Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)

Size: px
Start display at page:

Download "Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)"

Transcription

1 Aswer: (A); (C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 0(A); (A); (C); 3(C). A two loop positio cotrol system is show below R(s) Y(s) + + s(s +) - - s The gai of the Tacho-geerator iflueces maily the (A) Peak overshoot (B) Natural frequecy of oscillatio (C) Phase shift of the closed loop trasfer fuctio at very low frequecies (ω 0) (D) Phase shift of the closed loop trasfer fuctio at very high frequecies (ω ) Aswer: (A) Y s R s ss s s s ss s s s s s s s s ss s s rad s

2 Peak overshoot MP e R(s) u Y(s) + + s(s +) - - s Y s ss s s s U s s s s s s ta 0 So, will oly affect Peak overshoot M P

3 . A torque-speed characteristics of a iductio motor is show below. A & B are two operatig poits of the machie. Torque T T m T Load T FL A A A Maximum torque B Stable regio B B Ustable regio T st O s=0 (N=N s ) s=s m s s= (N=0) Slip a) At A machie ca be operated i Ope loop oly & At B machie ca be operated i Closed loop oly. b) At B machie ca be operated i Ope loop oly & At A machie ca be operated i Closed loop oly. c) At A machie ca be operated i Ope loop/closed loop & At B machie ca be operated i Closed loop oly. d) At B machie ca be operated i Ope loop/closed loop & At A machie ca be operated i Closed loop oly. Aswer: (C) If there is a perturbatio ad operatig poit moves from A to A it will agai come back to A as it is a stable regio. So at A machie ca be operated i Ope loop/closed loop. If there is a perturbatio ad operatig poit moves from A to A it will agai come back to A as it is a stable regio. So at A machie ca be operated i Ope loop/closed loop. If there is a perturbatio ad operatig poit moves from B to B it will ot come back to B as it is a ustable regio. So at B machie ca be operated i Closed loop oly. If there is a perturbatio ad operatig poit moves from B to B it will ot come back to B as it is a ustable regio. So at B machie ca be operated i Closed loop oly.

4 3. The trasfer fuctio of a liear time ivariat system is give as G s s 3s The steady state value of the output of the system for a uit impulse iput applied at time istat t= will be (A) 0 (B) 0.5 (C) (D) Aswer: (A) R(s) G(s) C(s) GsRs Rs C s Steady state value, s lim 0 sc s s lim 0 sg s 0

5 4. The block diagram of a closed loop cotrol system is give by figure. The values of ad P such that the system has a dampig ratio of 0.7 ad a u-damped atural frequecy ω of 5 rad/sec, are respectively equal to R(s) + - s(s + ) C(s) +sp (A) 0 ad 0.3 (B) 0 ad 0. (C) 5 ad 0.3 (D) 5 ad 0. Aswer: (D) C s R s s s s s sp s s sp s P s Give, 5rad sec 0.7, P 5, P 0.

6 5. Whe the system show i figure (a) below is subjected to a uit-step iput, the system output respods as show i figure (b). Determie the values of ad T from the respose curve. (Ogata) R(s) + - s(ts +) C(s) (a) c(t) (b) t a) T=.09, =5 b) T=.09, =.4 c) T=7.07, =.4 d) T=.4, =.09 Aswer: (B) C s R s sts sts Ts s s T s T T

7 T T T T T T T Maximum overshoot, MP e Peak time, t P Give, P 0.54 t 3 P T.09,.4

8 6. I The system show i figure below has. Iput is uit-step. To get the steady state error zero. What should be the simplest cotroller (C(s))? r + C(s) G(s) y - a) Proportioal cotroller b) PI Cotroller c) PID Cotroller Aswer: (A) Plat has a itegrator, so proportioal cotroller ca also make steady state error zero.

