Configuration Aerodynamics

Size: px
Start display at page:

Download "Configuration Aerodynamics"

Transcription

1 Configuration Aerodynamics William H. Mason Virginia Tech Blacksburg, VA The front cover of the brochure describing the French Exhibit at the Montreal Expo, January 2018

2 W.H. Mason CONTENTS i CONTENTS Configuration Aerodynamics Preface 1. Introduction to Configuration Aerodynamics 1.1 Purpose Examples of innovative concepts Overview of the Material to be Covered What s left out Exercises References Getting Ready for Configuration Aerodynamics: Fluid Mechanics Foundations 2.1 Governing Equations of Fluid Mechanics Derivation of the Governing Equations Conservation of Mass: the Continuity Equation Conservation of Momentum and the Substantial Derivative Energy Equation Boundary Conditions Standard Forms and Terminology of Governing Equations Nondimensionalization Use of Divergence Form Standard Form of the Navier-Stokes Equations: Notation The Gas Dynamics Equation and the Full Potential Equation The Gas Dynamics Equation Derivation of the Classical Gas Dynamics Eqn-Related Energy Equation Full Potential Equation Equivalent Divergence Form and Energy Equation Derivation of another form of the Related Energy Equation Special Cases Small Disturbance Form of the Energy Equation Small Disturbance Expansion of the Full Potential Equation Transonic Small Disturbance Equation Prandtl-Glauert Equation Incompressible Irrotational Flow: Laplace s Equation The Boundary Layer Equations Examples of Zones of Application Mathematical Classification or the Type of PDEs Elaboration on Characteristics 2-41

3 ii CONTENTS 2.9 Requirements for a Complete Problem Formulation Exercises References Drag: An Introduction 3.1 The Importance of Drag Some Different Ways to View Drag - Nomenclature and Concepts Farfield Drag Analysis Induced Drag Program LIDRAG Multiple Lifting Surfaces and Munk's Stagger Theorem Zero Lift Friction and Form Drag Estimation Supersonic Wave Drag: the Farfield Wave Drag Integral and the Area Rule The Leading Edge Suction Concept Trim Drag Current Issues for Drag Calculation using Computational Aerodynamics Exercises References Aircraft Configuration Design Options 4.1 Overview Configuration Architecture Options Wing Sweep Why sweep the wing forward Why Canards? Why a flying wing? Three-surface configurations Slender Wings Variable Sweep Winglets Propulsion System Integration Issues Aircraft Control Significant Recent Configuration Concepts The Blended Wing Body The Strut-Braced Wing The Oblique Wing Morphing Airplanes Decision Issues Design Approaches The role of aerodynamics within the overall design process A concluding comment Exercises References 4-21

4 W.H. Mason Contents iii 5. An Overview of Aerodynamic Design including the use of Computational Aerodynamics 5.1 Introduction Configuration sizing: Aerodynamic Considerations Overview of the specific aerodynamic design tasks Use of computational aerodynamics in aerodynamic design Best practices in solving aerodynamics problems with computers 5.5 A Review of detailed aerodynamic design approaches Analysis vs design Review of the detailed design process, including inverse and optimization Brief overview of 2D design Review of 3D transonic design methods Applications of 3D design methods 5.6 Summary of the status of aerodynamic design Exercises References Subsonic aerodynamics of airfoils and wings 6.1 Introduction Airfoils Program PANEL and other prediction methods: Accuracy/Validation Subsonic Airfoil Aerodynamics Airfoil Selection Wings Use and Accuracy of the VLM method Program VLMpc and the Warren 12 test Case Tornado and AVL Aerodynamics of High Aspect Ratio Wings The relation between airfoils and swept wings Wing/Tail and Canard/Wing Aerodynamics Ground Effects using a VLM code Low Aspect Ratio Slender Wings Exercises References Transonic aerodynamics of airfoils and wings 7.1 Introduction Physical aspects of flow development with Mach number Technology Issues/developments The slotted wall wind tunnel Computational challenges/methods Airfoils NASA Supercritical Airfoils The Divergent Trailing Edge Airfoil Transonic Airfoil Performance: The Korn Equation Design Methods Wings 7-15

