query execution and optimization Cardinality Estimation Parallel Databases 2 Lecture

More information

Introduction to Hashtables

Introduction to Hashtables Introduction to HashTables Boise State University March 5th 2015 Hash Tables: What Problem Do They Solve What Problem Do They Solve? Why not use arrays for everything? 1 Arrays can be very wasteful: Example

More information

Introduction to Randomized Algorithms III

Introduction to Randomized Algorithms III Introduction to Randomized Algorithms III Joaquim Madeira Version 0.1 November 2017 U. Aveiro, November 2017 1 Overview Probabilistic counters Counting with probability 1 / 2 Counting with probability

More information

Bloom Filters, Adaptivity, and the Dictionary Problem

Bloom Filters, Adaptivity, and the Dictionary Problem 2018 IEEE 59th Annual Symposium on Foundations of Computer Science Bloom Filters, Adaptivity, and the Dictionary Problem Michael A. Bender, Martín Farach-Colton, Mayank Goswami, Rob Johnson, Samuel McCauley,

More information

Bloom Filters, Minhashes, and Other Random Stuff

Bloom Filters, Minhashes, and Other Random Stuff Bloom Filters, Minhashes, and Other Random Stuff Brian Brubach University of Maryland, College Park StringBio 2018, University of Central Florida What? Probabilistic Space-efficient Fast Not exact Why?

More information

So far we have implemented the search for a key by carefully choosing split-elements.

So far we have implemented the search for a key by carefully choosing split-elements. 7.7 Hashing Dictionary: S. insert(x): Insert an element x. S. delete(x): Delete the element pointed to by x. S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise

More information

Hash Tables. Given a set of possible keys U, such that U = u and a table of m entries, a Hash function h is a

Hash Tables. Given a set of possible keys U, such that U = u and a table of m entries, a Hash function h is a Hash Tables Given a set of possible keys U, such that U = u and a table of m entries, a Hash function h is a mapping from U to M = {1,..., m}. A collision occurs when two hashed elements have h(x) =h(y).

More information

Array-based Hashtables

Array-based Hashtables Array-based Hashtables For simplicity, we will assume that we only insert numeric keys into the hashtable hash(x) = x % B; where B is the number of 5 Implementation class Hashtable { int [B]; bool occupied[b];

More information

CSCB63 Winter Week 11 Bloom Filters. Anna Bretscher. March 30, / 13

CSCB63 Winter Week 11 Bloom Filters. Anna Bretscher. March 30, / 13 CSCB63 Winter 2019 Week 11 Bloom Filters Anna Bretscher March 30, 2019 1 / 13 Today Bloom Filters Definition Expected Complexity Applications 2 / 13 Bloom Filters (Specification) A bloom filter is a probabilistic

More information

INTRODUCTION TO HASHING Dr. Thomas Hicks Trinity University. Data Set - SSN's from UTSA Class

INTRODUCTION TO HASHING Dr. Thomas Hicks Trinity University. Data Set - SSN's from UTSA Class Dr. Thomas E. Hicks Data Abstractions Homework - Hashing -1 - INTRODUCTION TO HASHING Dr. Thomas Hicks Trinity University Data Set - SSN's from UTSA Class 467 13 3881 498 66 2055 450 27 3804 456 49 5261

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 32

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 32 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 32 CS 473: Algorithms, Spring 2018 Universal Hashing Lecture 10 Feb 15, 2018 Most

More information

arxiv: v1 [cs.ds] 3 Feb 2018

arxiv: v1 [cs.ds] 3 Feb 2018 A Model for Learned Bloom Filters and Related Structures Michael Mitzenmacher 1 arxiv:1802.00884v1 [cs.ds] 3 Feb 2018 Abstract Recent work has suggested enhancing Bloom filters by using a pre-filter, based

More information

A Model for Learned Bloom Filters, and Optimizing by Sandwiching

A Model for Learned Bloom Filters, and Optimizing by Sandwiching A Model for Learned Bloom Filters, and Optimizing by Sandwiching Michael Mitzenmacher School of Engineering and Applied Sciences Harvard University michaelm@eecs.harvard.edu Abstract Recent work has suggested