9 7. I The system show i figure below has the steady state error zero. C(s) should be. Iput is uit-step. To get r + C(s) G(s) y - a) Proportioal cotroller b) PD Cotroller c) Proportioal cotroller with maual bias Aswer: (C)

10 8. I The system show i figure below has. Iput is uit-step. To reduce peak overshoot which term of PID ( ) should be chaged? a) b) c) & Aswer: (C) : Peak overshoot will icrease : Peak overshoot will icrease : Peak overshoot will decrease : Peak overshoot will decrease

11 9. The block diagram of a P-I cotroller is give by figure show below. How much time output of the cotroller ( u ) will take to reach the value 0. 0 e s + u + a) 4.5 sec b) 6 sec c) 0 sec d).66 sec Aswer: (A) 4, T 3 P i u.5 P P P T i.5t i T i t.5p 0,.5Ti 4.5sec

12 0. Give a cotiuous time PID cotroller with p=3, τ i = 5 mi, ad τ d = mi. Determie the parameters of the correspodig discrete differece equatio usig velocity algorithm. Assume samplig time = 30 secs. u k q e k qe k q e k 0 a) q 0 =9, q =-4.7, q =6 b) q 0 =6, q =-4.7, q =6 c) q 0 =9, q =-7, q =6 d) q 0 =-9, q =+4.7, q =6 Aswer: (A) k T0 d uk ( ) p ek ( ) ei ( ) ek ( ) ek ( ) i i0 T0 uk ( ) uk ( ) uk ( ) T p e k e k e k e k e k e k i T0 0 d ( ) ( ) ( ) ( ) ( ) ( ) qek ( ) qek ( ) qek ( ) 0

13 . Cosider the feedback system show below which is subjected to a uit step iput. The system is stable ad has followig parameters p=4, ki= 0, ω=500 ad ξ=. 07. The steady state value of Z is( Gate) i s Z p + + s + s+ (A) (B) 0.5 (C) 0. (D) 0 Aswer: (A) As PI cotroller is preset steady state error will be zero. So, output = iput.

14 . Fid the steady state error for the system show i figure below for step chages i d? (For, r=0, =) d r + e + + s(s +) a) b) c) 0.5 d).5 Aswer: (C) e s d s ss s s s s S.S.E, d s s lim 0 s ses 0.5

15 3. The error iput to a proportioal plus derivative (PD) ad proportioal plus itegral (PI) cotroller is show as i Figure below. Assumig the cotroller output at t = 0 is zero, Match the PD ad PI the cotroller s output for 0 t 6. (p=, i=, kd=) Error Time a) Output of PD Cotroller: A; Output of PI Cotroller: C b) Output of PD Cotroller: C; Output of PI Cotroller: B c) Output of PD Cotroller: A; Output of PI Cotroller: B d) Output of PD Cotroller: B; Output of PI Cotroller: C Aswer: (C)

Lab(8) controller design using root locus

Lab(8) controller design using root locus Lab(8) cotroller desig usig root locus I this lab we will lear how to desig a cotroller usig root locus but before this we eed to aswer the followig questios: What is root locus? What is the purpose of

More information

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter Time Respose & Frequecy Respose d -Order Dyamic System -Pole, Low-Pass, Active Filter R 4 R 7 C 5 e i R 1 C R 3 - + R 6 - + e out Assigmet: Perform a Complete Dyamic System Ivestigatio of the Two-Pole,

More information

EE 4343 Lab#4 PID Control Design of Rigid Bodies

EE 4343 Lab#4 PID Control Design of Rigid Bodies EE 44 Lab#4 PID Cotrol Desig of Rigid Bodies Prepared by: Stacy Caso E-mail: scaso@arri.uta.edu Updated: July 9, 1999 This lab demostrates some key cocepts associated with proportioal plus derivative (PD

More information

Dynamic Response of Linear Systems

Dynamic Response of Linear Systems Dyamic Respose of Liear Systems Liear System Respose Superpositio Priciple Resposes to Specific Iputs Dyamic Respose of st Order Systems Characteristic Equatio - Free Respose Stable st Order System Respose

More information

EE Control Systems

EE Control Systems Copyright FL Lewis 7 All rights reserved Updated: Moday, November 1, 7 EE 4314 - Cotrol Systems Bode Plot Performace Specificatios The Bode Plot was developed by Hedrik Wade Bode i 1938 while he worked

More information

Class 07 Time domain analysis Part II 2 nd order systems

Class 07 Time domain analysis Part II 2 nd order systems Class 07 Time domai aalysis Part II d order systems Time domai aalysis d order systems iput S output Secod order systems of the type α G(s) as + bs + c Time domai aalysis d order systems iput S α as +

