Quantum three-body calculation of the nonresonant triple-α reaction rate at low temperatures

Size: px
Start display at page:

Download "Quantum three-body calculation of the nonresonant triple-α reaction rate at low temperatures"

Transcription

1 Quantum three-body calculation of the nonresonant triple- reaction rate at low temperatures Kazuyuki Ogata (in collaboration with M. Kan and M. Kamimura) Department of Physics, Kyushu University Kyushu Univ. Tokyo Osaka

2 The triple reaction 12 C (0 + ) 2 γ ( 4 He) + 8 Be (0 + ) (τ sec) Be Be + Question: How is this picture of the triple alpha reaction accurate? C Hoyle state C (2 + ) 1 I think, therefore it is! Fred Hoyle

3 The resonant and nonresonant 3 process T > a few 10 8 K: resonant capture is dominant. 12 C (0 + ) 2 γ 8 Be (0 + ) 12 C (2 + ) 1 T < 10 8 K: nonresonant capture is important. Hoyle state + + γ 12 C (2 + )

4 Results of Nomoto s method K. Nomoto et al., Astrophys. J. 149, 239 (1985). nonresonant contribution! nonresonant contribution

5 Nomoto s method for nonresonant capture φ (r) R 1 * φ χ (R) ε 2 ε 1 R 2 ( r) T V ( R ) V ( R ) h E ( r) ( R) R 12 C (0 + ) 2 res E (379.5 kev) 8 Be Schroedinger Eq. (1ch) K. Nomoto et al., Astrophys. J. 149, 239 (1985). resonance res ε 2 = kev res ε 1 = kev φ χ dr = ( ) ( ) ( ) TR + V - R + ε1 ε1+ ε2 χ R = 0 res E resonance Accurate only if - interaction is independent of the states! ε 2 res ε 1

6 The nonresonant 3 reaction: now and past Preceding studies Pioneering study on nonresonant capture by Nomoto (Nomoto s method) K. Nomoto, Astrophys. J. 253, 798 (1982); K. Nomoto et al., Astrophys. J. 149, 239 (1985). Potential model by Langanke K. Langanke et al., Z. Phys. A 324, 147 (1986). This work Still based on the resonance picture with an energy shift of the Hoyle state as a correction Accurate description of the three-body reaction treating the resonant and nonresonant processes on the same footing. c.f. M. Kamimura and Y. Fukushima, Proceedings of the INS International Symposium on Nuclear Direct Reaction Mechanism, Shikanoshima, Fukuoka, Japan, 1978, p P. Descouvemont and D. Baye, Phys. Rev. C 36, 54 (1987).

7 k (fm 1 ) [ε 1 (kev)] 3 wave function φ (r) ε states: φ ( 1-2 )- 3 states: χ ( rr, ) ( r) ( R) Ψ =φ χ 3 ie, i ie, resonance low-energy nonresonant states ( ) ( ) i TR + V1 2-3 R + ε2 χi, E R = 0, 1 χ 2 (R) R 1 N+C N+C ( ) = φ ( r) ( ) + ( ) φ ( r) V R V R V R i 12-3 i i. r ε 2 play essential roles, but were naively neglected in the previous calculations.* *M. Kamimura and Y. Fukushima, Proc. INS Int. Symp. on Nuclear Direct Reaction Mechanism, p. 409; P. Descouvemont and D. Baye, PR C36, R2

8 N Constraints on V N V : 2-range Gaussian (with repulsive part simulating the Orthogonal Condition Model; OCM) 1. 8 Be resonance properties ε 1res = 92.0 kev, Γ = 4.8 ev exp / / Hoyle resonance properties (for i = 86) ε 2res = kev, Γ = 4.0 ev exp / 1.0 V N Achieved by reducing by only 1.5% in φ (r) ε 1 1 χ (R) 2 R 1 ε 2 R 2 N+C N+C ( ) = φ ( r) ( ) + ( ) φ ( r) V R V R V R ij 12-3 i j. r 3

9 Reaction rate of the 3 reaction E2 transition from 3 scattering state ( ) W.Fn obtained by Gaussian Expansion Method (GEM) with rearrangement Ψ 3 ie, Reaction rate 122 ( ) Correction with effective charge δ e to reproduce Γ γ We include δ e = 0.77 e so that the B(E2) value obtained by the normalized 0 + W.Fn. and the 2 + W.Fn. reproduces the exp. value of 13.4 e 2 fm

10 1-2 W.Fn. and ( 1-2 )- 3 Coulomb pot. φ i (r) (fm 2 ) i = 113 (152 KeV) Coul, i V 12-3 (R) (MeV) i = 53 (38.2 KeV) Resonant and nonresonant Coulomb potentials are completely different. Nomoto s method neglects this difference and is a crude approximation.