More information

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

Hashing. Dictionaries Hashing with chaining Hash functions Linear Probing

Hashing. Dictionaries Hashing with chaining Hash functions Linear Probing Hashing Dictionaries Hashing with chaining Hash functions Linear Probing Hashing Dictionaries Hashing with chaining Hash functions Linear Probing Dictionaries Dictionary: Maintain a dynamic set S. Every

More information

A Lecture on Hashing. Aram-Alexandre Pooladian, Alexander Iannantuono March 22, Hashing. Direct Addressing. Operations - Simple

A Lecture on Hashing. Aram-Alexandre Pooladian, Alexander Iannantuono March 22, Hashing. Direct Addressing. Operations - Simple A Lecture on Hashing Aram-Alexandre Pooladian, Alexander Iannantuono March 22, 217 This is the scribing of a lecture given by Luc Devroye on the 17th of March 217 for Honours Algorithms and Data Structures

More information

Hashing. Martin Babka. January 12, 2011

Hashing. Martin Babka. January 12, 2011 Hashing Martin Babka January 12, 2011 Hashing Hashing, Universal hashing, Perfect hashing Input data is uniformly distributed. A dynamic set is stored. Universal hashing Randomised algorithm uniform choice

More information

:s ej2mttlm-(iii+j2mlnm )(J21nm/m-lnm/m)

:s ej2mttlm-(iii+j2mlnm )(J21nm/m-lnm/m) BALLS, BINS, AND RANDOM GRAPHS We use the Chernoff bound for the Poisson distribution (Theorem 5.4) to bound this probability, writing the bound as Pr(X 2: x) :s ex-ill-x In(x/m). For x = m + J2m In m,

More information

Hashing. Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing. Philip Bille

Hashing. Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing. Philip Bille Hashing Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing Philip Bille Hashing Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing

More information

Hashing. Hashing. Dictionaries. Dictionaries. Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing

Hashing. Hashing. Dictionaries. Dictionaries. Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing Philip Bille Dictionaries Dictionary problem. Maintain a set S U = {,..., u-} supporting lookup(x): return true if x S and false otherwise. insert(x): set S = S {x} delete(x): set S = S - {x} Dictionaries

More information

Lecture 4 Thursday Sep 11, 2014

Lecture 4 Thursday Sep 11, 2014 CS 224: Advanced Algorithms Fall 2014 Lecture 4 Thursday Sep 11, 2014 Prof. Jelani Nelson Scribe: Marco Gentili 1 Overview Today we re going to talk about: 1. linear probing (show with 5-wise independence)

More information

Lecture 5: Hashing. David Woodruff Carnegie Mellon University

Lecture 5: Hashing. David Woodruff Carnegie Mellon University Lecture 5: Hashing David Woodruff Carnegie Mellon University Hashing Universal hashing Perfect hashing Maintaining a Dictionary Let U be a universe of keys U could be all strings of ASCII characters of

More information

Advanced Implementations of Tables: Balanced Search Trees and Hashing

Advanced Implementations of Tables: Balanced Search Trees and Hashing Advanced Implementations of Tables: Balanced Search Trees and Hashing Balanced Search Trees Binary search tree operations such as insert, delete, retrieve, etc. depend on the length of the path to the

More information

Cuckoo Hashing and Cuckoo Filters

Cuckoo Hashing and Cuckoo Filters Cuckoo Hashing and Cuckoo Filters Noah Fleming May 7, 208 Preliminaries A dictionary is an abstract data type that stores a collection of elements, located by their key. It supports operations: insert,

More information

CSE 190, Great ideas in algorithms: Pairwise independent hash functions

CSE 190, Great ideas in algorithms: Pairwise independent hash functions CSE 190, Great ideas in algorithms: Pairwise independent hash functions 1 Hash functions The goal of hash functions is to map elements from a large domain to a small one. Typically, to obtain the required

More information

Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing

Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing Yang Zhou, Tong Yang,, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, Steve Uhlig Peking University. Harvard University. Queen

More information

Part 1: Hashing and Its Many Applications

Part 1: Hashing and Its Many Applications 1 Part 1: Hashing and Its Many Applications Sid C-K Chau Chi-Kin.Chau@cl.cam.ac.u http://www.cl.cam.ac.u/~cc25/teaching Why Randomized Algorithms? 2 Randomized Algorithms are algorithms that mae random

