Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

Size: px
Start display at page:

Download "Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line."

Transcription

1 Line Emission Observations of spectral lines offer the possibility of determining a wealth of information about an astronomical source. A usual plan of attack is :- Identify the line. Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line. Infer information about the population of states. Determine temperature and density. The position of the lines gives information on the velocity of the emitters along the line of sight or the cosmological redshift.

2 Einstein Coefficients n E=hν 1 B 1 B 1 A 1 1 n 1 Spontaneous emission rate = Stimulated emission rate = Absorbtion rate = (NB sometimes and and ). defined so that rates are Line profile normalised so that If only radiative transitions link the two states then! #%$'& " ( $'& ) & ( &*$ ) $ ( $+&,

3 X W ; F F F 4 F? Finding -/.% :7 54 are properties of the emitters, so if we can determine them in any specific case then we can apply them in any general case. Consider the case where the emitters and the radiation are in thermal equilibrium ; <>=? 7 =A@CB D (Planck function). Also occupancy of the two states given by Boltzmann function E 4 E 5? ; <=? S W*V S V+W%X 5HG MONPRQSTB D U%V+W S V+W V G DK ? ; MONA`? a [Z =]\ ^ V G DK. So if we can find one Einstein coefficient then we can calculate the other two. Can use Fermi s Golden Rule to find 7 54.

4 i k m i k k k l Radiative transfer: b_c and d c e The equation for radiative transfer is e q i fhgi fj k l m iygnipo, the spontaneous emission coefficient is the energy emitted per time per volume per solid angle per unit frequency. e m qri stusvxwzy{r ~} s9{r ƒ z s9{ ˆŠ ƒ }Œ tuwƒ s9{nž vxs> st y k cy šƒ qri œ cž is the absobtion coefficient and includes the effect of stimulated emission. It is the fractional loss of intensity per unit length. fhgi fj k s]t svÿwƒy{ ˆ~ ƒ } t wƒ s {nžcvÿsn st y{r z ƒ u s9{r ~} s k cy šƒ œ cž _ gni gi ž fhg i g i fj { c œ cž+ _ šz l _ œ cž+ _ ª «c l _

5 Ö Ú µ ² ½ µ µ ³ Excitation Temperature Define the excitation temperature, for the two levels through ± ² ±_³ µ ³/ º¹L» ¼O½¾Y hà %Á  If the emitters are in local thermodynamic equilibrium then Á Ã. The level is said to be thermalised. If not in thermal equilibrium then in general Ä. The ratio of how much stimulated emission there is compared to absorbtion is Å~Æ~Ç È É ÊŒË ÆÍÌnÎ ÌÈ Ç ÅxÅ~Ç ÏƒÐ Ë ÑÅ~ÏƒÒŸÑ Æ~Ç ÏƒÐ ± ² ±_³ ² Ó Ô¹L» ¼O½¾Y Õ Á  Stimulated emission is very important at radio frequencies where ¼O½¾Y Õ Ä Ä so that ØÙ Ã ¹½  ±_³[Û ²ÜªÝ Ü Þ ß ² ³ à á ² ¼O½ Õ Á

6 â ë ê ì ì è Collisions n E=hν 1 C 1 C 1 1 n 1 â Atoms can become excited or de-excited though collisions. â The rate of collisional excitation is ãåäxã æ>ç äè. (ã æ is the density of colliders). â The rate of collisional de-excitation is ãºè ã æçéè ä. â Consider a system where the particles are in thermal equilibrium and where radiative transitions are negligable. ç äè çéè ä ã_ä[ç äè ê ã è>çéè ä äîí ïð ñlò óoôõyö _ø ù ç äè and ç è ä are properties of the particles so the above is always true. â The ç s can be related to a collisional cross-section and calculated.

