W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors


 Stanley Lloyd
 5 years ago
 Views:
Transcription
1 W05D1 Conductors and Insulators Capacitance & Capacitors Energy Stored in Capacitors W05D1 Reading Assignment Course Notes: Sections 3.3, 4.5,
2 Outline Conductors and Insulators Conductors as Shields Capacitance & Capacitors Energy Stored in Capacitors 2
3 Conductors and Insulators Conductor: Charges are free to move Electrons weakly bound to atoms Example: metals Insulator: Charges are NOT free to move Electrons strongly bound to atoms Examples: plastic, paper, wood 3
4 Charge Distribution and Conductors The Charged Metal Slab Applet: Nonzero charge placed in metal slab Charges move to surface (move as far apart as possible) Electric field perpendicular to surface, zero inside slab 4
5 Induced Charge Distribution in External Electric Field Charging by Induction, Exterior of a Neutral Metallic Box Induced charges move to surface Electric field perpendicular to surface, zero inside slab 5
6 Conductors in Equilibrium Conductor Placed in External Electric Field 1) E = 0 inside 2) E perpendicular to surface 3) Induced surface charge distribution 6
7 Hollow Conductors: Applet Charge placed OUTSIDE induces charge separation ON OUTSIDE. Electric field is zero inside. 7
8 Electric Field on Surface of Conductor 1) E perpendicular to surface 2) Excess charge on surface Apply Gauss s Law E surface A =! A " 0 # E surface =! " 0 8
9 Conductors are Equipotential Surfaces 1) Conductors are equipotential objects 2) E perpendicular to surface 9
10 Group Problem: Metal Spheres Connected by a Wire Two conducting spheres 1 and 2 with radii r 1 and r 2 are connected by a thin wire. What is the ratio of the charges q 1 /q 2 on the surfaces of the spheres? You may assume that the spheres are very far apart so that the charge distributions on the spheres are uniform. 10
11 Concept Question: Point Charge in Conductor A point charge +q is placed inside a hollow cavity of a conductor that carries a net charge +Q. What is the total charge on the outer surface of the conductor? 1. Q. 2. Q + q. 3. q. 4. Q  q. 5. Zero. 11
12 Hollow Conductors: Applet Charge placed INSIDE induces balancing charge ON INSIDE. Electric field outside is field of point charge. 12
13 Capacitors and Capacitance Our first of 3 standard electronics devices (Capacitors, Resistors & Inductors) 13
14 Capacitors: Store Electric Charge Capacitor: Two isolated conductors Equal and opposite charges ±Q Potential difference between them.!v C = Q!V Units: Coulombs/Volt or Farads C is Always Positive 14
15 Parallel Plate Capacitor; Applet Oppositely charged plates: Charges move to inner surfaces Electric field perpendicular to surface, zero inside plates 15
16 Calculating E (Gauss s Law) S! E! d A! "" = q in ( ) =! A Gauss E A Gauss σ Q E = = ε 0 Aε # 0 " 0 0 Note: We only consider a single sheet! Doesn t the other sheet matter? 16
17 Superposition Principle Between the plates:! E =! E + +! E! =! " 2# 0 ĵ! " 2# 0 ĵ =! " # 0 ĵ Above the plates:! E =! E + +! E! = + " 2# 0 ĵ! " 2# 0 ĵ =! 0 Below plates:! E =! E + +! E! =! " 2# 0 ĵ + " 2# 0 ĵ =! 0 17
18 Parallel Plate Capacitor!V = " E#! $ d S! = Ed = Q d C = Q A%!V = " A 0 d 0 top bottom C depends only on geometric factors A and d 18
19 Group Problem: Spherical Shells A spherical conductor of radius a carries a charge +Q. A second thin conducting spherical shell of radius b carries a charge Q. Calculate the capacitance. 19
20 Concept Question: Isolated Spherical Conductor What is the capacitance of an isolated spherical conductor of radius a? 1. Capacitance is not well defined. 4!" 0 a 2. Capacitance is. 3. Capacitance is infinite. 4. Capacitance is zero. 20
21 Demonstration: Capacitance of Van der Graaf Generator C = 4!" 0 a!v = k e Q a E = k e Q a 2!V = Ea 21
22 Capacitance of Earth For an isolated spherical conductor of radius a: C = 4πε 0a ε 0 = F m a = m C = F = 0.7mF A Farad is REALLY BIG! We usually use pf (1012 ) or nf (109 ) 22