More information

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Language Modeling III Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Announcements Office hours on website but no OH for Taylor until next week. Efficient Hashing Closed address

More information

CS483 Design and Analysis of Algorithms

CS483 Design and Analysis of Algorithms CS483 Design and Analysis of Algorithms Lectures 2-3 Algorithms with Numbers Instructor: Fei Li lifei@cs.gmu.edu with subject: CS483 Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

More information

CS5314 Randomized Algorithms. Lecture 15: Balls, Bins, Random Graphs (Hashing)

CS5314 Randomized Algorithms. Lecture 15: Balls, Bins, Random Graphs (Hashing) CS5314 Randomized Algorithms Lecture 15: Balls, Bins, Random Graphs (Hashing) 1 Objectives Study various hashing schemes Apply balls-and-bins model to analyze their performances 2 Chain Hashing Suppose

More information

Introduction to Hash Tables

Introduction to Hash Tables Introduction to Hash Tables Hash Functions A hash table represents a simple but efficient way of storing, finding, and removing elements. In general, a hash table is represented by an array of cells. In

More information

Insert Sorted List Insert as the Last element (the First element?) Delete Chaining. 2 Slide courtesy of Dr. Sang-Eon Park

Insert Sorted List Insert as the Last element (the First element?) Delete Chaining. 2 Slide courtesy of Dr. Sang-Eon Park 1617 Preview Data Structure Review COSC COSC Data Structure Review Linked Lists Stacks Queues Linked Lists Singly Linked List Doubly Linked List Typical Functions s Hash Functions Collision Resolution

More information

The Bloom Paradox: When not to Use a Bloom Filter

The Bloom Paradox: When not to Use a Bloom Filter 1 The Bloom Paradox: When not to Use a Bloom Filter Ori Rottenstreich and Isaac Keslassy Abstract In this paper, we uncover the Bloom paradox in Bloom filters: sometimes, the Bloom filter is harmful and

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/26/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 More algorithms

More information

CS341 info session is on Thu 3/1 5pm in Gates415. CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS341 info session is on Thu 3/1 5pm in Gates415. CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS341 info session is on Thu 3/1 5pm in Gates415 CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/28/18 Jure Leskovec, Stanford CS246: Mining Massive Datasets,

More information

md5bloom: Forensic Filesystem Hashing Revisited

md5bloom: Forensic Filesystem Hashing Revisited DIGITAL FORENSIC RESEARCH CONFERENCE md5bloom: Forensic Filesystem Hashing Revisited By Vassil Roussev, Timothy Bourg, Yixin Chen, Golden Richard Presented At The Digital Forensic Research Conference DFRWS

More information

Lecture Note 2. 1 Bonferroni Principle. 1.1 Idea. 1.2 Want. Material covered today is from Chapter 1 and chapter 4

Lecture Note 2. 1 Bonferroni Principle. 1.1 Idea. 1.2 Want. Material covered today is from Chapter 1 and chapter 4 Lecture Note 2 Material covere toay is from Chapter an chapter 4 Bonferroni Principle. Iea Get an iea the frequency of events when things are ranom billion = 0 9 Each person has a % chance to stay in a

More information

PAPER Adaptive Bloom Filter : A Space-Efficient Counting Algorithm for Unpredictable Network Traffic

PAPER Adaptive Bloom Filter : A Space-Efficient Counting Algorithm for Unpredictable Network Traffic IEICE TRANS.??, VOL.Exx??, NO.xx XXXX x PAPER Adaptive Bloom Filter : A Space-Efficient Counting Algorithm for Unpredictable Network Traffic Yoshihide MATSUMOTO a), Hiroaki HAZEYAMA b), and Youki KADOBAYASHI

More information

1 Maintaining a Dictionary

1 Maintaining a Dictionary 15-451/651: Design & Analysis of Algorithms February 1, 2016 Lecture #7: Hashing last changed: January 29, 2016 Hashing is a great practical tool, with an interesting and subtle theory too. In addition

More information

COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from

COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from http://www.mmds.org Distance Measures For finding similar documents, we consider the Jaccard

