Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 5 Please write neatly, and in complete sentences when possible.

Size: px
Start display at page:

Download "Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 5 Please write neatly, and in complete sentences when possible."

Transcription

1 Math 460: Complex Analysis MWF am, Fulton Hall 425 Homework 5 Please write neatly, and in complete sentences when possible. Do the following problems from the book: 2.6.8, 2.6., 2.6.3, 2.6.4, The next problems concern linear fractional transformations. A linear fractional transformation is a map of the form f(z = az + b cz + d, for a, b, c, d C, and ad bc 0. A linear fractional transformation with c = 0 is called affine. Problem C. ( Show that an affine transformation takes circles to circles and lines to lines. (2 Show that the composition of two linear fractional transformations is another linear fractional transformation. (3 Show that, for each linear fractional transformation f, there is a linear fractional transformation g so that g f(z = z for any z where both maps are defined. If f is not affine, what is the domain of definition of g? Deduce the image of C \ { d/c} under f. (4 Suppose f(z = az+b is a non-affine linear fractional transformation. Find an affine linear fractional transformation L (z cz+d so that f L (z is defined on C \ {0}. (5 If f is non-affine as above, find an affine transformation L 2 (z so that L 2 f(z has image C \ {0}. (6 Use L and L 2 above to show that f must send circles and lines to circles and lines. (Hint: In the non-affine case, consider L 2 f L, and use Problem A from Homework 4.

2 2 Solution Let γ indicate the circle through the vertices of the triangle, oriented counterclockwise. The difference in the contour integrals of /z over the triangle and over γ is given by the integral of /z over three closed loops, each formed by a triangular edge and a circular arc. Each such loop is contained in a convex open set on which /z is analytic, so Cauchy s Theorem guarantees that the integral of /z over each loop is 0. We conclude that the integral of /z over the triangle is equal to the integral of /z over γ. We ve seen that the latter is equal to the integral of /(z c over the circle, where c is the center of the circle traversed by γ, which we have computed to be 2πi. Solution The distance of + i to the origin is given by 2, which is less than 2, so that + i is contained inside the contour γ. The winding number around + i is given by /2πi times the integral of /(z i over γ. The integral of /(z i over the circle of radius 2, oriented counterclockwise, can be expressed as the sum of the integrals of /(z i over the four quarters of the circle (oriented counterclockwise, since the contributions from the radial arcs cancel. The three quarters of this circle that are distinct from γ give 0 when calculating the desired contour integral, by Cauchy s Theorem, since each is contained in a convex open set on which /(z i is analytic. Thus the winding number of γ around + i is equal to the winding number of the counterclockwise circle of radius 2 around + i. The latter is equal to the winding number of the circle around 0, i.e.. Solution The first integral can be written as z = z 2 = z = z+ z. The function /(z + is analytic on a convex open set containing z =, so Cauchy s Integral Formula applies, and we have z = z+ z = 2πi ind z =( ( z + z= = 2πi 2 = πi.

3 Similarly, we have z 2 = z+ = z+ = = 2πi z z + = 2πi ind z+ =( z= z 2 = πi. Solution Let γ denote the counterclockwise contour z = 3, and let γ and γ 2 indicate the counterclockwise contours z = and z + =. One may show that the integral of /(z 2 around γ is equal to the sum of the integrals of /(z 2 around γ and γ 2 : With appropriate choices of arcs, the difference γ γ γ 2 is equal to the sum of closed loops, each contained in a convex open set on which /(z 2 is analytic so that Cauchy s Theorem applies. Thus z =3 z 2 = by exercise z = z 2 + z+ = z 2 = πi πi = 0, Solution Let γ indicate the contour that traverses T counterclockwise. Note that we are given that f(z M and z = for z T. Thus f(z/z = f(z M for all z on γ. By Cauchy s Integral Formula, ind γ (0 f(0 = 2πi γ z. Note that the length of γ is given by l(γ = 2π, and we have also previously computed that ind γ (0 =. Taking absolute values, we find f(0 = f(z 2π z l(γ M = M. 2π γ Solution C(. Suppose f(z = az + b is an affine transformation. Then f consists of a rotation (z az followed by a translation (z z + b. Each of these maps take lines to lines and circles to circles, so f takes lines to lines and circles to circles. Solution C(2. Suppose f and f 2 are two linear fractional transformations given by f i (z = a iz + b i c i z + d i, with a i d b i c i 0 for i = or 2. We compute: 3