23 Energy To Charge Capacitor 1. Capacitor starts uncharged. 2. Carry +dq from bottom to top. Now top has charge q = +dq, bottom dq 3. Repeat 4. Finish when top has charge q = +Q, bottom Q 23
24 Stored Energy in Charging Capacitor At some point top plate has +q, bottom has q Potential difference is V = q / C Change in stored energy done lifting another dq is du = dq V 24
25 Stored Energy in Charging Capacitor So change in stored energy to move dq is: du = dqv = dq q C = 1 C q dq Total energy to charge to Q U = Q! du = 1! C q dq = 1 C 0 Q
26 Energy Stored in Capacitor Since C = Q!V U = Q 2 = 1 Q ΔV = 1 C ΔV 2 2C 2 2 Where is the energy stored??? 26
27 Energy Stored in Capacitor Energy stored in the E field! Parallelplate capacitor: C =! o A d and V = Ed U = 1 2 CV 2 = 1 2! o A d ( Ed ) 2 =! E 2 o 2 " ( Ad) = u " (volume) E Energy density [J/m 3 ] u E =! o E
28 Demonstration: Changing Distance Between Circular Capacitor Plates E4 28
29 Concept Question: Changing Dimensions A parallelplate capacitor is charged until the plates have equal and opposite charges ±Q, separated by a distance d, and then disconnected from the charging source (battery). The plates are pulled apart to a distance D > d. What happens to the magnitude of the potential difference V and charge Q? 1. V, Q increases. 2. V increases, Q is the same. 3. V increases, Q decreases. 4. V is the same, Q increases. 5. V is the same, Q is the same. 6. V is the same, Q decreases. 7. V decreases, Q increases. 8. V decreases, Q is the same. 9. V decreases, Q decreases. 29
30 Concept Question: Changing Dimensions A parallelplate capacitor is charged until the plates have equal and opposite charges ±Q, separated by a distance d. While still connected to the charging source, the plates are pulled apart to a distance D > d. What happens to the magnitude of the potential difference V and charge Q? 1. V, Q increases. 2. V increases, Q is the same. 3. V increases, Q decreases. 4. V is the same, Q increases. 5. V is the same, Q is the same. 6. V is the same, Q decreases. 7. V decreases, Q increases. 8. V decreases, Q is the same. 9. V decreases, Q decreases. 30
31 Concept Question: Changing Dimensions A parallelplate capacitor, disconnected from a battery, has plates with equal and opposite charges, separated by a distance d. Suppose the plates are pulled apart until separated by a distance D > d. How does the final electrostatic energy stored in the capacitor compare to the initial energy? 1. The final stored energy is smaller 2. The final stored energy is larger 3. Stored energy does not change. 31
32 Demonstration: Charging Up a Capacitor A 100 microfarad oilfilled capacitor is charged to 4 KV and discharged through a wire Stored Energy: U = 1 2 CV 2 = 1 2 (1!10"4 F)(4!10 3 V) 2 = 800 J 32
Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1
Physics 212 Lecture 7 Conductors and Capacitance Physics 212 Lecture 7, Slide 1 Conductors The Main Points Charges free to move E = 0 in a conductor Surface = Equipotential In fact, the entire conductor
More informationClass 5 : Conductors and Capacitors
Class 5 : Conductors and Capacitors What is a conductor? Field and potential around conductors Defining and evaluating capacitance Potential energy of a capacitor Recap Gauss s Law E. d A = Q enc and ε
More informationChapter 25. Capacitance
Chapter 25 Capacitance 1 1. Capacitors A capacitor is a twoterminal device that stores electric energy. 2 2. Capacitance The figure shows the basic elements of any capacitor two isolated conductors of
More informationRoll Number SET NO. 42/1
Roll Number SET NO. 4/1 INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS CLASS: XII Sub. Code: 04 Time Allotted: Hrs 0.04.018 Max. Marks: 70 General Instructions: 1. All questions are compulsory. There
More informationPhys222 W16 Exam 2: Chapters Key. Name:
Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +ydirection when it enters a region with a uniform electric field pointing in the +ydirection. Which
More informationReading: Electrostatics 3. Key concepts: Capacitance, energy storage, dielectrics, energy in the Efield.