7 ú ú ú Critical Density for Collisional De-excitation ú Assume ûnü is low so absorbtion and stimulated emission are negligable. ý þ ÿ þ þ þ þ ÿ ú Substituting for and gives þ þ "!$#&%(' ) * +-, +/. þ is the critical density for collisional de-excitation. þ ÿ 7 7 þ10 8 collisional + de-excitation much faster than spontaneous emission; + approaches its equilibrium value and the line is thermalised. ú þ ÿ 9 9 þ108 spontaneous emission much faster than collisional de-excitation; each time a collision excites ý þ: the 9 high 9 energy state it decays through emitting a photon equilibrium value sub-thermal excitation. If we relax the assumption that ûrü is low the effect is to modify þ10 8 þ10<; 3 6 = 5 6.

8 Example: Cooling rate of gaseous nebulae > Cooling occurs when collisions excite gas into high energy state which then radiates a photon; this leaves the nebula and the cloud cools. > For most collisions which excites a gas particle are de-excited by collisions too. Number of excited gas particles B? C rate of emission B? C rate of cooling B?. > For low density? D D? A most collisions which excites a gas particle results in emission of a photon (because collisional de-excitation negligable). Rate of collisions B?:E C rate of cooling B? E. Example: CO F G H I J rotational line > R S K L M N O P For the CO rotational line at 115 GHz, EQ L M OUTWVYXT Q[Z \ EQ L M OT Q]_^ ` XT Q. C? A L R O/Oba ^ T ` > K L Below this density the number of CO molecules in the M level is lower than one would expect if the system was in C thermal equilibrium weak emission the line is subthermally excited. So generally only see CO from regions where O/O a ^ T `

9 o k d Line Shape c Spectral lines always have a width 3 contributions to this width. c Natural line shape:- dfeg hi gives the mean occupation time in the upper state; Heisenberg s uncertainty relationship gives the corresponding energy width of the line. jkml"nyo p1q shape. k6l t l$u[n r s h<v p hqxw Lorentzian line c Pressure broadening:- collisions while emitting disrupt the radiation train y line width. Lorentzian line shape. c Doppler broadening:- velocity of emitter along the line of sight results in a Doppler shift. Many emitters with Maxwellian random velocities result in Gaussian line shape, width dependant on temperature or bulk motion of the gas. c In most cases the natural line shape and pressure broadening can be ignored and we just consider Doppler broadening. c The shape will also depend on the optical depth. The brightness temperature z {~}6 is a function of frequency given by z { }6 z t ƒ k(t nˆn

10

11 Calculating fš Œ Consider an emitter moving along the line of sight at speed Ž. The emitted light at frequency / in the emitteds rest frame is Doppler shifted to freqency given by $ Ž Ž Œ If the velocity distribution is Maxwellian then the velocity distribution is given by Žfš Ž œf 1žŸ Ž œ žÿ Ž Œ Equating š and Žfš Ž$š gives š œf 1žŸ Œ Note that since ª«includes a š term, then the optical $ š œ žÿ depth of a line is also proportional to š.

12 Figure 1: Low optical depth cloud Figure : High optical depth cloud

13 Equivalent Width The actual profile of an absobtion line may be difficult to measure precisely. Measure the area in the line and calculate the equivalent width,. ± ²³ ²µ ˆ ± ¹º»1 ±b¼ ³¾½ˆ½ Can then estimate À I 0 I I ν Á Ä Ä Ä Ä Ä Ä Ä Ä Ä Å Å Å Å Å Å Å Å Å Ä Ä Ä Ä Ä Ä Ä Ä Ä Ä Ä Ä Ä Ä Å Å Å Å Å Å Å Å Å Å Å Å Å Å Ä Ä Ä Ä Ä Å Å Å Å Å Ä Ä Ä Ä Ä Ä Å Å Å Å Å Å along the line of sight. Equal Areas W                                         à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à ν