More information

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems Arnab Bhattacharyya, Palash Dey, and David P. Woodruff Indian Institute of Science, Bangalore {arnabb,palash}@csa.iisc.ernet.in

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Announcements: Homework 6 deadline extended to April 24 th at 11:59 PM Course Evaluation Survey: Live until 4/29/2018

More information

Fundamental Algorithms

Fundamental Algorithms Chapter 5: Hash Tables, Winter 2018/19 1 Fundamental Algorithms Chapter 5: Hash Tables Jan Křetínský Winter 2018/19 Chapter 5: Hash Tables, Winter 2018/19 2 Generalised Search Problem Definition (Search

More information

Hashing Data Structures. Ananda Gunawardena

Hashing Data Structures. Ananda Gunawardena Hashing 15-121 Data Structures Ananda Gunawardena Hashing Why do we need hashing? Many applications deal with lots of data Search engines and web pages There are myriad look ups. The look ups are time

More information

Tight Bounds for Sliding Bloom Filters

Tight Bounds for Sliding Bloom Filters Tight Bounds for Sliding Bloom Filters Moni Naor Eylon Yogev November 7, 2013 Abstract A Bloom filter is a method for reducing the space (memory) required for representing a set by allowing a small error

More information

Algorithms lecture notes 1. Hashing, and Universal Hash functions

Algorithms lecture notes 1. Hashing, and Universal Hash functions Algorithms lecture notes 1 Hashing, and Universal Hash functions Algorithms lecture notes 2 Can we maintain a dictionary with O(1) per operation? Not in the deterministic sense. But in expectation, yes.

More information

Lecture: Analysis of Algorithms (CS )

Lecture: Analysis of Algorithms (CS ) Lecture: Analysis of Algorithms (CS483-001) Amarda Shehu Spring 2017 1 Outline of Today s Class 2 Choosing Hash Functions Universal Universality Theorem Constructing a Set of Universal Hash Functions Perfect

More information

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters)

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) 12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) Many streaming algorithms use random hashing functions to compress data. They basically randomly map some data items on top of each other.

More information

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 Today we ll talk about a topic that is both very old (as far as computer science

More information

Electrical & Computer Engineering University of Waterloo Canada February 6, 2007

Electrical & Computer Engineering University of Waterloo Canada February 6, 2007 Lecture 9: Lecture 9: Electrical & Computer Engineering University of Waterloo Canada February 6, 2007 Hash tables Lecture 9: Recall that a hash table consists of m slots into which we are placing items;

More information

SPACE-EFFICIENT DATA SKETCHING ALGORITHMS FOR NETWORK APPLICATIONS

SPACE-EFFICIENT DATA SKETCHING ALGORITHMS FOR NETWORK APPLICATIONS SPACE-EFFICIENT DATA SKETCHING ALGORITHMS FOR NETWORK APPLICATIONS A Thesis Presented to The Academic Faculty by Nan Hua In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in

More information

As mentioned, we will relax the conditions of our dictionary data structure. The relaxations we

As mentioned, we will relax the conditions of our dictionary data structure. The relaxations we CSE 203A: Advanced Algorithms Prof. Daniel Kane Lecture : Dictionary Data Structures and Load Balancing Lecture Date: 10/27 P Chitimireddi Recap This lecture continues the discussion of dictionary data

More information

Data Structures and Algorithm. Xiaoqing Zheng

Data Structures and Algorithm. Xiaoqing Zheng Data Structures and Algorithm Xiaoqing Zheng zhengxq@fudan.edu.cn MULTIPOP top[s] = 6 top[s] = 2 3 2 8 5 6 5 S MULTIPOP(S, x). while not STACK-EMPTY(S) and k 0 2. do POP(S) 3. k k MULTIPOP(S, 4) Analysis

More information

Identifying and Estimating Persistent Items in Data Streams

Identifying and Estimating Persistent Items in Data Streams 1 Identifying and Estimating Persistent Items in Data Streams Haipeng Dai Muhammad Shahzad Alex X. Liu Meng Li Yuankun Zhong Guihai Chen Abstract This paper addresses the fundamental problem of finding

More information

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org.