5 iv CONTENTS Transonic Transport Wing Concepts The Korn Equation applied to drag prediction on wings Fighter Wing Concepts/Issue Exercises References Aerodynamics of high lift devices/powered lift 8.1 Introduction: Why High Lift? A.M.O. Smith s analysis of the lift: the five considerations 8.3 Types of Trailing Edge Devices Types of Leading edge devices Aerodynamics of Leading and Trailing Edge Devices Computational methods for high lift 8.7 Passive and active boundary layer control Powered lift Configuration Integration issues Exercises References 9. High angle of attack aerodynamics 9.1 Introduction Basic Aerodynamics of Hi-a Longitudinal Lateral/Directional Flight Mechanics of Hi-a C n beta dynamic LCDP: the lateral control departure parameter, The spin Control Effectiveness with angle of attack An Example: Putting it all together, the F Some configuration issues: Amazing Stories Exercises References 9-16 An F-18 spin movie is available from the NASA Dryden web site.

6 W.H. Mason Contents v 10. Supersonic aerodynamics 10.1 Introduction Supersonic Cruise Airplanes The B The SR The XB The TU The Concorde The F-22 (and YF-23) The Challenge for Airplane Design Wave Drag A curious story: Multiple Bodies to Reduce Wave Drag and Favorable Interference Planar wing wave drag Wings: lift and drag due to lift Arrow wings and conical camber Modified arrow wings The aerodynamic center shift The Oblique Wing Concept Aero-Propulsion Integration Computational Methods and Supersonic Aerodynamic Design The linear theory starting point Modifications to linear theory: Attainable Thrust Nonlinear aerodynamics of supersonic wings Supersonic Airplane Configuration Design Examples The US SST Story Supersonic Maneuver Wing HSCT and MDO Multidisciplinary Design Optimization, MDO Design to reduce the strength of the sonic boom Modern Efforts Aerion The 2D Supersonic Airfoil Story Sonic QueSST Exercises References Hypersonic aerodynamics 11.1 Introduction Surface pressure estimation Aerodynamic stability and control Aerodynamic Heating Additional Gas Dynamics Considerations High Temperature Gas Dynamics Considerations Hypersonic Vehicle Design 11-25

7 vi CONTENTS Minimum drag axisymmetric shapes at hypersonic speeds Brief review of hypersonic flight vehicles Engine-airframe Integration and Modern Vehicle Development Exercises References Endnote Appendices A. Geometry for Aerodynamicists A.1 Airfoil Geometry A-1 A.2 Classic Bodies of Revolution A-18 A.3 Planform Analysis A-24 A.4 Conical Camber A-29 A.5 Three-Dimensional Wing Geometry A-29 B. Fifteen Minutes of Stealth in Aircraft Design B-1 C. FAR & Mil requirements C-1 D. Examples of aerodynamic design using tools from our software suite. D-1 E. Software for Aerodynamics and Aircraft Design, with manuals. E-1 F. Class Discussion Reading List F-1 G. The Configuration Aerodynamicist s Bookshelf G-1

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus

More information

Supersonic Aerodynamics. Methods and Applications

Supersonic Aerodynamics. Methods and Applications Supersonic Aerodynamics Methods and Applications Outline Introduction to Supersonic Flow Governing Equations Numerical Methods Aerodynamic Design Applications Introduction to Supersonic Flow What does

More information

Continuity Equation for Compressible Flow

Continuity Equation for Compressible Flow Continuity Equation for Compressible Flow Velocity potential irrotational steady compressible Momentum (Euler) Equation for Compressible Flow Euler's equation isentropic velocity potential equation for

More information

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag

Drag (2) Induced Drag Friction Drag Form Drag Wave Drag Drag () Induced Drag Friction Drag Form Drag Wave Drag Outline Nomenclature and Concepts Farfield Drag Analysis Induced Drag Multiple Lifting Surfaces Zero Lift Drag :Friction and Form Drag Supersonic

More information

The Importance of drag

The Importance of drag Drag Computation The Importance of drag Its effects on aircraft performances On the Concorde, one count drag increase (ΔC D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be taken

More information

FUNDAMENTALS OF AERODYNAMICS

FUNDAMENTALS OF AERODYNAMICS *A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