4 4 f f 2 (z = a a 2z+b 2 c 2 z+d 2 + b c a 2 z+b 2 c 2 z+d + d = a (a 2 z + b 2 + b (c 2 z + d 2 c (a 2 z + b 2 + d (c 2 z + d 2 = (a a 2 + b c 2 z + a b 2 + b d 2 (c a 2 + d c 2 z + c b 2 + d d 2. Let s keep track of the data of a linear fractional transformation f(z = (az + b/(cz + d via the matrix a b M(f :=, c d so that the condition ad bc 0 is equivalent to saying that the determinant det M(f i 0. Thus, to each linear fractional transformation f we can associate a matrix M(f with det M(f 0, and to each such matrix we can associate a linear fractional transformation. Note that M(f is actually not uniquely determined by f, since (az + b/(cz + d = (λaz + λb/(λcz + λ, for any λ 0. This won t matter for what we say below, but it is important to point out. (What might one do to associate a unique matrix M(f to each f? The above computation says that a matrix for the composition f f 2 is given by a a M(f f 2 = 2 + b c 2 a b 2 + b d 2, c a 2 + d c 2 c b 2 + d d 2 or in other words M(f M(f 2 is a matrix representation for f f 2. Since the determinant is multiplicative, det M(f f 2 = det M(f det M(f 2, and det M(f, det M(f 2 0 imply that det M(f f 2 0. Thus f f 2 is again a linear fractional transformation. Solution C(3. Given f(z = az+b, we have the matrix M(f. We cz+d seek g(z, a linear fractional transformation so that g f(z = z. Note that the identity map I(z = z = (z + 0/(0z + is evidently itself a linear fractional transformation, whose matrix M(I is the identity matrix M(I = ( 0 0.

5 By the above transformation rule, M(g M(f = M(I. Since det M(f 0, the matrix M(f invertible, and we find that M(g = M(f is a matrix representation for g. (Note that a linear fractional transformation defined in this way also satisfies f g(z = z. The matrix M(f can be calculated directly: M(g = Thus we have ad bc g(z = d b = c a d z + b c z + a ( d c = b cz + a. b a Evidently, this transformation is defined for z a/c. Finally, for any z C \ {a/c}, f(g(z = z, so that f maps C \ { d/c} to C \ {a/c}. Solution C(4. The non-affine map f(z is defined on C \ { d/c}, so in order to have f L (z be defined on C \ {0}, we need L (z to be a map that takes 0 to d/c. One such affine example is L (z = z d c. Solution C(5. The non-affine map f(z has image C\{a/c}, by part (3 above. In order to have L 2 f(z have image C \ {0}, we need L 2 to be a map that takes a/c to 0. One such affine example is L 2 (z = z a c. Solution C(6. We compute: ( L 2 f L (z = L 2 (f(z d a(z d c = L + b c 2 c(z d + d c acz + bc ad acz + bc ad = L 2 = L c 2 2 z cd + cd c 2 z a bc ad = L 2 + = a bc ad + a c c 2 z c c 2 z c bc ad =. c 2 z Finally, let L 3 (z = c2 z, so that L bc ad 3 L 2 f L (z =. z indicate the map s(z = /z, so that L 3 L 2 f L = s,. 5 Let s

6 and thus f = L 3 L 2 s L. In Problem A on homework assignment 4, we saw that s takes circles and lines to circles and lines, and by part ( above we know that affine transformations also take circles and line to circles and lines. Thus f takes circles and lines to circles and lines.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 2.6.3, 2.7.4, 2.7.5, 2.7.2,

More information

Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 460: Complex Analysis MWF am, Fulton Hall 45 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book:.4.,.4.0,.4.-.4.6, 4.., 4..,

More information

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES PHILIP FOTH 1. Cauchy s Formula and Cauchy s Theorem 1. Suppose that γ is a piecewise smooth positively ( counterclockwise ) oriented simple closed

More information

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables Lecture 14 Conformal Mapping MATH-GA 2451.001 Complex Variables 1 Conformality 1.1 Preservation of angle The open mapping theorem tells us that an analytic function such that f (z 0 ) 0 maps a small neighborhood