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.34 Discrete Time Sigal Processig Fall 24 BACKGROUND EXAM September 3, 24. Full Name: Note: This exam is closed

More information

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1 Case Study ME375 Frequecy Respose - Case Study SUPPORT POWER WIRE DROPPERS Electric trai derives power through a patograph, which cotacts the power wire, which is suspeded from a cateary. Durig high-speed

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 6 - Small Signal Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 6 - Small Signal Stability ECE 4/5 Power System Operatios & Plaig/Power Systems Aalysis II : 6 - Small Sigal Stability Sprig 014 Istructor: Kai Su 1 Refereces Kudur s Chapter 1 Saadat s Chapter 11.4 EPRI Tutorial s Chapter 8 Power

More information

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B. Amme 3500 : System Dyamics ad Cotrol Root Locus Course Outlie Week Date Cotet Assigmet Notes Mar Itroductio 8 Mar Frequecy Domai Modellig 3 5 Mar Trasiet Performace ad the s-plae 4 Mar Block Diagrams Assig

More information

Chapter 2 Feedback Control Theory Continued

Chapter 2 Feedback Control Theory Continued Chapter Feedback Cotrol Theor Cotiued. Itroductio I the previous chapter, the respose characteristic of simple first ad secod order trasfer fuctios were studied. It was show that first order trasfer fuctio,

More information

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time Sigals ad Systems Problem Set: From Cotiuous-Time to Discrete-Time Updated: October 5, 2017 Problem Set Problem 1 - Liearity ad Time-Ivariace Cosider the followig systems ad determie whether liearity ad

More information

Bode Diagrams School of Mechanical Engineering ME375 Frequency Response - 29 Purdue University Example Ex:

Bode Diagrams School of Mechanical Engineering ME375 Frequency Response - 29 Purdue University Example Ex: ME375 Hadouts Bode Diagrams Recall that if m m bs m + bm s + + bs+ b Gs () as + a s + + as+ a The bm( j z)( j z) ( j zm) G( j ) a ( j p )( j p ) ( j p ) bm( s z)( s z) ( s zm) a ( s p )( s p ) ( s p )

More information

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors.

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors. Quiz November 4th, 23 Sigals & Systems (5-575-) P. Reist & Prof. R. D Adrea Solutios Exam Duratio: 4 miutes Number of Problems: 4 Permitted aids: Noe. Use oly the prepared sheets for your solutios. Additioal

More information

1the 1it is said to be overdamped. When 1, the roots of

1the 1it is said to be overdamped. When 1, the roots of Homework 3 AERE573 Fall 08 Due 0/8(M) ame PROBLEM (40pts) Cosider a D order uderdamped system trasfer fuctio H( s) s ratio 0 The deomiator is the system characteristic polyomial P( s) s s (a)(5pts) Use

More information

CDS 101: Lecture 8.2 Tools for PID & Loop Shaping

CDS 101: Lecture 8.2 Tools for PID & Loop Shaping CDS : Lecture 8. Tools for PID & Loop Shapig Richard M. Murray 7 November 4 Goals: Show how to use loop shapig to achieve a performace specificatio Itroduce ew tools for loop shapig desig: Ziegler-Nichols,

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 UNIVERSITY OF BOLTON TW30 SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER EXAMINATION 06/07 ADVANCED THERMOFLUIDS & CONTROL SYSTEMS MODULE NO: AME6005 Date: Thursday Jauary 07 Time:

More information

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems Departmet of Electrical Egieerig Uiversity of Arasas ELEG 4603/5173L Digital Sigal Processig Ch. 1 Discrete-Time Sigals ad Systems Dr. Jigxia Wu wuj@uar.edu OUTLINE 2 Classificatios of discrete-time sigals

More information

PID controllers. Laith Batarseh. PID controllers

PID controllers. Laith Batarseh. PID controllers Next Previous 24-Jan-15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time

More information

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352,

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352, 732 Aedix E: Previous EEE0 Exams EEE0 Exam 2, Srig 2008 A.A. Rodriguez Rules: Oe 8. sheet ermitted, calculators ermitted. GWC 32, 9-372 Problem Aalysis of a Feedback System Cosider the feedback system