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org. Streaming - 2 Bloom Filters, Distinct Item counting, Computing moments credits:www.mmds.org http://www.mmds.org Outline More algorithms for streams: 2 Outline More algorithms for streams: (1) Filtering

More information

? 11.5 Perfect hashing. Exercises

? 11.5 Perfect hashing. Exercises 11.5 Perfect hashing 77 Exercises 11.4-1 Consider inserting the keys 10; ; 31; 4; 15; 8; 17; 88; 59 into a hash table of length m 11 using open addressing with the auxiliary hash function h 0.k/ k. Illustrate

More information

Searching, mainly via Hash tables

Searching, mainly via Hash tables Data structures and algorithms Part 11 Searching, mainly via Hash tables Petr Felkel 26.1.2007 Topics Searching Hashing Hash function Resolving collisions Hashing with chaining Open addressing Linear Probing

More information

Advanced Data Structures

Advanced Data Structures Simon Gog gog@kit.edu - Simon Gog: KIT The Research University in the Helmholtz Association www.kit.edu Predecessor data structures We want to support the following operations on a set of integers from

More information

Bloom Filter Redux. CS 270 Combinatorial Algorithms and Data Structures. UC Berkeley, Spring 2011

Bloom Filter Redux. CS 270 Combinatorial Algorithms and Data Structures. UC Berkeley, Spring 2011 Bloom Filter Redux Matthias Vallentin Gene Pang CS 270 Combinatorial Algorithms and Data Structures UC Berkeley, Spring 2011 Inspiration Our background: network security, databases We deal with massive

More information

Lecture 4 February 2nd, 2017

Lecture 4 February 2nd, 2017 CS 224: Advanced Algorithms Spring 2017 Prof. Jelani Nelson Lecture 4 February 2nd, 2017 Scribe: Rohil Prasad 1 Overview In the last lecture we covered topics in hashing, including load balancing, k-wise

More information

Application: Bucket Sort

Application: Bucket Sort 5.2.2. Application: Bucket Sort Bucket sort breaks the log) lower bound for standard comparison-based sorting, under certain assumptions on the input We want to sort a set of =2 integers chosen I+U@R from

More information

Motivation. Dictionaries. Direct Addressing. CSE 680 Prof. Roger Crawfis

Motivation. Dictionaries. Direct Addressing. CSE 680 Prof. Roger Crawfis Motivation Introduction to Algorithms Hash Tables CSE 680 Prof. Roger Crawfis Arrays provide an indirect way to access a set. Many times we need an association between two sets, or a set of keys and associated

More information

Weighted Bloom Filter

Weighted Bloom Filter Weighted Bloom Filter Jehoshua Bruck Jie Gao Anxiao (Andrew) Jiang Department of Electrical Engineering, California Institute of Technology. bruck@paradise.caltech.edu. Department of Computer Science,

More information

Lecture 2. Frequency problems

Lecture 2. Frequency problems 1 / 43 Lecture 2. Frequency problems Ricard Gavaldà MIRI Seminar on Data Streams, Spring 2015 Contents 2 / 43 1 Frequency problems in data streams 2 Approximating inner product 3 Computing frequency moments

More information

Module 1: Analyzing the Efficiency of Algorithms

Module 1: Analyzing the Efficiency of Algorithms Module 1: Analyzing the Efficiency of Algorithms Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu What is an Algorithm?

More information

Advanced Data Structures

Advanced Data Structures Simon Gog gog@kit.edu - 0 Simon Gog: KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu Dynamic Perfect Hashing What we want: O(1) lookup

More information

Computation Theory Finite Automata

Computation Theory Finite Automata Computation Theory Dept. of Computing ITT Dublin October 14, 2010 Computation Theory I 1 We would like a model that captures the general nature of computation Consider two simple problems: 2 Design a program

More information

Cryptographic Hash Functions

Cryptographic Hash Functions Cryptographic Hash Functions Çetin Kaya Koç koc@ece.orst.edu Electrical & Computer Engineering Oregon State University Corvallis, Oregon 97331 Technical Report December 9, 2002 Version 1.5 1 1 Introduction

More information

Acceptably inaccurate. Probabilistic data structures

Acceptably inaccurate. Probabilistic data structures Acceptably inaccurate Probabilistic data structures Hello Today's talk Motivation Bloom filters Count-Min Sketch HyperLogLog Motivation Tape HDD SSD Memory Tape HDD SSD Memory Speed Tape HDD SSD Memory