More information

Complex Analysis I Miniquiz Collection July 17, 2017

Complex Analysis I Miniquiz Collection July 17, 2017 Complex Analysis I Miniquiz Collection July 7, 207. Which of the two numbers is greater? (a) 7 or 0.7 (b) 3 8 or 0.3 2. What is the area A of a circular disk with radius? A = 3. Fill out the following

More information

5.3 The Upper Half Plane

5.3 The Upper Half Plane Remark. Combining Schwarz Lemma with the map g α, we can obtain some inequalities of analytic maps f : D D. For example, if z D and w = f(z) D, then the composition h := g w f g z satisfies the condition

More information

Conformal Mappings. Chapter Schwarz Lemma

Conformal Mappings. Chapter Schwarz Lemma Chapter 5 Conformal Mappings In this chapter we study analytic isomorphisms. An analytic isomorphism is also called a conformal map. We say that f is an analytic isomorphism of U with V if f is an analytic

More information

Math 814 HW 3. October 16, p. 54: 9, 14, 18, 24, 25, 26

Math 814 HW 3. October 16, p. 54: 9, 14, 18, 24, 25, 26 Math 814 HW 3 October 16, 2007 p. 54: 9, 14, 18, 24, 25, 26 p.54, Exercise 9. If T z = az+b, find necessary and sufficient conditions for T to cz+d preserve the unit circle. T preserves the unit circle

More information

Residues and Contour Integration Problems

Residues and Contour Integration Problems Residues and ontour Integration Problems lassify the singularity of fz at the indicated point.. fz = cotz at z =. Ans. Simple pole. Solution. The test for a simple pole at z = is that lim z z cotz exists

More information

III.3. Analytic Functions as Mapping, Möbius Transformations

III.3. Analytic Functions as Mapping, Möbius Transformations III.3. Analytic Functions as Mapping, Möbius Transformations 1 III.3. Analytic Functions as Mapping, Möbius Transformations Note. To graph y = f(x) where x,y R, we can simply plot points (x,y) in R 2 (that

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.2.1, 4.2.3, 4.2.6, 4.2.8,

More information

Hyperbolic Transformations

Hyperbolic Transformations C H A P T E R 17 Hyperbolic Transformations Though the text of your article on Crystal Symmetry and Its Generalizations is much too learned for a simple, selfmade pattern man like me, some of the text-illustrations

More information

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31 Homework 1, due on Wednesday August 31 Problem 1. Let z = 2 i and z = 3 + 4i. Write the product zz and the quotient z z in the form a + ib, with a, b R. Problem 2. Let z C be a complex number, and let

More information

Solutions to practice problems for the final

Solutions to practice problems for the final Solutions to practice problems for the final Holomorphicity, Cauchy-Riemann equations, and Cauchy-Goursat theorem 1. (a) Show that there is a holomorphic function on Ω = {z z > 2} whose derivative is z

More information

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo CHAPTER 9 Conformal Mapping and Bilinear Transformation BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University of Kalyani West Bengal, India E-mail : sahoopulak@gmail.com Module-3:

More information

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 23 COMPLEX ANALYSIS EXERCISES DOUGLAS ULMER 1. Meromorphic functions on the Riemann sphere It s often useful to allow functions to take the value. This exercise outlines one way to

More information

Schwarz lemma and automorphisms of the disk

Schwarz lemma and automorphisms of the disk Chapter 2 Schwarz lemma and automorphisms of the disk 2.1 Schwarz lemma We denote the disk of radius 1 about 0 by the notation D, that is, D = {z C : z < 1}. Given θ R the rotation of angle θ about 0,

More information

Math 421 Midterm 2 review questions

Math 421 Midterm 2 review questions Math 42 Midterm 2 review questions Paul Hacking November 7, 205 () Let U be an open set and f : U a continuous function. Let be a smooth curve contained in U, with endpoints α and β, oriented from α to

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

DIFFERENTIAL GEOMETRY HW 5

DIFFERENTIAL GEOMETRY HW 5 DIFFERENTIAL GEOMETRY HW 5 CLAY SHONKWILER 1 Check the calculations above that the Gaussian curvature of the upper half-plane and Poincaré disk models of the hyperbolic plane is 1. Proof. The calculations

More information

The Residue Theorem. Integration Methods over Closed Curves for Functions with Singularities

The Residue Theorem. Integration Methods over Closed Curves for Functions with Singularities The Residue Theorem Integration Methods over losed urves for Functions with Singularities We have shown that if f(z) is analytic inside and on a closed curve, then f(z)dz = 0. We have also seen examples

More information

MA424, S13 HW #6: Homework Problems 1. Answer the following, showing all work clearly and neatly. ONLY EXACT VALUES WILL BE ACCEPTED.