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

Exponential Moving Average Pieter P

Exponential Moving Average Pieter P Expoetial Movig Average Pieter P Differece equatio The Differece equatio of a expoetial movig average lter is very simple: y[] x[] + (1 )y[ 1] I this equatio, y[] is the curret output, y[ 1] is the previous

More information

Analysis of the No-Load Characteristic of the Moving Coil Linear Compressor

Analysis of the No-Load Characteristic of the Moving Coil Linear Compressor Purdue Uiversity Purdue e-pubs Iteratioal Compressor Egieerig Coferece School of Mechaical Egieerig 008 Aalysis of the No-Load Characteristic of the Movig Coil Liear Compressor Yigbai Xie North Chia Electric

More information

ME 375 FINAL EXAM Friday, May 6, 2005

ME 375 FINAL EXAM Friday, May 6, 2005 ME 375 FINAL EXAM Friay, May 6, 005 Divisio: Kig 11:30 / Cuigham :30 (circle oe) Name: Istructios (1) This is a close book examiatio, but you are allowe three 8.5 11 crib sheets. () You have two hours

More information

ME451 Laboratory. Time Response Modeling and Experimental Validation of a Second Order Plant: Mass-Spring Damper System

ME451 Laboratory. Time Response Modeling and Experimental Validation of a Second Order Plant: Mass-Spring Damper System ME 451: Cotrol Systems Laboratory Departmet of Mecaical Egieerig Miciga State Uiversity East Lasig, MI 4884-16 ME451 Laboratory Time Respose Modelig ad Experimetal Validatio of a Secod Order Plat: Mass-Sprig

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

ELEG3503 Introduction to Digital Signal Processing

ELEG3503 Introduction to Digital Signal Processing ELEG3503 Itroductio to Digital Sigal Processig 1 Itroductio 2 Basics of Sigals ad Systems 3 Fourier aalysis 4 Samplig 5 Liear time-ivariat (LTI) systems 6 z-trasform 7 System Aalysis 8 System Realizatio

More information

Voltage controlled oscillator (VCO)

Voltage controlled oscillator (VCO) Voltage cotrolled oscillator (VO) Oscillatio frequecy jl Z L(V) jl[ L(V)] [L L (V)] L L (V) T VO gai / Logf Log 4 L (V) f f 4 L(V) Logf / L(V) f 4 L (V) f (V) 3 Lf 3 VO gai / (V) j V / V Bi (V) / V Bi

More information

Written exam Digital Signal Processing for BMT (8E070). Tuesday November 1, 2011, 09:00 12:00.

Written exam Digital Signal Processing for BMT (8E070). Tuesday November 1, 2011, 09:00 12:00. Techische Uiversiteit Eidhove Fac. Biomedical Egieerig Writte exam Digital Sigal Processig for BMT (8E070). Tuesday November, 0, 09:00 :00. (oe page) ( problems) Problem. s Cosider a aalog filter with

More information

FIR Filter Design: Part II

FIR Filter Design: Part II EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we cosider how we might go about desigig FIR filters with arbitrary frequecy resposes, through compositio of multiple sigle-peak

More information

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s CONTROL SYSTEMS Chapter 7 : Bode Plot GATE Objective & Numerical Type Solutio Quetio 6 [Practice Book] [GATE EE 999 IIT-Bombay : 5 Mark] The aymptotic Bode plot of the miimum phae ope-loop trafer fuctio

More information

Lecture 13. Graphical representation of the frequency response. Luca Ferrarini - Basic Automatic Control 1

Lecture 13. Graphical representation of the frequency response. Luca Ferrarini - Basic Automatic Control 1 Lecture 3 Graphical represetatio of the frequecy respose Luca Ferrarii - Basic Automatic Cotrol Graphical represetatio of the frequecy respose Polar plot G Bode plot ( j), G Im 3 Re of the magitude G (

More information

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed) Exam February 8th, 8 Sigals & Systems (5-575-) Prof. R. D Adrea Exam Exam Duratio: 5 Mi Number of Problems: 5 Number of Poits: 5 Permitted aids: Importat: Notes: A sigle A sheet of paper (double sided;