More information

Fundamentals of Aerodynamits

Fundamentals of Aerodynamits Fundamentals of Aerodynamits Fifth Edition in SI Units John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland

More information

Drag Computation (1)

Drag Computation (1) Drag Computation (1) Why drag so concerned Its effects on aircraft performances On the Concorde, one count drag increase ( C D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be

More information

AOE 3114 Compressible Aerodynamics

AOE 3114 Compressible Aerodynamics AOE 114 Compressible Aerodynamics Primary Learning Objectives The student will be able to: 1. Identify common situations in which compressibility becomes important in internal and external aerodynamics

More information

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight References Jack N. Nielsen, Missile Aerodynamics, AIAA Progress in Astronautics and Aeronautics, v104, 1986 Michael

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

More information

Thin airfoil theory. Chapter Compressible potential flow The full potential equation

Thin airfoil theory. Chapter Compressible potential flow The full potential equation hapter 4 Thin airfoil theory 4. ompressible potential flow 4.. The full potential equation In compressible flow, both the lift and drag of a thin airfoil can be determined to a reasonable level of accuracy

More information

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIAA-2004-0689 Serhat Hosder, Joseph A. Schetz, Bernard Grossman and William H. Mason Virginia Tech Work sponsored by NASA

More information

MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag. G. Leng, MDTS, NUS

MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag. G. Leng, MDTS, NUS MDTS 5705 : Aerodynamics & Propulsion Lecture 2 : Missile lift and drag 2.1. The design of supersonic airfoils For efficient lift generation at subsonic speeds, airfoils look like : So why can t a similar

More information

F-35: A case study. Eugene Heim Leifur Thor Leifsson Evan Neblett. AOE 4124 Configuration Aerodynamics Virginia Tech April 2003

F-35: A case study. Eugene Heim Leifur Thor Leifsson Evan Neblett. AOE 4124 Configuration Aerodynamics Virginia Tech April 2003 F-35: A case study Eugene Heim Leifur Thor Leifsson Evan Neblett AOE 4124 Configuration Aerodynamics Virginia Tech April 2003 Course: AOE 4124 Configuration Aerodynamics Project: A case study of the F-35

More information

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude. Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables y Springer Introduction to Airplane Flight Mechanics 1 1.1 Airframe Anatomy 2 1.2 Engine Anatomy 5 1.3 Equations of

More information

Part 3. Stability and Transition

Part 3. Stability and Transition Part 3 Stability and Transition 281 Overview T. Cebeci 1 Recent interest in the reduction of drag of underwater vehicles and aircraft components has rekindled research in the area of stability and transition.

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering 4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

Wings and Bodies in Compressible Flows

Wings and Bodies in Compressible Flows Wings and Bodies in Compressible Flows Prandtl-Glauert-Goethert Transformation Potential equation: 1 If we choose and Laplace eqn. The transformation has stretched the x co-ordinate by 2 Values of at corresponding

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics Wind Tunnel Testing Considerations W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics History Pre WWII propeller tip speeds limited airplane speed Props did encounter

More information

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford FLIGHT DYNAMICS Robert F. Stengel Princeton University Press Princeton and Oxford Preface XV Chapter One Introduction 1 1.1 ELEMENTS OF THE AIRPLANE 1 Airframe Components 1 Propulsion Systems 4 1.2 REPRESENTATIVE

More information

Introduction to Flight

Introduction to Flight l_ Introduction to Flight Fifth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Me Graw Higher Education

More information

Concept: AERODYNAMICS

Concept: AERODYNAMICS 1 Concept: AERODYNAMICS 2 Narayanan Komerath 3 4 Keywords: Flow Potential Flow Lift, Drag, Dynamic Pressure, Irrotational, Mach Number, Reynolds Number, Incompressible 5 6 7 1. Definition When objects

More information

Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept

Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept Drag Characteristics of a Low-Drag Low-Boom Supersonic Formation Flying Concept Yuichiro Goto, Shigeru Obayashi and Yasuaki Kohama Tohoku University, Sendai, Japan In this paper, a new concept for low-drag,