More information

1 Hashing. 1.1 Perfect Hashing

1 Hashing. 1.1 Perfect Hashing 1 Hashing Hashing is covered by undergraduate courses like Algo I. However, there is much more to say on this topic. Here, we focus on two selected topics: perfect hashing and cockoo hashing. In general,

More information

Hash tables. Hash tables

Hash tables. Hash tables Basic Probability Theory Two events A, B are independent if Conditional probability: Pr[A B] = Pr[A] Pr[B] Pr[A B] = Pr[A B] Pr[B] The expectation of a (discrete) random variable X is E[X ] = k k Pr[X

More information

CS246 Final Exam. March 16, :30AM - 11:30AM

CS246 Final Exam. March 16, :30AM - 11:30AM CS246 Final Exam March 16, 2016 8:30AM - 11:30AM Name : SUID : I acknowledge and accept the Stanford Honor Code. I have neither given nor received unpermitted help on this examination. (signed) Directions

More information

Title: Count-Min Sketch Name: Graham Cormode 1 Affil./Addr. Department of Computer Science, University of Warwick,

Title: Count-Min Sketch Name: Graham Cormode 1 Affil./Addr. Department of Computer Science, University of Warwick, Title: Count-Min Sketch Name: Graham Cormode 1 Affil./Addr. Department of Computer Science, University of Warwick, Coventry, UK Keywords: streaming algorithms; frequent items; approximate counting, sketch

More information

Collision. Kuan-Yu Chen ( 陳冠宇 ) TR-212, NTUST

Collision. Kuan-Yu Chen ( 陳冠宇 ) TR-212, NTUST Collision Kuan-Yu Chen ( 陳冠宇 ) 2018/12/17 @ TR-212, NTUST Review Hash table is a data structure in which keys are mapped to array positions by a hash function When two or more keys map to the same memory

More information

Multiple-Site Distributed Spatial Query Optimization using Spatial Semijoins

Multiple-Site Distributed Spatial Query Optimization using Spatial Semijoins 11 Multiple-Site Distributed Spatial Query Optimization using Spatial Semijoins Wendy OSBORN a, 1 and Saad ZAAMOUT a a Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge,

More information

Advanced Data Structures

Advanced Data Structures Simon Gog gog@kit.edu - Simon Gog: KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu Predecessor data structures We want to support

More information

Bloom Filters. filters: A survey, Internet Mathematics, vol. 1 no. 4, pp , 2004.

Bloom Filters. filters: A survey, Internet Mathematics, vol. 1 no. 4, pp , 2004. Bloo Filters References A. Broder and M. Mitzenacher, Network applications of Bloo filters: A survey, Internet Matheatics, vol. 1 no. 4, pp. 485-509, 2004. Li Fan, Pei Cao, Jussara Aleida, Andrei Broder,

More information

Data Structures. Outline. Introduction. Andres Mendez-Vazquez. December 3, Data Manipulation Examples

Data Structures. Outline. Introduction. Andres Mendez-Vazquez. December 3, Data Manipulation Examples Data Structures Introduction Andres Mendez-Vazquez December 3, 2015 1 / 53 Outline 1 What the Course is About? Data Manipulation Examples 2 What is a Good Algorithm? Sorting Example A Naive Algorithm Counting

More information

Bloom Filters and Locality-Sensitive Hashing

Bloom Filters and Locality-Sensitive Hashing Randomized Algorithms, Summer 2016 Bloom Filters and Locality-Sensitive Hashing Instructor: Thomas Kesselheim and Kurt Mehlhorn 1 Notation Lecture 4 (6 pages) When e talk about the probability of an event,

More information

Lecture 3 Sept. 4, 2014

Lecture 3 Sept. 4, 2014 CS 395T: Sublinear Algorithms Fall 2014 Prof. Eric Price Lecture 3 Sept. 4, 2014 Scribe: Zhao Song In today s lecture, we will discuss the following problems: 1. Distinct elements 2. Turnstile model 3.