More information

Transfer Function Analysis

Transfer Function Analysis Trasfer Fuctio Aalysis Free & Forced Resposes Trasfer Fuctio Syste Stability ME375 Trasfer Fuctios - Free & Forced Resposes Ex: Let s s look at a stable first order syste: τ y + y = Ku Take LT of the I/O

More information

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to:

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to: 2.003 Egieerig Dyamics Problem Set 9--Solutio Problem 1 Fid the equatio of motio for the system show with respect to: a) Zero sprig force positio. Draw the appropriate free body diagram. b) Static equilibrium

More information

Numerical Methods in Fourier Series Applications

Numerical Methods in Fourier Series Applications Numerical Methods i Fourier Series Applicatios Recall that the basic relatios i usig the Trigoometric Fourier Series represetatio were give by f ( x) a o ( a x cos b x si ) () where the Fourier coefficiets

More information

MEM 255 Introduction to Control Systems: Analyzing Dynamic Response

MEM 255 Introduction to Control Systems: Analyzing Dynamic Response MEM 55 Itroductio to Cotrol Systems: Aalyzig Dyamic Respose Harry G. Kwaty Departmet of Mechaical Egieerig & Mechaics Drexel Uiversity Outlie Time domai ad frequecy domai A secod order system Via partial

More information

Solutions - Homework # 1

Solutions - Homework # 1 ECE-4: Sigals ad Systems Summer Solutios - Homework # PROBLEM A cotiuous time sigal is show i the figure. Carefully sketch each of the followig sigals: x(t) a) x(t-) b) x(-t) c) x(t+) d) x( - t/) e) x(t)*(

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 06 Summer 07 Problem Set #5 Assiged: Jue 3, 07 Due Date: Jue 30, 07 Readig: Chapter 5 o FIR Filters. PROBLEM 5..* (The

More information

EE Midterm Test 1 - Solutions

EE Midterm Test 1 - Solutions EE35 - Midterm Test - Solutios Total Poits: 5+ 6 Bous Poits Time: hour. ( poits) Cosider the parallel itercoectio of the two causal systems, System ad System 2, show below. System x[] + y[] System 2 The

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

Chapter 7: The z-transform. Chih-Wei Liu

Chapter 7: The z-transform. Chih-Wei Liu Chapter 7: The -Trasform Chih-Wei Liu Outlie Itroductio The -Trasform Properties of the Regio of Covergece Properties of the -Trasform Iversio of the -Trasform The Trasfer Fuctio Causality ad Stability

More information

EXPERIMENT OF SIMPLE VIBRATION

EXPERIMENT OF SIMPLE VIBRATION EXPERIMENT OF SIMPLE VIBRATION. PURPOSE The purpose of the experimet is to show free vibratio ad damped vibratio o a system havig oe degree of freedom ad to ivestigate the relatioship betwee the basic

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpeCourseWare http://ocw.mit.edu 2.004 Dyamics ad Cotrol II Sprig 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts Istitute of Techology

More information

Math 2412 Review 3(answers) kt

Math 2412 Review 3(answers) kt Math 4 Review 3(aswers) kt A t A e. If the half-life of radium is 690 years, ad you have 0 grams ow, how much will be preset i 50 years (rouded to three decimal places)?. The decay of radium is modeled

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

The state space model needs 5 parameters, so it is not as convenient to use in this control study.

The state space model needs 5 parameters, so it is not as convenient to use in this control study. Trasfer fuctio for of the odel G θ K ω 2 θ / v θ / v ( s) = = 2 2 vi s + 2ζωs + ω The followig slides detail a derivatio of this aalog eter odel both as state space odel ad trasfer fuctio (TF) as show

More information

MAS160: Signals, Systems & Information for Media Technology. Problem Set 5. DUE: November 3, (a) Plot of u[n] (b) Plot of x[n]=(0.