14 Æ à Example: H 1 cm line Æ Magnetic ÇÉÈ Ê dipole transition between nuclear hyperfine levels Ë F = 0, 1; Degeneracies 1,3 ÌÎÍ Ï Ð ÑÓÒÕÔ&Ö ÍÏ Ð ÖÒÙØ/Ú Û Ñ ÜÝ Í Þbß Ý Í à GHz; occu- á Ñ Ü¾â pancy time years. Æ Ñ Ü Í Ç ã Ý ä For a cloud at temperature 100 K and density the time between H atom collisions is 100 years levels are set å:æçá Ñ Übè Ý ä à by collisions. collisional de-excitation much faster than spontaneous emission and the line is thermalised. Æ The spin temperature, é ê Ð ë Ì ÍÏ[ì$íî Ð ÜïÒÙÜñð K. å Í å Ï Ð òóõôö ø ë Ì ì$í î é êµù Ð ò à å Ï Ð å Ô Æ An optically thick line will give an estimate of é ê. Æ An optically thin line will give an estimate of ú åûü.

15 Summary ý The equation of radiative transfer for emission lines can be written in terms of the transitions Einstein coefficients þ ÿ, ÿ and ÿ. ý Fermi s Golden Rule can be used to find ÿ ; the other two coefficients can be calculated from this. ý Collisions can also excite/de-excite ÿ atomic transitions with ÿ rates governed by and. ý There is a critical density above which the rate of cooling of a gas varies linearly with density and below which it varies quadratically. ý Emission line widths are determined by their natural line shapes (uncertainty principle), pressure broadening and Doppler broadening.

The incident energy per unit area on the electron is given by the Poynting vector, '

The incident energy per unit area on the electron is given by the Poynting vector, ' ' ' # Thompson Scattering Consider a beam of radiation moving in the direction, and being scattered by an electron through an angle in the plane. The electron experiences the following electric fields

More information

Framework for functional tree simulation applied to 'golden delicious' apple trees

Framework for functional tree simulation applied to 'golden delicious' apple trees Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Spring 2015 Framework for functional tree simulation applied to 'golden delicious' apple trees Marek Fiser Purdue University

More information

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator E. D. Held eheld@cc.usu.edu Utah State University General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator

More information

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

Optimal Control of PDEs

Optimal Control of PDEs Optimal Control of PDEs Suzanne Lenhart University of Tennessee, Knoville Department of Mathematics Lecture1 p.1/36 Outline 1. Idea of diffusion PDE 2. Motivating Eample 3. Big picture of optimal control

More information

Lecture 2 Line Radiative Transfer for the ISM

Lecture 2 Line Radiative Transfer for the ISM Lecture 2 Line Radiative Transfer for the ISM Absorption lines in the optical & UV Equation of transfer Absorption & emission coefficients Line broadening Equivalent width and curve of growth Observations

More information

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer 1. Atomic absorption lines 2. Application of radiative transfer to absorption & emission 3. Line broadening & curve of growth 4. Optical/UV

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

 #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y " #$ +. 0. + 4 6 4 : + 4 ; 6 4 < = =@ = = =@ = =@ " #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y h

More information

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

Some emission processes are intrinsically polarised e.g. synchrotron radiation. Polarisation Some emission processes are intrinsically polarised e.g. synchrotron radiation. B e linearly polarised emission circularly polarised emission Scattering processes can either increase or decrease

More information

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for the quality of its teaching and research. Its mission

More information

Spontaneous Emission, Stimulated Emission, and Absorption

Spontaneous Emission, Stimulated Emission, and Absorption Chapter Six Spontaneous Emission, Stimulated Emission, and Absorption In this chapter, we review the general principles governing absorption and emission of radiation by absorbers with quantized energy

More information

Damping Ring Requirements for 3 TeV CLIC

Damping Ring Requirements for 3 TeV CLIC Damping Ring Requirements for 3 TeV CLIC Quantity Symbol Value Bunch population N b 9 4.1 10 No. of bunches/train k bt 154 Repetition frequency f r 100 Hz Horizontal emittance γε x 7 4.5 10 m Vertical

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^ ! #" $%! & ' ( ) ) (, -. / ( 0 1#2 ' ( ) ) (, -3 / 0 4, 5 6/ 6 7, 6 8 9/ 5 :/ 5 ;=? @ A BDC EF G H I EJ KL M @C N G H I OPQ ;=R F L EI E G H A S T U S V@C N G H IDW G Q G XYU Z A [ H R C \ G ] ^ _ `