11 The reaction rate K.O., M. Kan, and M. Kamimura, Prog. Theor. Phys. 122 (2009) 1055; arxiv: [astro-ph.sr]. this work this work: ( 1-2 )- 3 resonance only this work with Nomoto s Approxn. We have normalized our results to the rate of NACRE at 10 9 K. Normalization factor is 1.5 that indicates the uncertainty of our calculation. NACRE* *C. Angulo et al., Nucl. Phys. A656 (1999), 3.

12 Implication of the new reaction rate A. Dotter and B. Paxton, arxiv: [astro-ph.sr]. Result: The OKK rate has severe consequences for the late stages of stellar evolution in low mass stars. Most notable is the shortening-or disappearance-of the red giant phase. Conclusions: The OKK triple-a reaction rate is incompatible with observations of extended red giant branches and He burning stars in old stellar systems.

13 53 Effects of a new triple-alpha reaction rate on the helium ignition of accreting white dwarfs M.Saruwatari, M. Hashimoto, R. Nakamura(Kyushu University) S. Fujimoto (Kumamoto National College of Technology), K. Arai(Kumamoto University) The helium ignitions occur in the low density by two orders of magnitude if the OKK rate is adopted. Nuclear flashes are triggered for all cases of A-F in the helium layers.

14 Summary The triple- reaction rate is reevaluated. The resonant and nonresonant processes are described on the same footing. The 1-2 nonresonant states below the resonance are essentially important. The ( 1-2 )- 3 Coulomb barrier in the nonresonant capture process is much lower than that in the resonant process. We obtain a markedly larger reaction rate than NACRE below 10 8 K. Nomoto s method (used in many studies including NACRE) is shown to be a very crude approximation to the present three-body calculation. Future plan How can we resolve the inconsistency of a stellar evolution calculation with our new rate and observation? Systematic studies of ternary processes: (n,γ) 9 Be, n(p, 6 Li) etc.

He-Burning in massive Stars

He-Burning in massive Stars He-Burning in massive Stars He-burning is ignited on the He and ashes of the preceding hydrogen burning phase! Most important reaction -triple alpha process 3 + 7.6 MeV Red Giant Evolution in HR diagram

More information

Three-body calculations of the triple-alpha reaction rate at low temperatures

Three-body calculations of the triple-alpha reaction rate at low temperatures Three-body calculations of the triple-alpha reaction rate at low temperatures Souichi Ishikawa (Hosei University) The 1st NAOJ Visiting Fellow Workshop Program Element Genesis and Cosmic Chemical Evolution:

More information

Effects of long-lived strongly interacting particles on Big-Bang nucleosynthesis

Effects of long-lived strongly interacting particles on Big-Bang nucleosynthesis Effects of long-lived strongly interacting particles on Big-Bang nucleosynthesis This study is in progress! More precise results will be reported elsewhere. Motohiko Kusakabe Department of Astronomy, School

More information

Alpha particle condensation in nuclear systems

Alpha particle condensation in nuclear systems Alpha particle condensation in nuclear systems Contents Introduction ncondensate wave function 3system (0 and states ) 4system (05 state) Yasuro Funaki (Kyoto Univ.) Peter Schuck (IPN, Orsay) Akihiro Tohsaki

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

Cluster-gas-like states and monopole excitations. T. Yamada

Cluster-gas-like states and monopole excitations. T. Yamada Cluster-gas-like states and monopole excitations T. Yamada Cluster-gas-like states and monopole excitations Isoscalar monopole excitations in light nuclei Cluster-gas-likes states: C, 16 O, 11 B, 13 C

More information

Nuclear Binding Energy

Nuclear Binding Energy 5. NUCLEAR REACTIONS (ZG: P5-7 to P5-9, P5-12, 16-1D; CO: 10.3) Binding energy of nucleus with Z protons and N neutrons is: Q(Z, N) = [ZM p + NM n M(Z, N)] c 2. } {{ } mass defect Nuclear Binding Energy

More information

Few-body problems in Experimental Nuclear Astrophysics

Few-body problems in Experimental Nuclear Astrophysics Few-body problems in Experimental Nuclear Astrophysics Nuclear Astrophysics primer α-decay of the Hoyle-state Lowest resonance in HANS O.U. FYNBO FB20, 福岡市, 20 Big Bang X-ray Burst Neutron Star First stars