More information

LONGITUDINAL STABILITY AND TRIM OF AN ARIANE 5 FLY-BACK BOOSTER

LONGITUDINAL STABILITY AND TRIM OF AN ARIANE 5 FLY-BACK BOOSTER 12th AIAA International Space Planes and Hypersonic Systems and Technologies 1-19 December 23, Norfolk, Virginia AIAA 23-7 LONGITUDINAL STABILITY AND TRIM OF AN ARIANE FLY-BACK BOOSTER Th. Eggers DLR,

More information

and K becoming functions of Mach number i.e.: (3.49)

and K becoming functions of Mach number i.e.: (3.49) Chapter 3 Lecture 11 Drag polar 6 Topics 3.3.4 Parabolic drag polar at high speeds 3.3.5 Guidelines for variations of C Do and K for subsonic jet transport airplanes 3.3.6 Variations of C Do and K for

More information

A Numerical Study of Circulation Control on a Flapless UAV

A Numerical Study of Circulation Control on a Flapless UAV Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-xxxx A Numerical Study of Circulation Control on a Flapless UAV Huaixun Ren 1, Weimin

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE

More information

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

More information

AN ENGINEERING LEVEL PREDICTION METHOD FOR NORMAL-FORCE INCREASE DUE TO WEDGE SECTIONS

AN ENGINEERING LEVEL PREDICTION METHOD FOR NORMAL-FORCE INCREASE DUE TO WEDGE SECTIONS 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AN ENGINEERING LEVEL PREDICTION ETHOD FOR NORAL-FORCE INCREASE DUE TO WEDGE SECTIONS Asher Sigal Shehafim R&D, Haifa 34861, Israel Keywords: wedge

More information

CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING

CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD COMPUTATION OF THE GROUND EFFECT ON AIRPLANE WITH HIGH ASPECT RATIO WING Sun Tae Kim*, Youngtae Kim**, Tae Kyu Reu* *Agency for Defense Development,

More information

RECENT near-sonic and low-sonic boom transport aircraft

RECENT near-sonic and low-sonic boom transport aircraft JOURNAL OF AIRCRAFT Vol. 44, No. 6, November December 2007 Aerodynamic Characteristics of Bodies of Revolution at Near-Sonic Speeds Brenda M. Kulfan, John E. Bussoletti, and Craig L. Hilmes The Boeing

More information

Aerodynamics. Lecture 1: Introduction - Equations of Motion G. Dimitriadis

Aerodynamics. Lecture 1: Introduction - Equations of Motion G. Dimitriadis Aerodynamics Lecture 1: Introduction - Equations of Motion G. Dimitriadis Definition Aerodynamics is the science that analyses the flow of air around solid bodies The basis of aerodynamics is fluid dynamics

More information

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings. Eugene M. Cliff Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

More information

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics Chapter 5 Wing design - selection of wing parameters Lecture 0 Topics 5..4 Effects of geometric parameters, Reynolds number and roughness on aerodynamic characteristics of airfoils 5..5 Choice of airfoil

More information

ME 6139: High Speed Aerodynamics

ME 6139: High Speed Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering, BUET Lecture-01 04 November 2017 teacher.buet.ac.bd/toufiquehasan/ toufiquehasan@me.buet.ac.bd 1 Aerodynamics is the study of dynamics

More information

AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE

AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE 45th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 27, Reno, Nevada AIAA 27-672 AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE Wei-Jen Su 1, Curtis Wilson 2, Tony Farina

More information

Improved Method for Prediction of Attainable Wing Leading-Edge Thrust

Improved Method for Prediction of Attainable Wing Leading-Edge Thrust NASA Technical Paper 3557 Improved Method for Prediction of Attainable Wing Leading-Edge Thrust Harry W. Carlson Lockheed Engineering & Sciences Company Hampton, Virginia Marcus O. McElroy and Wendy B.