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Examination paper for TFY4240 Electromagnetic theory

Examination paper for TFY4240 Electromagnetic theory Department of Physics Examination paper for TFY4240 Electromagnetic theory Academic contact during examination: Associate Professor John Ove Fjærestad Phone: 97 94 00 36 Examination date: 16 December 2015

More information

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS International Workshop Quarkonium Working Group QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS ALBERTO POLLERI TU München and ECT* Trento CERN - November 2002 Outline What do we know for sure?

More information

An Introduction to Optimal Control Applied to Disease Models

An Introduction to Optimal Control Applied to Disease Models An Introduction to Optimal Control Applied to Disease Models Suzanne Lenhart University of Tennessee, Knoxville Departments of Mathematics Lecture1 p.1/37 Example Number of cancer cells at time (exponential

More information

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh. 1 From To Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh. The Director General, Town & Country Planning Department, Haryana, Chandigarh. Memo No. Misc-2339

More information

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS First the X, then the AR, finally the MA Jan C. Willems, K.U. Leuven Workshop on Observation and Estimation Ben Gurion University, July 3, 2004 p./2 Joint

More information

CHAPTER 22. Astrophysical Gases

CHAPTER 22. Astrophysical Gases CHAPTER 22 Astrophysical Gases Most of the baryonic matter in the Universe is in a gaseous state, made up of 75% Hydrogen (H), 25% Helium (He) and only small amounts of other elements (called metals ).

More information

Vectors. Teaching Learning Point. Ç, where OP. l m n

Vectors. Teaching Learning Point. Ç, where OP. l m n Vectors 9 Teaching Learning Point l A quantity that has magnitude as well as direction is called is called a vector. l A directed line segment represents a vector and is denoted y AB Å or a Æ. l Position

More information

Constructive Decision Theory

Constructive Decision Theory Constructive Decision Theory Joe Halpern Cornell University Joint work with Larry Blume and David Easley Economics Cornell Constructive Decision Theory p. 1/2 Savage s Approach Savage s approach to decision

More information

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u Some fundamentals Statistical mechanics We have seen that the collision timescale for gas in this room is very small relative to radiative timesscales such as spontaneous emission. The frequent collisions

More information

Plasma Spectroscopy Inferences from Line Emission

Plasma Spectroscopy Inferences from Line Emission Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often

More information

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications G G " # $ % & " ' ( ) $ * " # $ % & " ( + ) $ * " # C % " ' ( ) $ * C " # C % " ( + ) $ * C D ; E @ F @ 9 = H I J ; @ = : @ A > B ; : K 9 L 9 M N O D K P D N O Q P D R S > T ; U V > = : W X Y J > E ; Z

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Absorption Line Physics

Absorption Line Physics Topics: 1. Absorption line shapes 2. Absorption line strength 3. Line-by-line models Absorption Line Physics Week 4: September 17-21 Reading: Liou 1.3, 4.2.3; Thomas 3.3,4.4,4.5 Absorption Line Shapes

More information

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy PHY 688, Lecture 5 Stanimir Metchev Outline Review of previous lecture Stellar atmospheres spectral lines line profiles; broadening

More information

1 Radiative transfer etc

1 Radiative transfer etc Radiative transfer etc Last time we derived the transfer equation dτ ν = S ν I v where I ν is the intensity, S ν = j ν /α ν is the source function and τ ν = R α ν dl is the optical depth. The formal solution

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

Rarefied Gas FlowThroughan Orifice at Finite Pressure Ratio

Rarefied Gas FlowThroughan Orifice at Finite Pressure Ratio Rarefied Gas FlowThroughan Orifice at Finite Pressure Ratio Felix Sharipov Departamento de Física, Universidade Federal do Paraná Caixa Postal 90, 85-990 Curitiba, Brazil Email: sharipov@fisica.ufpr.br;