More information

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Y. Nakao, K. Tsukida, K. Shinkoda, Y. Saito Department of Applied Quantum Physics and Nuclear Engineering,

More information

PoS(ENAS 6)050. Resonances in 19 Ne with relevance to the astrophysically important 18 F(p,α) 15 O reaction

PoS(ENAS 6)050. Resonances in 19 Ne with relevance to the astrophysically important 18 F(p,α) 15 O reaction Resonances in 19 Ne with relevance to the astrophysically important 18 F(p,α) 15 O reaction David Mountford, A.St J. Murphy, T. Davinson, P.J. Woods University of Edinburgh E-mail: d.j.mountford@sms.ed.ac.uk

More information

Oliver S. Kirsebom. Debrecen, 27 Oct 2012

Oliver S. Kirsebom. Debrecen, 27 Oct 2012 12 C and the triple-α reaction rate Oliver S. Kirsebom Debrecen, 27 Oct 2012 Aarhus University, Denmark & TRIUMF, Canada Introduction Astrophysical helium burning Red giant stars, T = 0.1 2 GK Three reactions:

More information

Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction Prog. Theor. Exp. Phys. 2015, 00000 (10 pages) DOI: 10.1093/ptep/0000000000 Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

More information

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~ Kouichi Hagino, Tohoku University Neil Rowley, IPN Orsay 1. Introduction: 12 C + 12 C fusion 2. Molecular resonances

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

Chemical Evolution of the Universe

Chemical Evolution of the Universe Chemical Evolution of the Universe Part 5 Jochen Liske Fachbereich Physik Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomical news of the week Astronomical news of the week Astronomical news

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011 Alpha decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 21, 2011 NUCS 342 (Lecture 13) February 21, 2011 1 / 29 Outline 1 The decay processes NUCS 342 (Lecture

More information

Topics in Nuclear Astrophysics II. Stellar Reaction Rates

Topics in Nuclear Astrophysics II. Stellar Reaction Rates Topics in Nuclear strophysics II Stellar Reaction Rates definition of a reaction rate Gamow window lifetimes of isotopes at stellar conditions nuclear energy production rate introduction to network simulations

More information

arxiv: v3 [astro-ph.co] 13 Sep 2017

arxiv: v3 [astro-ph.co] 13 Sep 2017 Big Bang Nucleosynthesis with Stable 8 Be and the Primordial Lithium Problem Richard T. Scherrer Department of Astronomy, University of Illinois, Urbana, IL 61801 and and Department of Computer Science,

More information

Cluster-orbital shell model approach for unstable nuclei and the developments

Cluster-orbital shell model approach for unstable nuclei and the developments CANHP2015 (week 6), 25-30 Oct. 2015, Kyoto, Japan Cluster-orbital shell model approach for unstable nuclei and the developments Hiroshi MASUI Kitami Institute of Technology Outline of my talk 1. Cluster-orbital

More information

What Powers the Stars?

What Powers the Stars? What Powers the Stars? In brief, nuclear reactions. But why not chemical burning or gravitational contraction? Bright star Regulus (& Leo dwarf galaxy). Nuclear Energy. Basic Principle: conversion of mass

More information

Primer: Nuclear reactions in Stellar Burning

Primer: Nuclear reactions in Stellar Burning Primer: Nuclear reactions in Stellar Burning Michael Wiescher University of Notre Dame The difficulty with low temperature reaction rates CNO reactions in massive main sequence stars He burning reactions

More information

Radiative-capture reactions

Radiative-capture reactions Radiative-capture reactions P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium 1. Introduction, definitions 2. Electromagnetic

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

Alpha inelastic scattering and cluster structures in 24 Mg. Takahiro KAWABATA Department of Physics, Kyoto University

Alpha inelastic scattering and cluster structures in 24 Mg. Takahiro KAWABATA Department of Physics, Kyoto University Alpha inelastic scattering and cluster structures in 24 Mg Takahiro KAWABATA Department of Physics, Kyoto University Introduction Contents Alpha cluster structure in light nuclei. Alpha condensed states.

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The sun - past and future The Later Evolution of Low Mass Stars (< 8 solar masses) During 10 billion years the suns luminosity changes only by about a factor of two. After that though, changes become rapid

More information

From Last Time: We can more generally write the number densities of H, He and metals.

From Last Time: We can more generally write the number densities of H, He and metals. From Last Time: We can more generally write the number densities of H, He and metals. n H = Xρ m H,n He = Y ρ 4m H, n A = Z Aρ Am H, How many particles results from the complete ionization of hydrogen?