MAS160: Signals, Systems & Information for Media Technology. Problem Set 5. DUE: November 3, (a) Plot of u[n] (b) Plot of x[n]=(0. MAS6: Sigals, Systems & Iformatio for Media Techology Problem Set 5 DUE: November 3, 3 Istructors: V. Michael Bove, Jr. ad Rosalid Picard T.A. Jim McBride Problem : Uit-step ad ruig average (DSP First

More information

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals. Z - Trasform The -trasform is a very importat tool i describig ad aalyig digital systems. It offers the techiques for digital filter desig ad frequecy aalysis of digital sigals. Defiitio of -trasform:

More information

Solution of EECS 315 Final Examination F09

Solution of EECS 315 Final Examination F09 Solutio of EECS 315 Fial Examiatio F9 1. Fid the umerical value of δ ( t + 4ramp( tdt. δ ( t + 4ramp( tdt. Fid the umerical sigal eergy of x E x = x[ ] = δ 3 = 11 = ( = ramp( ( 4 = ramp( 8 = 8 [ ] = (

More information

PID SELF-TUNING CONTROLLERS USED IN DIFFERENT STRUCTURES OF THE CONTROL LOOPS

PID SELF-TUNING CONTROLLERS USED IN DIFFERENT STRUCTURES OF THE CONTROL LOOPS FASCICLE III, Vol.31, No., ISSN 11-454X ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS PID SELF-TUNING CONTROLLERS USED IN DIFFERENT STRUCTURES OF THE CONTROL LOOPS Viorel DUGAN a, Adria

More information

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of MATHEMATICS 6 The differetial equatio represetig the family of curves where c is a positive parameter, is of Order Order Degree (d) Degree (a,c) Give curve is y c ( c) Differetiate wrt, y c c y Hece differetial

More information

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi) High-Speed Serial Iterface Circuit ad Sytem Lect. 4 Phae-Locked Loop (PLL) Type 1 (Chap. 8 i Razavi) PLL Phae lockig loop A (egative-feedback) cotrol ytem that geerate a output igal whoe phae (ad frequecy)

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.) MATH A FINAL (7: PM VERSION) SOLUTION (Last edited December 5, 3 at 9:4pm.) Problem. (i) Give the precise defiitio of the defiite itegral usig Riema sums. (ii) Write a epressio for the defiite itegral

More information

Stopping oscillations of a simple harmonic oscillator using an impulse force

Stopping oscillations of a simple harmonic oscillator using an impulse force It. J. Adv. Appl. Math. ad Mech. 5() (207) 6 (ISSN: 2347-2529) IJAAMM Joural homepage: www.ijaamm.com Iteratioal Joural of Advaces i Applied Mathematics ad Mechaics Stoppig oscillatios of a simple harmoic

More information

Objective Mathematics

Objective Mathematics 6. If si () + cos () =, the is equal to :. If <

More information

Ch3 Discrete Time Fourier Transform

Ch3 Discrete Time Fourier Transform Ch3 Discrete Time Fourier Trasform 3. Show that the DTFT of [] is give by ( k). e k 3. Determie the DTFT of the two sided sigal y [ ],. 3.3 Determie the DTFT of the causal sequece x[ ] A cos( 0 ) [ ],

More information

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1 Trasfer Fuctio Aalysis Free & Forced Resposes Trasfer Fuctio Syste Stability ME375 Trasfer Fuctios - 1 Free & Forced Resposes Ex: Let s look at a stable first order syste: y y Ku Take LT of the I/O odel

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE Geeral e Image Coder Structure Motio Video (s 1,s 2,t) or (s 1,s 2 ) Natural Image Samplig A form of data compressio; usually lossless, but ca be lossy Redudacy Removal Lossless compressio: predictive

More information

LECTURE 14. Non-linear transverse motion. Non-linear transverse motion

LECTURE 14. Non-linear transverse motion. Non-linear transverse motion LETURE 4 No-liear trasverse motio Floquet trasformatio Harmoic aalysis-oe dimesioal resoaces Two-dimesioal resoaces No-liear trasverse motio No-liear field terms i the trajectory equatio: Trajectory equatio

More information

Calculus 2 Test File Fall 2013

Calculus 2 Test File Fall 2013 Calculus Test File Fall 013 Test #1 1.) Without usig your calculator, fid the eact area betwee the curves f() = 4 - ad g() = si(), -1 < < 1..) Cosider the followig solid. Triagle ABC is perpedicular to

More information

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations Geeraliig the DTFT The Trasform M. J. Roberts - All Rights Reserved. Edited by Dr. Robert Akl 1 The forward DTFT is defied by X e jω = x e jω i which = Ω is discrete-time radia frequecy, a real variable.