More information

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 REDCLIFF MUNICIPAL PLANNING COMMISSION FOR COMMENT/DISCUSSION DATE: TOPIC: April 27 th, 2018 Bylaw 1860/2018, proposed amendments to the Land Use Bylaw regarding cannabis

More information

Instructor: Juhan Frank. Identify the correct answers by placing a check between the brackets ë ë. Check ALL

Instructor: Juhan Frank. Identify the correct answers by placing a check between the brackets ë ë. Check ALL Name:... ASTRONOMY 1102 í 1 Instructor: Juhan Frank Second Test ífall 1999í Friday October 15 Part I í Multiple Choice questions è3 ptsèquestion; total = 60 ptsè Identify the correct answers by placing

More information

Towards a numerical solution of the "1/2 vs. 3/2" puzzle

Towards a numerical solution of the 1/2 vs. 3/2 puzzle Towards a numerical solution of the /2 s 3/2 puzzle Benoît Blossier DESY Zeuthen Motiations Hea Quark Effectie Theor Theoretical expectations Experimental measurements umerical computation of Conclusion

More information

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in Thermal Equilibrium in Nebulae 1 For an ionized nebula under steady conditions, heating and cooling processes that in isolation would change the thermal energy content of the gas are in balance, such that

More information

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space.

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space. Spectral Resolution Spectral resolution is a measure of the ability to separate nearby features in wavelength space. R, minimum wavelength separation of two resolved features. Delta lambda often set to

More information

Theory of optically thin emission line spectroscopy

Theory of optically thin emission line spectroscopy Theory of optically thin emission line spectroscopy 1 Important definitions In general the spectrum of a source consists of a continuum and several line components. Processes which give raise to the continuous

More information

Also: Question: what is the nature of radiation emitted by an object in equilibrium

Also: Question: what is the nature of radiation emitted by an object in equilibrium They already knew: Total power/surface area Also: But what is B ν (T)? Question: what is the nature of radiation emitted by an object in equilibrium Body in thermodynamic equilibrium: i.e. in chemical,

More information

Redoing the Foundations of Decision Theory

Redoing the Foundations of Decision Theory Redoing the Foundations of Decision Theory Joe Halpern Cornell University Joint work with Larry Blume and David Easley Economics Cornell Redoing the Foundations of Decision Theory p. 1/21 Decision Making:

More information

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE ); !! "# $ % & '( ) # * +, - # $ "# $ % & '( ) # *.! / 0 "# "1 "& # 2 3 & 4 4 "# $ % & '( ) # *!! "# $ % & # * 1 3 - "# 1 * #! ) & 3 / 5 6 7 8 9 ALTER ; ? @ A B C D E F G H I A = @ A J > K L ; ?

More information

Matrices and Determinants

Matrices and Determinants Matrices and Determinants Teaching-Learning Points A matri is an ordered rectanguar arra (arrangement) of numbers and encosed b capita bracket [ ]. These numbers are caed eements of the matri. Matri is

More information

Astro 201 Radiative Processes Problem Set 6. Due in class.

Astro 201 Radiative Processes Problem Set 6. Due in class. Astro 201 Radiative Processes Problem Set 6 Due in class. Readings: Hand-outs from Osterbrock; Rybicki & Lightman 9.5; however much you like of Mihalas 108 114, 119 127, 128 137 (even skimming Mihalas

More information

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati Complex Analysis PH 503 Course TM Charudatt Kadolkar Indian Institute of Technology, Guwahati ii Copyright 2000 by Charudatt Kadolkar Preface Preface Head These notes were prepared during the lectures

More information

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out. Next, consider an optically thick source: Already shown that in the interior, radiation will be described by the Planck function. Radiation escaping from the source will be modified because the temperature

More information

A Functional Quantum Programming Language

A Functional Quantum Programming Language A Functional Quantum Programming Language Thorsten Altenkirch University of Nottingham based on joint work with Jonathan Grattage and discussions with V.P. Belavkin supported by EPSRC grant GR/S30818/01