MA424, S13 HW #6: Homework Problems 1. Answer the following, showing all work clearly and neatly. ONLY EXACT VALUES WILL BE ACCEPTED. MA424, S13 HW #6: 44-47 Homework Problems 1 Answer the following, showing all work clearly and neatly. ONLY EXACT VALUES WILL BE ACCEPTED. NOTATION: Recall that C r (z) is the positively oriented circle

More information

(7) Suppose α, β, γ are nonzero complex numbers such that α = β = γ.

(7) Suppose α, β, γ are nonzero complex numbers such that α = β = γ. January 22, 2011 COMPLEX ANALYSIS: PROBLEMS SHEET -1 M.THAMBAN NAIR (1) Show that C is a field under the addition and multiplication defined for complex numbers. (2) Show that the map f : R C defined by

More information

MAT665:ANALYTIC FUNCTION THEORY

MAT665:ANALYTIC FUNCTION THEORY MAT665:ANALYTIC FUNCTION THEORY DR. RITU AGARWAL MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR Contents 1. About 2 2. Complex Numbers 2 3. Fundamental inequalities 2 4. Continuously differentiable functions

More information

We introduce the third of the classical geometries, hyperbolic geometry.

We introduce the third of the classical geometries, hyperbolic geometry. Chapter Hyperbolic Geometry We introduce the third of the classical geometries, hyperbolic geometry.. Hyperbolic Geometry Lines are (i) vertical lines in H H = H 2 = {(x, y) R 2 y > 0} = {z C Im(z) > 0}

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations MTH6111 Complex Analysis 2009-10 Lecture Notes c Shaun Bullett 2009 IV. Conformal Maps 1. Geometric interpretation of differentiability We saw from the definition of complex differentiability that if f

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.3.5, 4.3.7, 4.3.8, 4.3.9,

More information

Honors Advanced Mathematics Determinants page 1

Honors Advanced Mathematics Determinants page 1 Determinants page 1 Determinants For every square matrix A, there is a number called the determinant of the matrix, denoted as det(a) or A. Sometimes the bars are written just around the numbers of the

More information

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014 Math 3 - Spring 4 Solutions to Assignment # Completion Date: Thursday June, 4 Question. [p 67, #] Use residues to evaluate the improper integral x + ). Ans: π/4. Solution: Let fz) = below. + z ), and for

More information

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C THE RESIDUE THEOREM ontents 1. The Residue Formula 1 2. Applications and corollaries of the residue formula 2 3. ontour integration over more general curves 5 4. Defining the logarithm 7 Now that we have

More information

MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE

MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE 1. Introduction Let D denote the unit disk and let D denote its boundary circle. Consider a piecewise continuous function on the boundary circle, {

More information

MATH 614 Dynamical Systems and Chaos Lecture 15: Maps of the circle.

MATH 614 Dynamical Systems and Chaos Lecture 15: Maps of the circle. MATH 614 Dynamical Systems and Chaos Lecture 15: Maps of the circle. Circle S 1. S 1 = {(x,y) R 2 : x 2 + y 2 = 1} S 1 = {z C : z = 1} T 1 = R/Z T 1 = R/2πZ α : S 1 [0,2π), angular coordinate α : S 1 R/2πZ

More information

X.9 Revisited, Cauchy s Formula for Contours

X.9 Revisited, Cauchy s Formula for Contours X.9 Revisited, Cauchy s Formula for Contours Let G C, G open. Let f be holomorphic on G. Let Γ be a simple contour with range(γ) G and int(γ) G. Then, for all z 0 int(γ), f (z 0 ) = 1 f (z) dz 2πi Γ z