More information

Lesson 03 Heat Equation with Different BCs

Lesson 03 Heat Equation with Different BCs PDE & Complex Variables P3- esso 3 Heat Equatio with Differet BCs ( ) Physical meaig (SJF ) et u(x, represet the temperature of a thi rod govered by the (coductio) heat equatio: u t =α u xx (3.) where

More information

Section 13.3 Area and the Definite Integral

Section 13.3 Area and the Definite Integral Sectio 3.3 Area ad the Defiite Itegral We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate

More information

MCT242: Electronic Instrumentation Lecture 2: Instrumentation Definitions

MCT242: Electronic Instrumentation Lecture 2: Instrumentation Definitions Faculty of Egieerig MCT242: Electroic Istrumetatio Lecture 2: Istrumetatio Defiitios Overview Measuremet Error Accuracy Precisio ad Mea Resolutio Mea Variace ad Stadard deviatio Fiesse Sesitivity Rage

More information

Digital signal processing: Lecture 5. z-transformation - I. Produced by Qiangfu Zhao (Since 1995), All rights reserved

Digital signal processing: Lecture 5. z-transformation - I. Produced by Qiangfu Zhao (Since 1995), All rights reserved Digital sigal processig: Lecture 5 -trasformatio - I Produced by Qiagfu Zhao Sice 995, All rights reserved DSP-Lec5/ Review of last lecture Fourier trasform & iverse Fourier trasform: Time domai & Frequecy

More information

Controlo Em Espaço de Estados. First Test

Controlo Em Espaço de Estados. First Test Mestrado Itegrado em Egeharia Electrotécica e de Computadores Cotrolo Em Espaço de Estados 13/1 First Test April, 1, h. room C1 Duratio hours Its ot allowed either cosultatio of ay kid or programmable

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2017

SCORE. Exam 2. MA 114 Exam 2 Fall 2017 Exam Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use a graphig calculator

More information

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING Mechaical Vibratios FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING A commo dampig mechaism occurrig i machies is caused by slidig frictio or dry frictio ad is called Coulomb dampig. Coulomb dampig

More information

Dr. Seeler Department of Mechanical Engineering Fall 2009 Lafayette College ME 479: Control Systems and Mechatronics Design and Analysis

Dr. Seeler Department of Mechanical Engineering Fall 2009 Lafayette College ME 479: Control Systems and Mechatronics Design and Analysis Dr. Seeler Departmet of Mechaical Egieerig Fall 009 Lafayette College ME 479: Cotrol Systems ad Mechatroics Desig ad Aalysis Lab 0: Review of the First ad Secod Order Step Resposes The followig remarks

More information

FIR Filter Design: Part I

FIR Filter Design: Part I EEL3: Discrete-Time Sigals ad Systems FIR Filter Desig: Part I. Itroductio FIR Filter Desig: Part I I this set o otes, we cotiue our exploratio o the requecy respose o FIR ilters. First, we cosider some

More information

Describing Function: An Approximate Analysis Method

Describing Function: An Approximate Analysis Method Describig Fuctio: A Approximate Aalysis Method his chapter presets a method for approximately aalyzig oliear dyamical systems A closed-form aalytical solutio of a oliear dyamical system (eg, a oliear differetial

More information

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9 Calculus I Practice Test Problems for Chapter 5 Page of 9 This is a set of practice test problems for Chapter 5. This is i o way a iclusive set of problems there ca be other types of problems o the actual

More information

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal.

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal. x[ ] x[ ] x[] x[] x[] x[] 9 8 7 6 5 4 3 3 4 5 6 7 8 9 Figure. Graphical represetatio of a discrete-time sigal. From Discrete-Time Sigal Processig, e by Oppeheim, Schafer, ad Buck 999- Pretice Hall, Ic.