Reading: Electrostatics 3. Key concepts: Capacitance, energy storage, dielectrics, energy in the Efield. 1.! Questions about charging and discharging capacitors. When an uncharged capacitor is connected
More informationHollow Conductors. A point charge +Q is placed at the center of the conductors. The induced charges are: 1. Q(I1) = Q(I2) = Q; Q(O1) = Q(O2)= +Q
O2 I2 O1 I1 Hollow Conductors A point charge +Q is placed at the center of the conductors. The induced charges are: 1. Q(I1) = Q(I2) = Q; Q(O1) = Q(O2)= +Q 2. Q(I1) = Q(I2) = +Q; Q(O1) = Q(O2)= Q 3.
More informationCapacitors (Chapter 26)
Capacitance, C Simple capacitive circuits Parallel circuits Series circuits Combinations Electric energy Dielectrics Capacitors (Chapter 26) Capacitors What are they? A capacitor is an electric device
More information2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.
2014 F 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2. Figure shows the field lines on a positive charge. Is the work done
More informationCapacitance and Dielectrics
Slide 1 / 39 Capacitance and Dielectrics 2011 by Bryan Pflueger Capacitors Slide 2 / 39 A capacitor is any two conductors seperated by an insulator, such as air or another material. Each conductor has
More informationChapter 29. Electric Potential: Charged Conductor
hapter 29 Electric Potential: harged onductor 1 Electric Potential: harged onductor onsider two points (A and B) on the surface of the charged conductor E is always perpendicular to the displacement ds
More informationPhysics Electricity & Opcs Lecture 8 Chapter 24 sec Fall 2017 Semester Professor
Physics 24100 Electricity & Opcs Lecture 8 Chapter 24 sec. 12 Fall 2017 Semester Professor Kol@ck How Much Energy? V 1 V 2 Consider two conductors with electric potentials V 1 and V 2 We can always pick
More informationPhysics (
Exercises Question 2: Two charges 5 0 8 C and 3 0 8 C are located 6 cm apart At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero
More informationChapter 24 Capacitance and Dielectrics
Chapter 24 Capacitance and Dielectrics Lecture by Dr. Hebin Li Goals for Chapter 24 To understand capacitors and calculate capacitance To analyze networks of capacitors To calculate the energy stored in
More informationPhysics (
Question 2.12: A charge of 8 mc is located at the origin. Calculate the work done in taking a small charge of 2 10 9 C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm).
More informationPhysics Jonathan Dowling. Physics 2102 Lecture 7 Capacitors I
Physics 2102 Jonathan Dowling Physics 2102 Lecture 7 Capacitors I Capacitors and Capacitance Capacitor: any two conductors, one with charge +, other with charge Potential DIFFERENCE etween conductors =
More informationExam 2 Practice Problems Part 1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam 2 Practice Problems Part 1 Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z ) is described
More informationINDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS
Roll Number SET NO. General Instructions: INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS CLASS: XII Sub. Code: 04 Time Allotted: Hrs 0.04.08 Max. Marks: 70. All questions are compulsory. There are
More informationEX. Potential for uniformly charged thin ring
EX. Potential for uniformly charged thin ring Q dq r R dφ 0 V ( Z ) =? z kdq Q Q V =, dq = Rdϕ = dϕ Q r 2πR 2π 2π k Q 0 = d ϕ 0 r 2π kq 0 2π = 0 d ϕ 2π r kq 0 = r kq 0 = 2 2 R + z EX. Potential for uniformly
More informationPhysics 202, Exam 1 Review
Physics 202, Exam 1 Review Logistics Topics: Electrostatics + Capacitors (Chapters 2124) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential.
More informationCapacitor: any two conductors, one with charge +Q, other with charge Q Potential DIFFERENCE between conductors = V
Physics 2102 Gabriela González Capacitor: any two conductors, one with charge +Q, other with charge Q Potential DIFFERENCE between conductors = V Units of capacitance: Farad (F) = Coulomb/Volt Q +Q Uses:
More informationF 13. The two forces are shown if Q 2 and Q 3 are connected, their charges are equal. F 12 = F 13 only choice A is possible. Ans: Q2.