More information

THE AUTOMORPHISM GROUP ON THE RIEMANN SPHERE

THE AUTOMORPHISM GROUP ON THE RIEMANN SPHERE THE AUTOMORPHISM GROUP ON THE RIEMANN SPHERE YONG JAE KIM Abstract. In order to study the geometries of a hyperbolic plane, it is necessary to understand the set of transformations that map from the space

More information

Math 220A Homework 2 Solutions

Math 220A Homework 2 Solutions Mth 22A Homework 2 Solutions Jim Agler. Let G be n open set in C. ()Show tht the product rule for nd holds for products of C z z functions on G. (b) Show tht if f is nlytic on G, then 2 z z f(z) 2 f (z)

More information

MATH 614 Dynamical Systems and Chaos Lecture 11: Maps of the circle.

MATH 614 Dynamical Systems and Chaos Lecture 11: Maps of the circle. MATH 614 Dynamical Systems and Chaos Lecture 11: Maps of the circle. Circle S 1. S 1 = {(x,y) R 2 : x 2 + y 2 = 1} S 1 = {z C : z = 1} T 1 = R/Z T 1 = R/2πZ α : S 1 [0,2π), angular coordinate α : S 1 R/2πZ

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 1.4.2, 1.4.4, 1.4.9, 1.4.11,

More information

MATH MIDTERM 1 SOLUTION. 1. (5 points) Determine whether the following statements are true of false, no justification is required.

MATH MIDTERM 1 SOLUTION. 1. (5 points) Determine whether the following statements are true of false, no justification is required. MATH 185-4 MIDTERM 1 SOLUTION 1. (5 points Determine whether the following statements are true of false, no justification is required. (1 (1pointTheprincipalbranchoflogarithmfunctionf(z = Logz iscontinuous

More information

Fuchsian groups. 2.1 Definitions and discreteness

Fuchsian groups. 2.1 Definitions and discreteness 2 Fuchsian groups In the previous chapter we introduced and studied the elements of Mob(H), which are the real Moebius transformations. In this chapter we focus the attention of special subgroups of this

More information

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that Let fz be the principal branch of z 4i. a Find fi. Solution. fi = exp4i Logi = exp4iπ/2 = e 2π. b Show that fz fz 2 fz z 2 fz fz 2 = λfz z 2 for all z, z 2 0, where λ =, e 8π or e 8π. Proof. We have =

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

ISOMETRIES OF THE HYPERBOLIC PLANE

ISOMETRIES OF THE HYPERBOLIC PLANE ISOMETRIES OF THE HYPERBOLIC PLANE ALBERT CHANG Abstract. In this paper, I will explore basic properties of the group P SL(, R). These include the relationship between isometries of H, Möbius transformations,

More information

Möbius transformations

Möbius transformations Möbius transformations By convention we write a complex function of a complex variable as w=f(z) rather than y=f(x) and by convention the real and imaginary parts are written x, y, u, v z = x + iy w =

More information

LAURENT SERIES AND SINGULARITIES

LAURENT SERIES AND SINGULARITIES LAURENT SERIES AND SINGULARITIES Introduction So far we have studied analytic functions Locally, such functions are represented by power series Globally, the bounded ones are constant, the ones that get

More information

Möbius transformations and its applications

Möbius transformations and its applications Möbius transformation and its applications Every Möbius transformation is the composition of translations, dilations and the inversion. Proof. Let w = S(z) = az + b, ad bc 0 be a Möbius cz + d transformation.

More information

1 Introduction. or equivalently f(z) =

1 Introduction. or equivalently f(z) = Introduction In this unit on elliptic functions, we ll see how two very natural lines of questions interact. The first, as we have met several times in Berndt s book, involves elliptic integrals. In particular,

More information

Chapter 30 MSMYP1 Further Complex Variable Theory

Chapter 30 MSMYP1 Further Complex Variable Theory Chapter 30 MSMYP Further Complex Variable Theory (30.) Multifunctions A multifunction is a function that may take many values at the same point. Clearly such functions are problematic for an analytic study,

More information

Math Final Exam.