More information

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Effect of Λ(1405) on structure of multi-antikaonic nuclei 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, (May 31-June 4, 2010, College of William and Mary, Williamsburg, Virginia) Session 2B Effect of Λ(1405) on structure

More information

Institut d Astronomie et d Astrophysique, Université Libre de Bruxelle, Belgium

Institut d Astronomie et d Astrophysique, Université Libre de Bruxelle, Belgium Photodisintegration of leading to the isomeric state m, H. Utsunomiya, A. Makinaga, T. Kaihori, H. Akimune, T. Yamagata, S. Hohara Department of Physics, Konan University, Japan E-mail: hiro@konan-u.ac.jp

More information

Meson-baryon interactions and baryon resonances

Meson-baryon interactions and baryon resonances Meson-baryon interactions and baryon resonances Tetsuo Hyodo Tokyo Institute of Technology supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2011, June 16th 1 Contents Contents

More information

Chapter 20 Stellar Evolution Part 2. Secs. 20.4, 20.5

Chapter 20 Stellar Evolution Part 2. Secs. 20.4, 20.5 Chapter 20 Stellar Evolution Part 2. Secs. 20.4, 20.5 20.4 Evolution of Stars More Massive than the Sun It can be seen from this H-R diagram that stars more massive than the Sun follow very different paths

More information

Structures and Transitions in Light Unstable Nuclei

Structures and Transitions in Light Unstable Nuclei 1 Structures and Transitions in Light Unstable Nuclei Y. Kanada-En yo a,h.horiuchi b and A, Doté b a Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba-shi

More information

Perspectives on Nuclear Astrophysics

Perspectives on Nuclear Astrophysics Perspectives on Nuclear Astrophysics and the role of DUSEL Nuclear Astrophysics is a broad field that needs facilities from 1keV-100GeV A low energy accelerator DIANA a DUSEL is a unique instrument for

More information

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar evolution during the main-sequence life-time, and during the post-main-sequence

More information

Ab initio nuclear structure from lattice effective field theory

Ab initio nuclear structure from lattice effective field theory Ab initio nuclear structure from lattice effective field theory Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Thomas Luu (Jülich) Dean Lee (NC State)

More information

Status of deuteron stripping reaction theories

Status of deuteron stripping reaction theories Status of deuteron stripping reaction theories Pang Danyang School of Physics and Nuclear Energy Engineering, Beihang University, Beijing November 9, 2015 DY Pang Outline 1 Current/Popular models for (d,

More information

Latest results from LUNA

Latest results from LUNA Journal of Physics: Conference Series PAPER OPEN ACCESS Latest results from LUNA To cite this article: Rosanna Depalo and LUNA collaboration 2018 J. Phys.: Conf. Ser. 940 012026 View the article online

More information

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Heavy-ion fusion reactions for superheavy elements Kouichi Hagino Tohoku University, Sendai, Japan 1. H.I. sub-barrier fusion reactions 2. Coupled-channels approach and barrier distributions 3. Application

More information

arxiv: v1 [nucl-th] 1 Nov 2018

arxiv: v1 [nucl-th] 1 Nov 2018 Contact representation of short range correlation in light nuclei studied by the High-Momentum Antisymmetrized Molecular Dynamics arxiv:1811.00271v1 [nucl-th] 1 Nov 2018 Qing Zhao, 1, Mengjiao Lyu, 2,

More information

A Method of Knock-on Tail Observation Accounting Temperature Fluctuation Using 6 Li+T/D+T Reaction in Deuterium Plasma

A Method of Knock-on Tail Observation Accounting Temperature Fluctuation Using 6 Li+T/D+T Reaction in Deuterium Plasma A Method of Knock-on Tail Observation Accounting Temperature Fluctuation Using 6 Li+T/D+T Reaction in Deuterium Plasma Yasuko KAWAMOTO and Hideaki MATSUURA Department of Applied Quantum Physics and Nuclear

More information

Nuclear physics around the unitarity limit

Nuclear physics around the unitarity limit Nuclear physics around the unitarity limit Sebastian König Nuclear Theory Workshop TRIUMF, Vancouver, BC February 28, 2017 SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, arxiv:1607.04623 [nucl-th] SK,

More information

User s Guide for Neutron Star Matter EOS

User s Guide for Neutron Star Matter EOS User s Guide for Neutron Star Matter EOS CQMC model within RHF approximation and Thomas-Fermi model Tsuyoshi Miyatsu (Tokyo Univ. of Sci.) Ken ichiro Nakazato (Kyushu University) May 1 2016 Abstract This