Q1. Three fixed point charges are arranged as shown in Figure 1, where initially Q 1 = 10 µc, Q = 15 µc, and Q 3 = 5 µc. If charges Q and Q 3 are connected by a very thin conducting wire and then disconnected,
More informationF = Q big = c) The electric potential in a certain region of space can be described by the equation: 16y2 (1 + z 2 ) V (x, y, z) = 10x
1) Short Answer (4 points each)(show YOUR WORK) a) A 3.0 nc (positive) charge and a 1.0 nc (negative) charge are located 0.80 m apart from each other. What is the force on the 3.0 nc (positive) charge
More informationChapter 26. Capacitance and Dielectrics
Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies energystoring
More informationAP Physics C. Electric Potential and Capacitance. Free Response Problems
AP Physics C Electric Potential and Capacitance Free Response Problems 1. Two stationary point charges + are located on the yaxis at a distance L from the origin, as shown above. A third charge +q is
More information13  ELECTROSTATICS Page 1 ( Answers at the end of all questions )
3  ELECTROSTATICS Page ) Two point charges 8 and  are located at x = 0 and x = L respectively. The location of a point on the x axis at which the net electric field due to these two point charges is
More informationDefinition of Capacitance
Definition of Capacitance The capacitance, C, of a capacitor is defined as the ratio of the magnitude of the charge on either conductor to the potential difference between the conductors Q C = ΔV The SI
More informationCapacitance & Capacitors, Energy Stored in Capacitors Challenge Problems
Problem 1: Capacitance & Capacitors, Energy Stored in Capacitors Challenge Problems A parallelplate capacitor is charged to a potential V 0, charge Q 0 and then disconnected from the battery. The separation
More informationChapter 26. Capacitance and Dielectrics
Chapter 26 Capacitance and Dielectrics Circuits and Circuit Elements Electric circuits are the basis for the vast majority of the devices used in society. Circuit elements can be connected with wires to
More informationCapacitance, Resistance, DC Circuits
This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple
More information4) A 3.0 pf capacitor consists of two parallel plates that have surface charge densities of 1.0
Quantitative 3) Two parallel plates are separated by 1.0 mm. If the potential difference between them is 2.0 V, what is the magnitude of their surface charge densities? A) 18 nc/m2 4) A 3.0 pf capacitor
More informationChapter 18. Circuit Elements, Independent Voltage Sources, and Capacitors
Chapter 18 Circuit Elements, Independent Voltage Sources, and Capacitors Ideal Wire _ + Ideal Battery Ideal Resistor Ideal Capacitor Series Parallel An ideal battery provides a constant potential difference
More informationCapacitance and Dielectrics
Chapter 24 Capacitance and Dielectrics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 24 To understand capacitors
More informationChapter 26. Capacitance and Dielectrics
Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate
More informationChapter Electrostatic Potential and Capacitance
Chapter Electrostatic Potential and Capacitance C/ 2 C/2 Ans: Q6. MockTime.com Q1. A 4µF conductor is charged to 400 volts and then its plates are joined through a resistance of 1 kω. The heat produced
More informationExam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1
Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 A rod of charge per unit length λ is surrounded by a conducting, concentric cylinder
More informationChapter 26. Capacitance and Dielectrics
Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters in power supplies to eliminate
More informationA) I B) II C) III D) IV E) V
1. A square loop of wire moves with a constant speed v from a fieldfree region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as
More informationConsider a point P on the line joining the two charges, as shown in the given figure.
Question 2.1: Two charges 5 10 8 C and 3 10 8 C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors http://www.physics.wayne.edu/~apetrov/phy2140/
More informationPotential from a distribution of charges = 1
Lecture 7 Potential from a distribution of charges V = 1 4 0 X Smooth distribution i q i r i V = 1 4 0 X i q i r i = 1 4 0 Z r dv Calculating the electric potential from a group of point charges is usually
More informationChapter 24: Capacitance and Dielectrics. Capacitor: two conductors (separated by an insulator) usually oppositely charged. (defines capacitance)
hapter 4: apacitance and Dielectrics apacitor: two conductors (separated by an insulator) usually oppositely charged a b  ab proportional to charge / ab (defines capacitance) units: F / pc4: The parallel
More informationAP Physics C  E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics.
Slide 1 / 39 Slide 2 / 39 P Physics & M apacitance and ielectrics 20151205 www.njctl.org Slide 3 / 39 apacitors capacitor is any two conductors seperated by an insulator, such as air or another material.