Math Final Exam. Math 106 - Final Exam. This is a closed book exam. No calculators are allowed. The exam consists of 8 questions worth 100 points. Good luck! Name: Acknowledgment and acceptance of honor code: Signature:

More information

Mathematics 350: Problems to Study Solutions

Mathematics 350: Problems to Study Solutions Mathematics 350: Problems to Study Solutions April 25, 206. A Laurent series for cot(z centered at z 0 i converges in the annulus {z : < z i < R}. What is the largest possible value of R? Solution: The

More information

Math Theory of Number Homework 1

Math Theory of Number Homework 1 Math 4050 Theory of Number Homework 1 Due Wednesday, 015-09-09, in class Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5. 1. Find all rational numbers and y satisfying

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 September 5, 2012 Mapping Properties Lecture 13 We shall once again return to the study of general behaviour of holomorphic functions

More information

Complex Analysis - Final exam - Answers

Complex Analysis - Final exam - Answers Complex Analysis - Final exam - Answers Exercise : (0 %) Let r, s R >0. Let f be an analytic function defined on D(0, r) and g be an analytic function defined on D(0, s). Prove that f +g is analytic on

More information

Inversive Geometry. James Emery 6/11/ Inversion Through a Circle 1. 9 TheMöbius Transformation Peaucellier-Lipkin Linkage 6

Inversive Geometry. James Emery 6/11/ Inversion Through a Circle 1. 9 TheMöbius Transformation Peaucellier-Lipkin Linkage 6 Inversive Geometry James Emery 6/11/2011 Contents 1 Inversion Through a Circle 1 2 TheMöbius Transformation 2 3 Circles Go To Circles 3 4 Inversive Linkage 5 5 Peaucellier-Lipkin Linkage 6 6 A Geometrical

More information

MAE 143B - Homework 9

MAE 143B - Homework 9 MAE 43B - Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4

More information

Math 220A - Fall Final Exam Solutions

Math 220A - Fall Final Exam Solutions Math 22A - Fall 216 - Final Exam Solutions Problem 1. Let f be an entire function and let n 2. Show that there exists an entire function g with g n = f if and only if the orders of all zeroes of f are

More information

Theorem III.3.4. If f : G C is analytic then f preserves angles at each point z 0 of G where f (z 0 ) 0.

Theorem III.3.4. If f : G C is analytic then f preserves angles at each point z 0 of G where f (z 0 ) 0. Möbius Transformations; Supplemented by Hitchman 1 Supplemental Notes on III.3. Analytic Functions as Mappings: Möbius Transformations with Supplemental Material from Hitchman s Geometry with an Introduction

More information

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm Complex Analysis, Stein and Shakarchi Chapter 3 Meromorphic Functions and the Logarithm Yung-Hsiang Huang 217.11.5 Exercises 1. From the identity sin πz = eiπz e iπz 2i, it s easy to show its zeros are

More information

H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )

H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at ) .7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

DIFFERENTIAL GEOMETRY HW 5. Show that the law of cosines in spherical geometry is. cos c = cos a cos b + sin a sin b cos θ.

DIFFERENTIAL GEOMETRY HW 5. Show that the law of cosines in spherical geometry is. cos c = cos a cos b + sin a sin b cos θ. DIFFEENTIAL GEOMETY HW 5 CLAY SHONKWILE Show that the law of cosines in spherical geometry is 5 cos c cos a cos b + sin a sin b cos θ. Proof. Consider the spherical triangle depicted below: Form radii

More information

Keywords: Mobius transformation, Fixed points, cross ratio, translation, dilation, inversion, normal form.

Keywords: Mobius transformation, Fixed points, cross ratio, translation, dilation, inversion, normal form. The Fixed Points of Mobius Transformation Prabhjot Kaur Asst. Prof. D.A.V. College (Lahore), Ambala City Abstract: In complex analysis, a Mobius transformation of complex plane is a rational function of

More information

COMPLEX ANALYSIS Spring 2014

COMPLEX ANALYSIS Spring 2014 COMPLEX ANALYSIS Spring 24 Homework 4 Solutions Exercise Do and hand in exercise, Chapter 3, p. 4. Solution. The exercise states: Show that if a

More information

1 Holomorphic functions

1 Holomorphic functions Robert Oeckl CA NOTES 1 15/09/2009 1 1 Holomorphic functions 11 The complex derivative The basic objects of complex analysis are the holomorphic functions These are functions that posses a complex derivative

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

26.2. Cauchy-Riemann Equations and Conformal Mapping. Introduction. Prerequisites. Learning Outcomes

26.2. Cauchy-Riemann Equations and Conformal Mapping. Introduction. Prerequisites. Learning Outcomes Cauchy-Riemann Equations and Conformal Mapping 26.2 Introduction In this Section we consider two important features of complex functions. The Cauchy-Riemann equations provide a necessary and sufficient

More information

10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations

10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations 10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations 10.1 Conjugacy of Möbius transformations Before we start discussing the geometry and classification

More information

MATH 215B. SOLUTIONS TO HOMEWORK (6 marks) Construct a path connected space X such that π 1 (X, x 0 ) = D 4, the dihedral group with 8 elements.