More information

Stellar Interiors Nuclear Energy ASTR 2110 Sarazin. Fusion the Key to the Stars

Stellar Interiors Nuclear Energy ASTR 2110 Sarazin. Fusion the Key to the Stars Stellar Interiors Nuclear Energy ASTR 2110 Sarazin Fusion the Key to the Stars Energy Source for Stars For Sun, need total energy E = L t Sun = L x (10 10 years) ~ 10 51 erg N atoms = / m p ~ 10 57 atoms

More information

Interactions. Laws. Evolution

Interactions. Laws. Evolution Lecture Origin of the Elements MODEL: Origin of the Elements or Nucleosynthesis Fundamental Particles quarks, gluons, leptons, photons, neutrinos + Basic Forces gravity, electromagnetic, nuclear Interactions

More information

E. Hiyama. Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, , Japan. M.

E. Hiyama. Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, , Japan. M. Λ-Σ conversion in 4 ΛHe and 4 ΛH based on four-body calculation E. Hiyama Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan M. Kamimura

More information

Instability and different burning regimes

Instability and different burning regimes 1 X-ray bursts Last time we talked about one of the major differences between NS and BH: NS have strong magnetic fields. That means that hot spots can be produced near the magnetic poles, leading to pulsations

More information

Evolution from the Main-Sequence

Evolution from the Main-Sequence 9 Evolution from the Main-Sequence Lecture 9 Evolution from the Main-Sequence P. Hily-Blant (Master PFN) Stellar structure and evolution 2016-17 111 / 159 9 Evolution from the Main-Sequence 1. Overview

More information

Curriculum Vitae. Operating Systems: Windows and Linux. Programming Languages: Fortran, Mathematica, C++ and Java.

Curriculum Vitae. Operating Systems: Windows and Linux. Programming Languages: Fortran, Mathematica, C++ and Java. Curriculum Vitae Name: Momen Ahmad Orabi Nationality: Egyptian Date and Place of birth: 25/11/1978 Kingdom of Saudi Arabia Occupation: Lecturer in Physics Department, Faculty of Science, Cairo University,

More information

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei. scattered particles. detector. solid angle. target. transmitted particles

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei. scattered particles. detector. solid angle. target. transmitted particles Nuclear Reactions Shape, interaction, and excitation structures of nuclei scattering expt. scattered particles detector solid angle projectile target transmitted particles http://www.th.phys.titech.ac.jp/~muto/lectures/qmii11/qmii11_chap21.pdf

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The Later Evolution of Low Mass Stars (< 8 solar masses) http://apod.nasa.gov/apod/astropix.html The sun - past and future central density also rises though average density decreases During 10 billion

More information

Preliminary results of the indirect study of the 12 C( 12 C,α) 20 Ne reaction via the THM applied to the 16 O( 12 C,α 20 Ne )α reaction

Preliminary results of the indirect study of the 12 C( 12 C,α) 20 Ne reaction via the THM applied to the 16 O( 12 C,α 20 Ne )α reaction Preliminary results of the indirect study of the 12 C( 12 C,α) 20 Ne reaction via the THM applied to the 16 O( 12 C,α 20 Ne )α reaction G.G. Rapisarda, 1,2,6 C. Spitaleri, 1,2 C. Bordeanu, 3 Z. Hons, 4

More information

Carbon-12 in Nuclear Lattice EFT

Carbon-12 in Nuclear Lattice EFT Carbon-12 in Nuclear Lattice EFT Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo A. Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn/Jülich)

More information

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction: heavy-ion fusion reactions 2. Fusion and Quasi-elastic

More information

solenoid and time projection chamber for neutron lifetime measurement LINA

solenoid and time projection chamber for neutron lifetime measurement LINA solenoid and time projection chamber for neutron lifetime measurement LINA H. Otono a arxiv:1603.06572v1 [physics.ins-det] 21 Mar 2016 a Research Centre for Advanced Particle Physics, Kyushu University,

More information

Resonance scattering and α- transfer reactions for nuclear astrophysics.

Resonance scattering and α- transfer reactions for nuclear astrophysics. Resonance scattering and α- transfer reactions for nuclear astrophysics. Grigory Rogachev Outline Studying resonances using resonance scattering Studying resonances using transfer reactions Resonances

More information

Uncertainty in Molecular Photoionization!