More information

1 Cabin. Professor: What is. Student: ln Cabin oh Log Cabin! Professor: No. Log Cabin + C = A Houseboat!

1 Cabin. Professor: What is. Student: ln Cabin oh Log Cabin! Professor: No. Log Cabin + C = A Houseboat! MATH 4 Sprig 0 Exam # Tuesday March st Sectios: Sectios 6.-6.6; 6.8; 7.-7.4 Name: Score: = 00 Istructios:. You will have a total of hour ad 50 miutes to complete this exam.. A No-Graphig Calculator may

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t,

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t, Lecture 5 omplex Variables II (Applicatios i Physics) (See hapter i Boas) To see why complex variables are so useful cosider first the (liear) mechaics of a sigle particle described by Newto s equatio

More information

CDS 101: Lecture 5.1 Controllability and State Space Feedback

CDS 101: Lecture 5.1 Controllability and State Space Feedback CDS, Lecture 5. CDS : Lecture 5. Cotrollability ad State Space Feedback Richard M. Murray 8 October Goals: Deie cotrollability o a cotrol system Give tests or cotrollability o liear systems ad apply to

More information

Different kinds of Mathematical Induction

Different kinds of Mathematical Induction Differet ids of Mathematical Iductio () Mathematical Iductio Give A N, [ A (a A a A)] A N () (First) Priciple of Mathematical Iductio Let P() be a propositio (ope setece), if we put A { : N p() is true}

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 Lecture 18. October 5, 005 Homework. Problem Set 5 Part I: (c). Practice Problems. Course Reader: 3G 1, 3G, 3G 4, 3G 5. 1. Approximatig Riema itegrals. Ofte, there is o simpler expressio for the atiderivative

More information

(, ) (, ) (, ) ( ) ( )

(, ) (, ) (, ) ( ) ( ) PROBLEM ANSWER X Y x, x, rect, () X Y, otherwise D Fourier trasform is defied as ad i D case it ca be defied as We ca write give fuctio from Eq. () as It follows usig Eq. (3) it ( ) ( ) F f t e dt () i(

More information

Student s Printed Name:

Student s Printed Name: Studet s Prited Name: Istructor: XID: C Sectio: No questios will be aswered durig this eam. If you cosider a questio to be ambiguous, state your assumptios i the margi ad do the best you ca to provide

More information

A Neuron Model-free Controller with immune Tuning gain for Hydroelectric Generating Units

A Neuron Model-free Controller with immune Tuning gain for Hydroelectric Generating Units A Neuro Model-free Cotroller with immue Tuig gai for Hydroelectric Geeratig Uits Jiamig Zhag, Nig Wag ad Shuqig Wag Abstract A euro model-free cotrol method with immue scheme tuig gai for hydroelectric

More information

Continuous Data that can take on any real number (time/length) based on sample data. Categorical data can only be named or categorised

Continuous Data that can take on any real number (time/length) based on sample data. Categorical data can only be named or categorised Questio 1. (Topics 1-3) A populatio cosists of all the members of a group about which you wat to draw a coclusio (Greek letters (μ, σ, Ν) are used) A sample is the portio of the populatio selected for

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist. Topic 5 [44 marks] 1a (i) Fid the rage of values of for which eists 1 Write dow the value of i terms of 1, whe it does eist Fid the solutio to the differetial equatio 1b give that y = 1 whe = π (cos si

More information

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io Chapter 9 - CD compaio CHAPTER NINE CD-9.2 CD-9.2. Stages With Voltage ad Curret Gai A Geeric Implemetatio; The Commo-Merge Amplifier The advaced method preseted i the text for approximatig cutoff frequecies

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

Chapter 2 Systems and Signals

Chapter 2 Systems and Signals Chapter 2 Systems ad Sigals 1 Itroductio Discrete-Time Sigals: Sequeces Discrete-Time Systems Properties of Liear Time-Ivariat Systems Liear Costat-Coefficiet Differece Equatios Frequecy-Domai Represetatio

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

Dynamic System Response

Dynamic System Response Solutio of Liear, Costat-Coefficiet, Ordiary Differetial Equatios Classical Operator Method Laplace Trasform Method Laplace Trasform Properties 1 st -Order Dyamic System Time ad Frequecy Respose d -Order

More information