MATH 215B. SOLUTIONS TO HOMEWORK (6 marks) Construct a path connected space X such that π 1 (X, x 0 ) = D 4, the dihedral group with 8 elements. MATH 215B. SOLUTIONS TO HOMEWORK 2 1. (6 marks) Construct a path connected space X such that π 1 (X, x 0 ) = D 4, the dihedral group with 8 elements. Solution A presentation of D 4 is a, b a 4 = b 2 =

More information

Math 520a - Final take home exam - solutions

Math 520a - Final take home exam - solutions Math 52a - Final take home exam - solutions 1. Let f(z) be entire. Prove that f has finite order if and only if f has finite order and that when they have finite order their orders are the same. Solution:

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Selected topics in Complex Analysis MATH Winter (draft)

Selected topics in Complex Analysis MATH Winter (draft) Selected topics in Complex Analysis MATH 428 - Winter 2015 - (draft) François Monard March 23, 2015 1 2 Lecture 1-01/05 - Recalls from 427 Algebraic manipulations of complex numbers. See for instance [Taylor,

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

7.2 Conformal mappings

7.2 Conformal mappings 7.2 Conformal mappings Let f be an analytic function. At points where f (z) 0 such a map has the remarkable property that it is conformal. This means that angle is preserved (in the sense that any 2 smooth

More information

MA30056: Complex Analysis. Revision: Checklist & Previous Exam Questions I

MA30056: Complex Analysis. Revision: Checklist & Previous Exam Questions I MA30056: Complex Analysis Revision: Checklist & Previous Exam Questions I Given z C and r > 0, define B r (z) and B r (z). Define what it means for a subset A C to be open/closed. If M A C, when is M said

More information

2.4 The Extreme Value Theorem and Some of its Consequences

2.4 The Extreme Value Theorem and Some of its Consequences 2.4 The Extreme Value Theorem and Some of its Consequences The Extreme Value Theorem deals with the question of when we can be sure that for a given function f, (1) the values f (x) don t get too big or

More information

MATH FINAL SOLUTION

MATH FINAL SOLUTION MATH 185-4 FINAL SOLUTION 1. (8 points) Determine whether the following statements are true of false, no justification is required. (1) (1 point) Let D be a domain and let u,v : D R be two harmonic functions,

More information

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31 Contents 1 Lecture 1: Introduction 2 2 Lecture 2: Logical statements and proof by contradiction 7 3 Lecture 3: Induction and Well-Ordering Principle 11 4 Lecture 4: Definition of a Group and examples 15

More information

1 Res z k+1 (z c), 0 =

1 Res z k+1 (z c), 0 = 32. COMPLEX ANALYSIS FOR APPLICATIONS Mock Final examination. (Monday June 7..am 2.pm) You may consult your handwritten notes, the book by Gamelin, and the solutions and handouts provided during the Quarter.

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

MORE CONSEQUENCES OF CAUCHY S THEOREM

MORE CONSEQUENCES OF CAUCHY S THEOREM MOE CONSEQUENCES OF CAUCHY S THEOEM Contents. The Mean Value Property and the Maximum-Modulus Principle 2. Morera s Theorem and some applications 3 3. The Schwarz eflection Principle 6 We have stated Cauchy

More information

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that.