Uncertainty in Molecular Photoionization! Uncertainty in Molecular Photoionization! Robert R. Lucchese! Department of Chemistry! Texas A&M University Collaborators:! At Texas A&M: R. Carey, J. Lopez, J. Jose! At ISMO, Orsay, France: D. Dowek and

More information

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern Measurement of the 62,63 Ni(n,γ) cross section at n_tof/cern University of Vienna 01. September 2011 ERAWAST II, Zürich Nucleosynthesis of heavy elements BB fusion neutrons Abundance (Si=10 6 ) Fe Mass

More information

R-matrix Analysis (I)

R-matrix Analysis (I) R-matrix Analysis (I) GANIL TALENT SchoolTALENT Course 6 Theory for exploring nuclear reaction experiments GANIL 1 st -19 th July Ed Simpson University of Surrey e.simpson@surrey.ac.uk Introduction Why

More information

ELECTRON SHELL IMPACT ON NUCLEI

ELECTRON SHELL IMPACT ON NUCLEI ELECTRON SHELL IMPACT ON THE ALPHA-DECAY OF HEAVY NUCLEI Yu.M. Tchuvil sky Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia In co-authorship with S.Yu. Igashov

More information

Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS. MARIE-LUISE MENZEL for the LUNA collaboration

Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS. MARIE-LUISE MENZEL for the LUNA collaboration 22 Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS MARIE-LUISE MENZEL for the LUNA collaboration 1. INTRODUCTION 1.1 NEON-SODIUM-CYCLE 1.2 THE 22 Ne(p,γ) 23 Na REACTION INTRODUCTION

More information

Nuclear reactions in stars, and how we measure their reaction rates in the lab.

Nuclear reactions in stars, and how we measure their reaction rates in the lab. Nuclear reactions in stars, and how we measure their reaction rates in the lab. R. J. (Jerry) Peterson University of Colorado Jerry.Peterson@Colorado.edu Kitchens in the Cosmos Nuclear fusion reactions

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost Stars form from the interstellar medium and reach stability fusing hydrogen in their cores. This chapter is about the long, stable middle age of stars on the main

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

Solar Neutrinos. Solar Neutrinos. Standard Solar Model

Solar Neutrinos. Solar Neutrinos. Standard Solar Model Titelseite Standard Solar Model 08.12.2005 1 Abstract Cross section, S factor and lifetime ppi chain ppii and ppiii chains CNO circle Expected solar neutrino spectrum 2 Solar Model Establish a model for

More information

Nuclear matter EoS including few-nucleon correlations

Nuclear matter EoS including few-nucleon correlations IL NUOVO CIMENTO 39 C (2016) 392 DOI 10.1393/ncc/i2016-16392-8 Colloquia: IWM-EC 2016 Nuclear matter EoS including few-nucleon correlations G. Röpke( ) Institut für Physik, Universität Rostock - D-18051

More information

Problems in deuteron stripping reaction theories

Problems in deuteron stripping reaction theories Problems in deuteron stripping reaction theories DY Pang School of Physics and Nuclear Energy Engineering, Beihang University, Beijing October 7, 2016 Topics: Some history of the study of deuteron stripping

More information

Continuum States in Drip-line Oxygen isotopes

Continuum States in Drip-line Oxygen isotopes Continuum States in Drip-line Oxygen isotopes EFES-NSCL WORKSHOP, Feb. 4-6, 2010 @ MSU Department of Physics The University of Tokyo Koshiroh Tsukiyama *Collaborators : Takaharu Otsuka (Tokyo), Rintaro

More information

RPA and QRPA calculations with Gaussian expansion method

RPA and QRPA calculations with Gaussian expansion method RPA and QRPA calculations with Gaussian expansion method H. Nakada (Chiba U., Japan) @ DCEN11 Symposium (YITP, Sep. 6, 11) Contents : I. Introduction II. Test of GEM for MF calculations III. Test of GEM

More information

MAJOR NUCLEAR BURNING STAGES

MAJOR NUCLEAR BURNING STAGES MAJOR NUCLEAR BURNING STAGES The Coulomb barrier is higher for heavier nuclei with high charge: The first reactions to occur are those involving light nuclei -- Starting from hydrogen burning, helium burning

More information

1 Stellar Energy Generation Physics background

1 Stellar Energy Generation Physics background 1 Stellar Energy Generation Physics background 1.1 Relevant relativity synopsis We start with a review of some basic relations from special relativity. The mechanical energy E of a particle of rest mass

More information

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech. Λ(1405) and Negative-Parity Baryons in Lattice QCD Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.) The Λ(1405) Particle Mass: ~1406.5 MeV Width: ~50 MeV I=0,

More information

Advanced Stellar Astrophysics

Advanced Stellar Astrophysics v Advanced Stellar Astrophysics William K. Rose University of Maryland College Park CAMBRIDGE UNIVERSITY PRESS Contents Preface xiii Star formation and stellar evolution: an overview 1 1 A short history

More information

Title. Author(s)Itagaki, N.; Oertzen, W. von; Okabe, S. CitationPhysical Review C, 74: Issue Date Doc URL. Rights.