More informationChapter 19 Electric Potential and Electric Field
Chapter 19 Electric Potential and Electric Field The electrostatic force is a conservative force. Therefore, it is possible to define an electrical potential energy function with this force. Work done
More informationFriday July 11. Reminder Put Microphone On
Friday July 11 8:30 AM 9:0 AM Catch up Lecture 3 Slide 5 Electron projected in electric field problem Chapter 23 Problem 29 Cylindrical shell problem surrounding wire Show Faraday Ice Pail no chrage inside
More informationThis work is licensed under a Creative Commons AttributionNoncommercialShare Alike 4.0 License.
University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 07. Capacitors I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License
More informationCapacitors II. Physics 2415 Lecture 9. Michael Fowler, UVa
Capacitors II Physics 2415 Lecture 9 Michael Fowler, UVa Today s Topics First, some review then Storing energy in a capacitor How energy is stored in the electric field Dielectrics: why they strengthen
More informationElectric Potential. Capacitors (Chapters 28, 29)
Electric Potential. Capacitors (Chapters 28, 29) Electric potential energy, U Electric potential energy in a constant field Conservation of energy Electric potential, V Relation to the electric field strength
More informationPhysics 202, Exam 1 Review
Physics 202, Exam 1 Review Logistics Topics: Electrostatics (Chapters 2124.6) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential. Interaction
More information7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged?
1. In which Orientation, a dipole placed in uniform electric field is in (a) stable (b) unstable equilibrium. 2. Two point charges having equal charges separated by 1 m in distance experience a force of
More informationChapter 24: Capacitance and Dielectrics
hapter 4: apacitance and Dielectrics apacitor: two conductors (separated by an insulator) usually oppositely charged a + b  ab proportional to charge = / ab (defines capacitance) units: F = / pc4: The
More informationUniversity Physics (PHY 2326)
Chapter 23 University Physics (PHY 2326) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors 3/26/2015
More informationThe Capacitor. +q q
The Capacitor I. INTRODUCTION A simple capacitor consists of two parallel plates separated by air or other insulation, and is useful for storing a charge. If a potential difference is placed across the
More informationChapters 22/23: Potential/Capacitance Tuesday September 20 th
Chapters 22/23: Potential/Capacitance Tuesday September 20 th Mini Exam 2 on Thursday: Covers Chs. 21 and 22 (Gauss law and potential) Covers LONCAPA #3 to #6 (due this Wed.) No formula sheet allowed!!
More informationLook over. examples 1, 2, 3, 5, 6. Look over. Chapter 25 section 18. Chapter 19 section 5 Example 10, 11
PHYS Look over hapter 5 section 8 examples,, 3, 5, 6 PHYS Look over hapter 7 section 79 Examples 8, hapter 9 section 5 Example 0, Things to Know ) How to find the charge on a apacitor. ) How to find
More informationPhysics 55 Final Exam Fall 2012 Dr. Alward Page 1
Physics 55 Final Exam Fall 2012 Dr. Alward Page 1 1. The specific heat of lead is 0.030 cal/g C. 300 g of lead shot at 100 C is mixed with 100 g of water at 70 C in an insulated container. The final temperature
More informationElectric Field of a uniformly Charged Thin Spherical Shell
Electric Field of a uniformly Charged Thin Spherical Shell The calculation of the field outside the shell is identical to that of a point charge. The electric field inside the shell is zero. What are the
More informationElectronics Capacitors
Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists
More informationExam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law.
Prof. Eugene Dunnam Prof. Paul Avery Feb. 6, 007 Exam 1 Solutions 1. A charge Q 1 and a charge Q = 1000Q 1 are located 5 cm apart. The ratio of the electrostatic force on Q 1 to that on Q is: (1) none
More informationPRACTICE EXAM 1 for Midterm 1
PRACTICE EXAM 1 for Midterm 1 Multiple Choice Questions 1) The figure shows three electric charges labeled Q 1, Q 2, Q 3, and some electric field lines in the region surrounding the charges. What are the
More informationAP Physics C. Electricity  Term 3
AP Physics C Electricity  Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the
More informationPhysics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.
Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the yaxis, 15 µm above the origin, while another charge q
More informationPHYSICS. Electrostatics
Electrostatics Coulomb s Law: SYNOPSIS SI unit of electric intensity is NC 1 Dimensions The electric intensity due to isolated point charge, Electric dipole moment, P = q (2a), SI unit is C m Torque on
More informationLESSON 2 PHYSICS NOTES
LESSON 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE SECTION I ELECTROSTATIC POTENTIAL ELECTRIC FIELD IS CONSERVATIVE In an electric field work done by the electric field in moving a unit positive charge from
More informationQ1. Three point charges are arranged as shown in FIGURE 1. Find the magnitude of the net electrostatic force on the point charge at the origin.