More information

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University 3 ' 4 2 - '. %! A?@ @ 3 +.?; = ; %,9 ' ü / :, %4 ' 9 8 +! (76 5 +. *". 34 %, /, /10 *$+,,' -+!. *$+ () ', ' & "$# Plasma diagnostics and abundance determinations for planetary nebulae current status

More information

Computer Systems Organization. Plan for Today

Computer Systems Organization. Plan for Today Computer Systems Organization "!#%$&(' *),+-/. 021 345$&7634 098 :;!/.:?$&4@344A$&76 Plan for Today 1 ! ILP Limit Study #"%$'&)('*+-,.&/ 0 1+-*2 435&)$'768&9,:+8&.* &:>@7ABAC&ED(

More information

Observations 3: Data Assimilation of Water Vapour Observations at NWP Centres

Observations 3: Data Assimilation of Water Vapour Observations at NWP Centres Observations 3: Data Assimilation of Water Vapour Observations at NWP Centres OUTLINE: Data Assimilation A simple analogy: data fitting 4D-Var The observation operator : RT modelling Review of Radiative

More information

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure Product Overview XI025100V036NM1M Input Voltage (Vac) Output Power (W) Output Voltage Range (V) Output urrent (A) Efficiency@ Max Load and 70 ase Max ase Temp. ( ) Input urrent (Arms) Max. Input Power

More information

Planning for Reactive Behaviors in Hide and Seek

Planning for Reactive Behaviors in Hide and Seek University of Pennsylvania ScholarlyCommons Center for Human Modeling and Simulation Department of Computer & Information Science May 1995 Planning for Reactive Behaviors in Hide and Seek Michael B. Moore

More information

Lecture 7: Molecular Transitions (2) Line radiation from molecular clouds to derive physical parameters

Lecture 7: Molecular Transitions (2) Line radiation from molecular clouds to derive physical parameters Lecture 7: Molecular Transitions (2) Line radiation from molecular clouds to derive physical parameters H 2 CO (NH 3 ) See sections 5.1-5.3.1 and 6.1 of Stahler & Palla Column density Volume density (Gas

More information

First-principles calculations of insulators in a. finite electric field

First-principles calculations of insulators in a. finite electric field Université de Liège First-principles calculations of insulators in a finite electric field M. Veithen, I. Souza, J. Íñiguez, D. Vanderbilt, K. M. Rabe and h. Ghosez Supported by: FNRS Belgium, VW Stiftung,

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents:

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents: Radiation Processes Black Body Radiation Heino Falcke Radboud Universiteit Nijmegen Contents: Planck Spectrum Kirchoff & Stefan-Boltzmann Rayleigh-Jeans & Wien Einstein Coefficients Literature: Based heavily

More information

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :) â SpanÖ?ß@ œ Ö =? > @ À =ß> real numbers : SpanÖ?ß@ œ Ö: =? > @ À =ß> real numbers œ the previous plane with each point translated by : Ðfor example, is translated to :) á In general: Adding a vector :

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Teaching philosophy. learn it, know it! Learn it 5-times and you know it Read (& simple question) Lecture Problem set

Teaching philosophy. learn it, know it! Learn it 5-times and you know it Read (& simple question) Lecture Problem set Learn it 5-times and you know it Read (& simple question) Lecture Problem set Teaching philosophy Review/work-problems for Mid-term exam Review/re-work for Final exam Hand in homework every Monday (1 per

More information

CHAPTER 27. Continuum Emission Mechanisms

CHAPTER 27. Continuum Emission Mechanisms CHAPTER 27 Continuum Emission Mechanisms Continuum radiation is any radiation that forms a continuous spectrum and is not restricted to a narrow frequency range. In what follows we briefly describe five

More information

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones OPTI 5, Spring 206 Problem Set 9 Prof. R. J. Jones Due Friday, April 29. Absorption and thermal distributions in a 2-level system Consider a collection of identical two-level atoms in thermal equilibrium.