More information

Cuckoo Hashing with a Stash: Alternative Analysis, Simple Hash Functions

Cuckoo Hashing with a Stash: Alternative Analysis, Simple Hash Functions 1 / 29 Cuckoo Hashing with a Stash: Alternative Analysis, Simple Hash Functions Martin Aumüller, Martin Dietzfelbinger Technische Universität Ilmenau 2 / 29 Cuckoo Hashing Maintain a dynamic dictionary

More information

DATA MINING LECTURE 6. Similarity and Distance Sketching, Locality Sensitive Hashing

DATA MINING LECTURE 6. Similarity and Distance Sketching, Locality Sensitive Hashing DATA MINING LECTURE 6 Similarity and Distance Sketching, Locality Sensitive Hashing SIMILARITY AND DISTANCE Thanks to: Tan, Steinbach, and Kumar, Introduction to Data Mining Rajaraman and Ullman, Mining

More information

Retouched Bloom Filters: Allowing Networked Applications to Trade Off Selected False Positives Against False Negatives

Retouched Bloom Filters: Allowing Networked Applications to Trade Off Selected False Positives Against False Negatives Retouched Bloom Filters: Allowing Networked Applications to Trade Off Selected False Positives Against False Negatives Benoit Donnet Univ. Catholique de Louvain Bruno Baynat Univ. Pierre et Marie Curie

More information

Polynomial multiplication and division using heap.

Polynomial multiplication and division using heap. Polynomial multiplication and division using heap. Michael Monagan and Roman Pearce Department of Mathematics, Simon Fraser University. Abstract We report on new code for sparse multivariate polynomial

More information

CS 591, Lecture 7 Data Analytics: Theory and Applications Boston University

CS 591, Lecture 7 Data Analytics: Theory and Applications Boston University CS 591, Lecture 7 Data Analytics: Theory and Applications Boston University Babis Tsourakakis February 13th, 2017 Bloom Filter Approximate membership problem Highly space-efficient randomized data structure

More information

MACFP: Maximal Approximate Consecutive Frequent Pattern Mining under Edit Distance

MACFP: Maximal Approximate Consecutive Frequent Pattern Mining under Edit Distance MACFP: Maximal Approximate Consecutive Frequent Pattern Mining under Edit Distance Jingbo Shang, Jian Peng, Jiawei Han University of Illinois, Urbana-Champaign May 6, 2016 Presented by Jingbo Shang 2 Outline

More information

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) =

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) = CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14 1 Probability First, recall a couple useful facts from last time about probability: Linearity of expectation: E(aX + by ) = ae(x)

More information

Succinct Approximate Counting of Skewed Data

Succinct Approximate Counting of Skewed Data Succinct Approximate Counting of Skewed Data David Talbot Google Inc., Mountain View, CA, USA talbot@google.com Abstract Practical data analysis relies on the ability to count observations of objects succinctly

More information

Introduction to Algorithms March 10, 2010 Massachusetts Institute of Technology Spring 2010 Professors Piotr Indyk and David Karger Quiz 1

Introduction to Algorithms March 10, 2010 Massachusetts Institute of Technology Spring 2010 Professors Piotr Indyk and David Karger Quiz 1 Introduction to Algorithms March 10, 2010 Massachusetts Institute of Technology 6.006 Spring 2010 Professors Piotr Indyk and David Karger Quiz 1 Quiz 1 Do not open this quiz booklet until directed to do

More information

Mining Data Streams. The Stream Model. The Stream Model Sliding Windows Counting 1 s

Mining Data Streams. The Stream Model. The Stream Model Sliding Windows Counting 1 s Mining Data Streams The Stream Model Sliding Windows Counting 1 s 1 The Stream Model Data enters at a rapid rate from one or more input ports. The system cannot store the entire stream. How do you make

More information

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

More information

ICS 233 Computer Architecture & Assembly Language

ICS 233 Computer Architecture & Assembly Language ICS 233 Computer Architecture & Assembly Language Assignment 6 Solution 1. Identify all of the RAW data dependencies in the following code. Which dependencies are data hazards that will be resolved by

More information

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #15: Mining Streams 2

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #15: Mining Streams 2 CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #15: Mining Streams 2 Today s Lecture More algorithms for streams: (1) Filtering a data stream: Bloom filters Select elements with property

More information