Title. Author(s)Itagaki, N.; Oertzen, W. von; Okabe, S. CitationPhysical Review C, 74: Issue Date Doc URL. Rights. Title Linear-chain structure of three α clusters in 13C Author(s)Itagaki, N.; Oertzen, W. von; Okabe, S. CitationPhysical Review C, 74: 067304 Issue Date 2006-12 Doc URL http://hdl.handle.net/2115/17192

More information

Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models

Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models, ab R. Gallino, b F. Käppeler, c M. Wiescher, d and C. Travaglio a a INAF - Astronomical Observatory Turin, Turin, Italy b University

More information

Pairing Correlations in Nuclei on Neutron Drip Line

Pairing Correlations in Nuclei on Neutron Drip Line Pairing Correlations in Nuclei on Neutron Drip Line INT Workshop on Pairing degrees of freedom in nuclei and the nuclear medium Nov. 14-17, 2005 Hiroyuki Sagawa (University of Aizu) Introduction Three-body

More information

Electron screening effect in nuclear reactions and radioactive decays

Electron screening effect in nuclear reactions and radioactive decays lectron screening effect in nuclear reactions and radioactive decays a, K. Czerski ab, P. Heide b, A. Huke b, A.i. Kılıç a, I. Kulesza a, L. Martin c, G. Ruprecht c a Institute of Physics, University of

More information

arxiv: v2 [astro-ph.co] 25 Jun 2009

arxiv: v2 [astro-ph.co] 25 Jun 2009 Big Bang Nucleosynthesis: The Strong Nuclear Force meets the Weak Anthropic Principle J. MacDonald and D.J. Mullan Department of Physics and Astronomy, University of Delaware, DE 19716 (Dated: June 25,

More information

Chiral dynamics and baryon resonances

Chiral dynamics and baryon resonances Chiral dynamics and baryon resonances Tetsuo Hyodo a Tokyo Institute of Technology a supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, June 5th 1 Contents Contents

More information

Microscopic approach to NA and AA scattering in the framework of Chiral EFT and BHF theory

Microscopic approach to NA and AA scattering in the framework of Chiral EFT and BHF theory Microscopic approach to NA and AA scattering in the framework of Chiral EFT and BHF theory Masakazu TOYOKAWA ( 豊川将一 ) Kyushu University, Japan Kyushu Univ. Collaborators M. Yahiro, T. Matsumoto, K. Minomo,

More information

Multi-cluster problems: resonances, scattering and condensed states

Multi-cluster problems: resonances, scattering and condensed states Journal of Physics: Conference Series OPEN ACCESS Multi-cluster problems: resonances, scattering and condensed states To cite this article: K Kat et al 2013 J. Phys.: Conf. Ser. 436 012026 View the article

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars A new equation of state with abundances of all nuclei in core collapse simulations of massive stars 1, Kohsuke Sumiyoshi 2, Shoichi Yamada 1,3, Hideyuki Suzuki 4 1 Department of Science and Engineering,

More information

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams:

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: 1. The evolution of a number of stars all formed at the same time

More information

Dynamic Mechanism of TSC Condensation Motion

Dynamic Mechanism of TSC Condensation Motion Takahashi, A. Dynamic Mechanism of TSC Condensation Motion. in ICCF-14 International Conference on Condensed Matter Nuclear Science. 008. Washington, DC. Dynamic Mechanism of TSC Condensation Motion Akito

More information

Present Status and Plans of JENDL FP Data Evaluation Project

Present Status and Plans of JENDL FP Data Evaluation Project Present Status and Plans of JENDL FP Data Evaluation Project KAWANO Toshihiko and FP Nuclear Data Evaluation Working Group 1 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

More information

arxiv:nucl-th/ v1 21 Mar 2001

arxiv:nucl-th/ v1 21 Mar 2001 Relativistic Hartree-Bogoliubov Calculation of Specific Heat of the Inner Crust of Neutron Stars arxiv:nucl-th/5v Mar akuya Nakano and Masayuki Matsuzaki Department of Physics, Kyushu University, Fukuoka