Coordinator: Saleem Rao Monday, May 01, 2017 Page: 1 Q1. Three point charges are arranged as shown in FIGURE 1. Find the magnitude of the net electrostatic force on the point charge at the origin. A) 1.38
More informationPHYS 241 EXAM #1 October 5, 2006
1. ( 5 points) Two point particles, one with charge 8 10 9 C and the other with charge 2 10 9 C, are separated by 4 m. The magnitude of the electric field (in N/C) midway between them is: A. 9 10 9 B.
More informationCapacitance and Dielectrics. Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68
Capacitance and Dielectrics Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68 Capacitors Capacitors are devices that store electric charge and energy Examples of where capacitors are used include: radio
More informationPhysics 1202: Lecture 4 Today s Agenda. Today s Topic :
Physics 1202: Lecture 4 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #1: On Masterphysics: due this coming Friday Go to the syllabus
More informationMansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance
Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First SixWeeks Second SixWeeks Third SixWeeks Lab safety Lab practices and ethical practices Math and Calculus
More informationCapacitors And Dielectrics
1 In this small ebook we ll learn about capacitors and dielectrics in short and then we ll have some questions discussed along with their solutions. I ll also give you a practices test series which you
More informationCapacitance and capacitors. Dr. Loai Afana
apacitance and capacitors apacitors apacitors are devices that store energy in an electric field. apacitors are used in many everyday applications Heart defibrillators amera flash units apacitors are
More informationAP Physics C Electricity & Magnetism Mid Term Review
AP Physics C Electricity & Magnetism Mid Term Review 1984 37. When lighted, a 100watt light bulb operating on a 110volt household circuit has a resistance closest to (A) 102 Ω (B) 101 Ω (C) 1 Ω (D)
More informationSharpen thinking about connections among electric field, electric potential difference, potential energy
PHYS 2015  Week 6 Sharpen thinking about connections among electric field, electric potential difference, potential energy Apply the ideas to capacitance and the parallel plate capacitor For exclusive
More informationAgenda for Today. Elements of Physics II. Capacitors Parallelplate. Charging of capacitors
Capacitors Parallelplate Physics 132: Lecture e 7 Elements of Physics II Charging of capacitors Agenda for Today Combinations of capacitors Energy stored in a capacitor Dielectrics in capacitors Physics
More informationChapter 24: Capacitance and dielectrics
Chapter 24: Capacitance and dielectrics Capacitor: a device store electric energy How to define capacitance In parallel and/or in series Electric energy stored in a capacitor Dielectric materials Capacitor:
More informationReview from yesterday. Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A
Review from yesterday Please answer PROBLEM 3 in Knight on page 716 while we are waiting to start. It takes 3.0 μj to move a 15nC charge from A to B 1 Review from yesterday Please answer PROBLEM 17 in
More informationPHYSICS  CLUTCH CH 24: CAPACITORS & DIELECTRICS.