More information

6. Convert 5021 centimeters to kilometers. 7. How many seconds are in a leap year? 8. Convert the speed 5.30 m/s to km/h.

6. Convert 5021 centimeters to kilometers. 7. How many seconds are in a leap year? 8. Convert the speed 5.30 m/s to km/h. % " ' ) 2 3 1 2 3 + + 4 2 3 L L CHAPTER A Physics Toolkit Practice Problems Mathematics and Physics pages page 5 For each problem, give the rewritten equation you would use and the answer. 1. A lightbulb

More information

Outline. Today we will learn what is thermal radiation

Outline. Today we will learn what is thermal radiation Thermal Radiation & Outline Today we will learn what is thermal radiation Laws Laws of of themodynamics themodynamics Radiative Radiative Diffusion Diffusion Equation Equation Thermal Thermal Equilibrium

More information

SOLAR MORTEC INDUSTRIES.

SOLAR MORTEC INDUSTRIES. SOLAR MORTEC INDUSTRIES www.mortecindustries.com.au Wind Regions Region A Callytharra Springs Gascoyne Junction Green Head Kununurra Lord Howe Island Morawa Toowoomba Wittanoom Bourke Region B Adelaide

More information

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc * Note: Although every effort ws tken to get complete nd ccurte tble, the uhtor cn not be held responsible for ny errors. Vrious sources hd to be consulted nd MIF hd to be exmined to get s much informtion

More information

Atomic Transitions II & Molecular Structure

Atomic Transitions II & Molecular Structure Atomic Transitions II & Molecular Structure Atomic Transitions II Transition Probability Dipole Approximation Line Broadening Transition Probability: The Hamiltonian To calculate explicitly the transition

More information

4.3 Laplace Transform in Linear System Analysis

4.3 Laplace Transform in Linear System Analysis 4.3 Laplace Transform in Linear System Analysis The main goal in analysis of any dynamic system is to find its response to a given input. The system response in general has two components: zero-state response

More information

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following:

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following: Dear Policyholder, Per your recent request, enclosed you will find the following forms: 1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the

More information

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma CORRECTION NOTICE Nat. Med. 0, 87 9 (014) Pharmacoogica and genomic profiing identifies NF-κB targeted treatment strategies for mante ce ymphoma Rami Raha, Mareie Fric, Rodrigo Romero, Joshua M Korn, Robert

More information

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian... Vector analysis Abstract These notes present some background material on vector analysis. Except for the material related to proving vector identities (including Einstein s summation convention and the

More information

Cooling Neutron Stars. What we actually see.

Cooling Neutron Stars. What we actually see. Cooling Neutron Stars What we actually see. The Equilibrium We discussed the equilibrium in neutron star cores through this reaction (direct Urca). nëp + e à + ö e ö n = ö p + ö e + ö öe Does the reaction

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

3. Stellar Atmospheres: Opacities

3. Stellar Atmospheres: Opacities 3. Stellar Atmospheres: Opacities 3.1. Continuum opacity The removal of energy from a beam of photons as it passes through matter is governed by o line absorption (bound-bound) o photoelectric absorption

More information

Atomic and molecular physics Revision lecture

Atomic and molecular physics Revision lecture Atomic and molecular physics Revision lecture Answer all questions Angular momentum J`2 ` J z j,m = j j+1 j,m j,m =m j,m Allowed values of mgo from j to +jin integer steps If there is no external field,

More information

New method for solving nonlinear sum of ratios problem based on simplicial bisection

New method for solving nonlinear sum of ratios problem based on simplicial bisection V Ù â ð f 33 3 Vol33, No3 2013 3 Systems Engineering Theory & Practice Mar, 2013 : 1000-6788(2013)03-0742-06 : O2112!"#$%&')(*)+),-))/0)1)23)45 : A 687:9 1, ;:= 2 (1?@ACBEDCFHCFEIJKLCFFM, NCO 453007;