More information

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 AE 451 Aeronautical Engineering Design I Aerodynamics Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 Lift curve 2 Lift curve slope 3 Subsonic lift curve slope C Lα = 2 + 4 + AR2 β 2 η

More information

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond Antony Jameson Department of Aeronautics and Astronautics AIAA Aerospace Sciences Meeting, Reno, NV AIAA Paper 2007-0037

More information

Brenda M. Kulfan, John E. Bussoletti, and Craig L. Hilmes Boeing Commercial Airplane Group, Seattle, Washington, 98124

Brenda M. Kulfan, John E. Bussoletti, and Craig L. Hilmes Boeing Commercial Airplane Group, Seattle, Washington, 98124 AIAA--2007-0684 Pressures and Drag Characteristics of Bodies of Revolution at Near Sonic Speeds Including the Effects of Viscosity and Wind Tunnel Walls Brenda M. Kulfan, John E. Bussoletti, and Craig

More information

Investigation potential flow about swept back wing using panel method

Investigation potential flow about swept back wing using panel method INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT Volume 7, Issue 4, 2016 pp.317-326 Journal homepage: www.ijee.ieefoundation.org Investigation potential flow about swept back wing using panel method Wakkas

More information

Applied Aerodynamics - I

Applied Aerodynamics - I Applied Aerodynamics - I o Course Contents (Tentative) Introductory Thoughts Historical Perspective Flow Similarity Aerodynamic Coefficients Sources of Aerodynamic Forces Fundamental Equations & Principles

More information

Review of Fundamentals - Fluid Mechanics

Review of Fundamentals - Fluid Mechanics Review of Fundamentals - Fluid Mechanics Introduction Properties of Compressible Fluid Flow Basics of One-Dimensional Gas Dynamics Nozzle Operating Characteristics Characteristics of Shock Wave A gas turbine

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS B. Tech. Curriculum Semester wise credit distribution I II III IV V VI VII VIII Total 28 22 25 24 25 28 18 14 184 SEMESTER I AS1010 Introduction to Aerospace

More information

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Daniel J. Lesieutre 1 Nielsen Engineering & Research, Inc., Santa Clara, CA, 95054 The nonlinear missile aerodynamic

More information

Induced Drag and High-Speed Aerodynamics Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Induced Drag and High-Speed Aerodynamics Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Induced Drag and High-Speed Aerodynamics Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Drag-due-to-lift and effects of wing planform Effect of angle of attack on lift and drag coefficients Mach

More information

Introduction and Basic Concepts

Introduction and Basic Concepts Topic 1 Introduction and Basic Concepts 1 Flow Past a Circular Cylinder Re = 10,000 and Mach approximately zero Mach = 0.45 Mach = 0.64 Pictures are from An Album of Fluid Motion by Van Dyke Flow Past

More information

Investigation on Boundary Layer Ingestion Propulsion for UAVs

Investigation on Boundary Layer Ingestion Propulsion for UAVs International Micro Air Vehicle Conference and Flight Competition (IMAV) 2017 293 Investigation on Boundary Layer Ingestion Propulsion for UAVs L. Teperin, M. El-Salamony, A. Moharam, and M. Shehata, Central

More information

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond 45 th Aerospace Sciences Meeting and Exhibit, January 8 11, 2007, Reno, Nevada An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond Antony Jameson Department of Aeronautics

More information

ACD2503 Aircraft Aerodynamics

ACD2503 Aircraft Aerodynamics ACD2503 Aircraft Aerodynamics Session delivered by: Prof. M. D. Deshpande 1 Aims and Summary PEMP It is intended dto prepare students for participation i i in the design process of an aircraft and its

More information

Egon Krause. Fluid Mechanics

Egon Krause. Fluid Mechanics Egon Krause Fluid Mechanics Egon Krause Fluid Mechanics With Problems and Solutions, and an Aerodynamic Laboratory With 607 Figures Prof. Dr. Egon Krause RWTH Aachen Aerodynamisches Institut Wüllnerstr.5-7

More information

Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics. Erik D. Olson. NASA Langley Research Center, Hampton, VA 23681

Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics. Erik D. Olson. NASA Langley Research Center, Hampton, VA 23681 Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics Erik D. Olson NASA Langley Research Center, Hampton, VA 23681 This paper lays out a comprehensive methodology for computing a

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics Lecture hours 3, 4 Minimum time to climb Mark Voskuijl Semester 1-2012 Delft University of Technology Challenge

More information

Optimization Framework for Design of Morphing Wings

Optimization Framework for Design of Morphing Wings Optimization Framework for Design of Morphing Wings Jian Yang, Raj Nangia & Jonathan Cooper Department of Aerospace Engineering, University of Bristol, UK & John Simpson Fraunhofer IBP, Germany AIAA Aviation