More information

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Dipole Polarizability and Neutron Skins in 208 Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Equation of State of neutron matter and neutron skin Proton scattering at 0 and electric

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics I. Stellar burning Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008 1 / 32

More information

Eikonal method for halo nuclei

Eikonal method for halo nuclei Eikonal method for halo nuclei E. C. Pinilla, P. Descouvemont and D. Baye Université Libre de Bruxelles, Brussels, Belgium 1. Motivation 2. Introduction 3. Four-body eikonal method Elastic scattering 9

More information

Explosive Events in the Universe and H-Burning

Explosive Events in the Universe and H-Burning Explosive Events in the Universe and H-Burning Jordi José Dept. Física i Enginyeria Nuclear, Univ. Politècnica de Catalunya (UPC), & Institut d Estudis Espacials de Catalunya (IEEC), Barcelona Nuclear

More information

Review of lattice EFT methods and connections to lattice QCD

Review of lattice EFT methods and connections to lattice QCD Review of lattice EFT methods and connections to lattice QCD Dean Lee Michigan State University uclear Lattice EFT Collaboration Multi-Hadron Systems from Lattice QCD Institute for uclear Theory Feburary

More information

arxiv: v1 [astro-ph.he] 28 Dec 2010

arxiv: v1 [astro-ph.he] 28 Dec 2010 Published in Phys. Rev. C 82, 058801(R)(2010) Re-analysis of the (J = 5) state at 592keV in 180 Ta and its role in the ν-process nucleosynthesis of 180 Ta in supernovae T. Hayakawa Quantum Beam Science

More information

1p1/2 0d5/2. 2s1/2-0.2 Constant Bound Wave Harmonic Oscillator Bound Wave Woods-Saxon Bound Wave Radius [fm]

1p1/2 0d5/2. 2s1/2-0.2 Constant Bound Wave Harmonic Oscillator Bound Wave Woods-Saxon Bound Wave Radius [fm] Development of the Multistep Compound Process Calculation Code Toshihiko KWNO Energy Conversion Engineering, Kyushu University 6- Kasuga-kouen, Kasuga 86, Japan e-mail: kawano@ence.kyushu-u.ac.jp program

More information

dp dr = GM c = κl 4πcr 2

dp dr = GM c = κl 4πcr 2 RED GIANTS There is a large variety of stellar models which have a distinct core envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic

More information

Neutron star structure explored with a family of unified equations of state of neutron star matter

Neutron star structure explored with a family of unified equations of state of neutron star matter Neutron star structure explored with a family of unified equations of state of neutron star matter Department of Human Informatics, ichi Shukutoku University, 2-9 Katahira, Nagakute, 48-1197, Japan E-mail:

More information

in2p , version 1-28 Nov 2008

in2p , version 1-28 Nov 2008 Author manuscript, published in "Japanese French Symposium - New paradigms in Nuclear Physics, Paris : France (28)" DOI : 1.1142/S21831391444 November 23, 28 21:1 WSPC/INSTRUCTION FILE oliveira International

More information

Citation PHYSICAL REVIEW C (2006), 74(5) RightCopyright 2006 American Physical So

Citation PHYSICAL REVIEW C (2006), 74(5)   RightCopyright 2006 American Physical So Title alphac-12 in angular distri 12(O-2()) Author(s) Takashina, M; Sakuragi, Y Citation PHYSICAL REVIEW C (2006), 74(5) Issue Date 2006-11 URL http://hdl.handle.net/2433/50458 RightCopyright 2006 American

More information

Neutron capture cross sections on light nuclei

Neutron capture cross sections on light nuclei Mem. S.A.It. Vol. 77, 922 c SAIt 2006 Memorie della Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, and E. Uberseder Forschungszentrum Karlsruhe, Institut für Kernphysik, Postfach

More information

Unbound States. 6.3 Quantum Tunneling Examples Alpha Decay The Tunnel Diode SQUIDS Field Emission The Scanning Tunneling Microscope

Unbound States. 6.3 Quantum Tunneling Examples Alpha Decay The Tunnel Diode SQUIDS Field Emission The Scanning Tunneling Microscope Unbound States 6.3 Quantum Tunneling Examples Alpha Decay The Tunnel Diode SQUIDS Field Emission The Scanning Tunneling Microscope 6.4 Particle-Wave Propagation Phase and Group Velocities Particle-like

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost This chapter is the heart of any discussion of astronomy. Previous chapters showed how astronomers make observations with telescopes and how they analyze their observations

More information