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that. Lecture 15 The Riemann mapping theorem Variables MATH-GA 2451.1 Complex The point of this lecture is to prove that the unit disk can be mapped conformally onto any simply connected open set in the plane,

More information

Math Matrix Theory - Spring 2012

Math Matrix Theory - Spring 2012 Math 440 - Matrix Theory - Spring 202 HW #2 Solutions Which of the following are true? Why? If not true, give an example to show that If true, give your reasoning (a) Inverse of an elementary matrix is

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

Ma 416: Complex Variables Solutions to Homework Assignment 6

Ma 416: Complex Variables Solutions to Homework Assignment 6 Ma 46: omplex Variables Solutions to Homework Assignment 6 Prof. Wickerhauser Due Thursday, October th, 2 Read R. P. Boas, nvitation to omplex Analysis, hapter 2, sections 9A.. Evaluate the definite integral

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Introduction to Complex Analysis by Hilary Priestley Unofficial Solutions Manual

Introduction to Complex Analysis by Hilary Priestley Unofficial Solutions Manual Introduction to Complex Analysis by Hilary Priestley Unofficial Solutions Manual MOHAMMAD EHTISHAM AKHTAR IMPERIAL COLLEGE LONDON http://akhtarmath.wordpress.com Dedicated to my Parents ii Preface This

More information

MATH 2400: Calculus III, Fall 2013 FINAL EXAM

MATH 2400: Calculus III, Fall 2013 FINAL EXAM MATH 2400: Calculus III, Fall 2013 FINAL EXAM December 16, 2013 YOUR NAME: Circle Your Section 001 E. Angel...................... (9am) 002 E. Angel..................... (10am) 003 A. Nita.......................

More information

Complex Analysis Homework 9: Solutions

Complex Analysis Homework 9: Solutions Complex Analysis Fall 2007 Homework 9: Solutions 3..4 (a) Let z C \ {ni : n Z}. Then /(n 2 + z 2 ) n /n 2 n 2 n n 2 + z 2. According to the it comparison test from calculus, the series n 2 + z 2 converges

More information

Math 220A Homework 4 Solutions

Math 220A Homework 4 Solutions Math 220A Homework 4 Solutions Jim Agler 26. (# pg. 73 Conway). Prove the assertion made in Proposition 2. (pg. 68) that g is continuous. Solution. We wish to show that if g : [a, b] [c, d] C is a continuous

More information

Module 6: Deadbeat Response Design Lecture Note 1

Module 6: Deadbeat Response Design Lecture Note 1 Module 6: Deadbeat Response Design Lecture Note 1 1 Design of digital control systems with dead beat response So far we have discussed the design methods which are extensions of continuous time design

More information

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep Complex Variables Notes for Math 703. Updated Fall 20 Anton R. Schep CHAPTER Holomorphic (or Analytic) Functions. Definitions and elementary properties In complex analysis we study functions f : S C,

More information

Lecture 1 The complex plane. z ± w z + w.

Lecture 1 The complex plane. z ± w z + w. Lecture 1 The complex plane Exercise 1.1. Show that the modulus obeys the triangle inequality z ± w z + w. This allows us to make the complex plane into a metric space, and thus to introduce topological

More information

Notes on multivariable calculus

Notes on multivariable calculus Notes on multivariable calculus Jonathan Wise February 2, 2010 1 Review of trigonometry Trigonometry is essentially the study of the relationship between polar coordinates and Cartesian coordinates in

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

Second Midterm Exam Name: Practice Problems March 10, 2015

Second Midterm Exam Name: Practice Problems March 10, 2015 Math 160 1. Treibergs Second Midterm Exam Name: Practice Problems March 10, 015 1. Determine the singular points of the function and state why the function is analytic everywhere else: z 1 fz) = z + 1)z

More information

Complex Analysis MATH 6300 Fall 2013 Homework 4

Complex Analysis MATH 6300 Fall 2013 Homework 4 Complex Analysis MATH 6300 Fall 2013 Homework 4 Due Wednesday, December 11 at 5 PM Note that to get full credit on any problem in this class, you must solve the problems in an efficient and elegant manner,

More information

f(w) f(a) = 1 2πi w a Proof. There exists a number r such that the disc D(a,r) is contained in I(γ). For any ǫ < r, w a dw

f(w) f(a) = 1 2πi w a Proof. There exists a number r such that the disc D(a,r) is contained in I(γ). For any ǫ < r, w a dw Proof[section] 5. Cauchy integral formula Theorem 5.. Suppose f is holomorphic inside and on a positively oriented curve. Then if a is a point inside, f(a) = w a dw. Proof. There exists a number r such

More information

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information