!! www.clutchprep.com CONCEPT: CAPACITORS AND CAPACITANCE A CAPACITOR is formed by two surfaces of equal/opposite charge brought close together  Separation of charge potential energy stored Connecting
More information(3.5.1) V E x, E, (3.5.2)
Lecture 3.5 Capacitors Today we shall continue our discussion of electrostatics and, in particular, the concept of electrostatic potential energy and electric potential. The main example which we have
More informationPHYS1212 Exam#2 Spring 2014
PHYS Exam# Spring 4 NAME There are 9 different pages in this quiz. Check now to see that you have all of them. CEDIT PAT A 6% PAT B 4% TOTAL % GADE All work and answers must be given in the spaces provided
More informationPhysics Lecture: 16 MON 23 FEB Capacitance I
Physics 2113 Jonathan Dowling Physics 2113 Lecture: 16 MON 23 FEB Capacitance I Capacitors and Capacitance Capacitor: any two conductors, one with charge +Q, other with charge Q Potential DIFFERENCE between
More informationAP Physics C. Electric Circuits III.C
AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the crosssectional area of the conductor changes. If a conductor has no current,
More informationElectric Potential Energy Chapter 16
Electric Potential Energy Chapter 16 Electric Energy and Capacitance Sections: 1, 2, 4, 6, 7, 8, 9 The electrostatic force is a conservative force It is possible to define an electrical potential energy
More informationPHY101: Major Concepts in Physics I. Photo: J. M. Schwarz
Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 17 on electric potential energy and electric potential and perhaps begin Chapter
More informationChapter 16. Electric Energy and Capacitance
Chapter 16 Electric Energy and Capacitance Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical potential energy function with this force Work
More informationCapacitance. PHY2049: Chapter 25 1
apacitance PHY049: hapter 5 1 oulomb s law Electric fields Equilibrium Gauss law What You Know: Electric Fields Electric fields for several charge configurations Point Dipole (along axes) Line Plane (nonconducting)
More informationConductors in Electrostatic Equilibrium
Lecture 6 Chapter 24 Conductors in Electrostatic Equilibrium 95.144 Conductors full of electrons? Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss:
More informationGauss s Law. Johann Carl Friedrich Gauss
Gauss s Law Johann Carl Friedrich Gauss 17771855 Mathematics and physics: including number theory, analysis, differential geometry, geodesy, electricity, magnetism, astronomy and optics. y = Be cx 2 First,
More informationPhysics Electricity and Magnetism Lecture 06  Capacitance. Y&F Chapter 24 Sec. 16
Physics  lectricity and Magnetism Lecture 6  apacitance Y&F hapter 4 Sec.  6 Overview Definition of apacitance alculating the apacitance Parallel Plate apacitor Spherical and ylindrical apacitors apacitors
More informationJSR INSTITUTE (PHYSICS) XII ASSINGMENT 1 (CAPACITANCE)
Physics J S R ESTD:007 JSR INSTITUTE (PHYSIS) XII ASSINGMENT (APAITANE). A capacitor of capacitance, which is initially charged up to a potential difference, is connected with a battery of emf / such that
More informationHomework. Reading: Chap. 29, Chap. 31 and Chap. 32. Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.
Homework Reading: Chap. 29, Chap. 31 and Chap. 32 Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.32 Problems: 29.49, 29.51, 29.52, 29.57, 29.58, 29.59, 29.63,
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying
More informationEnergy stored in a capacitor W = \ q V. i q1. Energy density in electric field i. Equivalent capacitance of capacitors in series
The Language of Physics Cwcihor Two conductors of any size or shape carrying equal and opposite charges are called a capacitor. The charge on the capacitor is directly proportional to the potential difference
More informationLecture 8 Multiple Choice Questions :
Lecture 8 Multiple Choice Questions : 1. A point charge 3Q lies at the centre of a conducting shell of radius 2R. The net charge on the outer surface of the shell is 3Q Zero +1.5 Q d. +3Q 2. Two identical
More informationA B C D E. 1 Two charges +Q and 3Q are placed in opposite corners of a square. The work required to move a test charge q from point A to point B is:
Slide 1 / 40 1 Two charges +Q and 3Q are placed in opposite corners of a square. The work required to move a test charge q from point to point is: dependent on the path taken from to directly proportional
More informationCapacitance. Chapter 21 Chapter 25. K = C / C o V = V o / K. 1 / Ceq = 1 / C / C 2. Ceq = C 1 + C 2
= Chapter 21 Chapter 25 Capacitance K = C / C o V = V o / K 1 / Ceq = 1 / C 1 + 1 / C 2 Ceq = C 1 + C 2 Copyright 252 Capacitance 25.01 Sketch a schematic diagram of a circuit with a parallelplate capacitor,
More informationToday s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V.
Today s agenda: Capacitors and Capacitance. You must be able to apply the equation C=Q/V. Capacitors: parallel plate, cylindrical, spherical. You must be able to calculate the capacitance of capacitors
More informationAP Physics C. Magnetism  Term 4
AP Physics C Magnetism  Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world
More informationChapter 24 Capacitance, Dielectrics, Electric Energy Storage
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage Units of Chapter 24 Capacitors (1, 2, & 3) Determination of Capacitance (4 & 5) Capacitors in Series and Parallel (6 & 7) Electric Energy Storage
More informationCapacitors and more. Lecture 9. Chapter 29. Physics II. Course website:
Lecture 9 Chapter 29 Physics II Capacitors and more Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html The
More informationCapacitors and more. Lecture 9. Chapter 29. Physics II. Course website:
Lecture 9 Chapter 29 Physics II Capacitors and more Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html The
More information