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

New BaBar Results on Rare Leptonic B Decays

New BaBar Results on Rare Leptonic B Decays New BaBar Results on Rare Leptonic B Decays Valerie Halyo Stanford Linear Accelerator Center (SLAC) FPCP 22 valerieh@slac.stanford.edu 1 Table of Contents Motivation to look for and Analysis Strategy Measurement

More information

Testing SUSY Dark Matter

Testing SUSY Dark Matter Testing SUSY Dark Matter Wi de Boer, Markus Horn, Christian Sander Institut für Experientelle Kernphysik Universität Karlsruhe Wi.de.Boer@cern.ch http://hoe.cern.ch/ deboerw SPACE Part Elba, May 7, CMSSM

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

The Fourier series are applicable to periodic signals. They were discovered by the

The Fourier series are applicable to periodic signals. They were discovered by the 3.1 Fourier Series The Fourier series are applicable to periodic signals. They were discovered by the famous French mathematician Joseph Fourier in 1807. By using the Fourier series, a periodic signal

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004 Queues Stack Modules and Abstact Data Types CS2023 Wnte 2004 Outcomes: Queues Stack Modules and Abstact Data Types C fo Java Pogammes Chapte 11 (11.5) and C Pogammng - a Moden Appoach Chapte 19 Afte the

More information

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7 Lecture 7 Chapter 3 Electromagnetic Theory, Photons. and Light Sources of light Emission of light by atoms The electromagnetic spectrum see supplementary material posted on the course website Electric

More information

Synchronizing Automata Preserving a Chain of Partial Orders

Synchronizing Automata Preserving a Chain of Partial Orders Synchronizing Automata Preserving a Chain of Partial Orders M. V. Volkov Ural State University, Ekaterinburg, Russia CIAA 2007, Prague, Finland, 16.07.07 p.1/25 Synchronizing automata We consider DFA:.

More information

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters A Beamforming Method for Blind Calibration of Time-nterleaved A/D Converters Bernard C. Levy University of California, Davis Joint wor with Steve Huang September 30, 200 Outline 1 Motivation Problem Formulation

More information

Problem 1. Hyperfine Emission from Neutral Hydrogen

Problem 1. Hyperfine Emission from Neutral Hydrogen Ay 201 Radiative Processes Problem Set 4 Solutions Linda Strubbe and Eugene Chiang October 2, 2003 Problem 1. Hyperfine Emission from Neutral Hydrogen This problem is an exercise in learning more astronomy

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

Beta and gamma decays

Beta and gamma decays Beta and gamma decays April 9, 2002 Simple Fermi theory of beta decay ² Beta decay is one of the most easily found kinds of radioactivity. As we have seen, this result of the weak interaction leads to

More information

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation register allocation instruction selection Code Low-level intermediate Representation Back-end Assembly array references converted into low level operations, loops converted to control flow Middle2 Low-level

More information

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS Q J j,. Y j, q.. Q J & j,. & x x. Q x q. ø. 2019 :. q - j Q J & 11 Y j,.. j,, q j q. : 10 x. 3 x - 1..,,. 1-10 ( ). / 2-10. : 02-06.19-12.06.19 23.06.19-03.07.19 30.06.19-10.07.19 07.07.19-17.07.19 14.07.19-24.07.19

More information

Glasgow eprints Service

Glasgow eprints Service Kalna, K. and Asenov, A. (1) Multiple delta doping in aggressively scaled PHEMTs. In, Ryssel, H. and Wachutka, G. and Grunbacher, H., Eds. Solid-State Device Research Conference, 11-13 September 1, pages

More information

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 1. (a) Suppose you want to use a lens focus a Gaussian laser beam of wavelength λ in order to obtain a beam waist radius w

More information

TELEMATICS LINK LEADS

TELEMATICS LINK LEADS EEAICS I EADS UI CD PHOE VOICE AV PREIU I EADS REQ E E A + A + I A + I E B + E + I B + E + I B + E + H B + I D + UI CD PHOE VOICE AV PREIU I EADS REQ D + D + D + I C + C + C + C + I G G + I G + I G + H

More information