More information

Flight Vehicle Terminology

Flight Vehicle Terminology Flight Vehicle Terminology 1.0 Axes Systems There are 3 axes systems which can be used in Aeronautics, Aerodynamics & Flight Mechanics: Ground Axes G(x 0, y 0, z 0 ) Body Axes G(x, y, z) Aerodynamic Axes

More information

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 13 Compressible Flow Main Topics Basic Equations for One-Dimensional Compressible Flow Isentropic Flow of an Ideal Gas Area Variation Flow in a Constant Area Duct

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2015

AE 451 Aeronautical Engineering Design I Aerodynamics. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2015 AE 451 Aeronautical Engineering Design I Aerodynamics Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2015 Lift curve 2 Lift curve slope 3 Subsonic lift curve slope C Lα = 2 + 4 + AR2 β 2 η

More information

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN ROBBIE BUNGE 1. Introduction The longitudinal dynamics of fixed-wing aircraft are a case in which classical

More information

PEMP ACD2505. Finite Wing Theory. M.S. Ramaiah School of Advanced Studies, Bengaluru

PEMP ACD2505. Finite Wing Theory. M.S. Ramaiah School of Advanced Studies, Bengaluru Finite Wing Theory Session delivered by: Prof. M. D. Deshpande 1 Session Objectives -- At the end of this session the delegate would have understood The finite wing theory Lifting line theory Elliptic

More information

2. Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations

2. Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations . Getting Ready for Computational Aerodynamics: Fluid Mechanics Foundations We need to review the governing equations of fluid mechanics before examining the methods of computational aerodynamics in detail.

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Performance. 5. More Aerodynamic Considerations

Performance. 5. More Aerodynamic Considerations Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

More information

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16 Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

More information

To highlight the change in drag with lift: Drag = Zero-Lift Drag + Lift-Dependent Drag + Compressibility Drag

To highlight the change in drag with lift: Drag = Zero-Lift Drag + Lift-Dependent Drag + Compressibility Drag Drag Drag Bookkeeping Drag may be divided into components in several ways: To highlight the change in drag with lift: Drag = Zero-Lift Drag + Lift-Dependent Drag + Compressibility Drag To emphasize the

More information

Lecture-4. Flow Past Immersed Bodies

Lecture-4. Flow Past Immersed Bodies Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

More information

Aerodynamics Simulation of Hypersonic Waverider Vehicle

Aerodynamics Simulation of Hypersonic Waverider Vehicle Modern Applied Science February, 9 Aerodynamics Simulation of Hypersonic Waverider Vehicle Dingyi Wu & Hong Xiao School of Power and Energy Northwestern Polytechnical University PO box 85, Xian, Shaanxi,

More information

Aerospace Engineering - AERO

Aerospace Engineering - AERO Aerospace Engineering - AERO 1 Aerospace Engineering - AERO Courses AERO 2200 AEROSPACE FUNDAMENTALS (2) LEC. 1. LAB. 3. Pr. (ENGR 1110 or ENGR 1113) and (PHYS 1600 or PHYS 1607). C or better in PHYS 16000

More information

THE EFFECT OF WING GEOMETRY ON LIFT AT SUPERSONIC SPEEDS

THE EFFECT OF WING GEOMETRY ON LIFT AT SUPERSONIC SPEEDS Journal of Engineering Science and Technology EURECA 2013 Special Issue August (2014) 16-27 School of Engineering, Taylor s University THE EFFECT OF WING GEOMETRY ON LIFT AT SUPERSONIC SPEEDS ABDULKAREEM

More information

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson AE 2020: Low Speed Aerodynamics I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson Text Book Anderson, Fundamentals of Aerodynamics, 4th Edition, McGraw-Hill, Inc.

More information

Nose Cone & Fin Optimization

Nose Cone & Fin Optimization Nose Cone & Fin Optimization Tripoli Minnesota Gary Stroick January 2011 Purpose Focus is on drag optimization to maximize rocket performance! Copyright 2011 by Off We Go Rocketry 2 Agenda Definitions

More information

WAVERIDER DESIGN WITH PARAMETRIC FLOW QUALITY CON- TROL BY INVERSE METHOD OF CHARACTERISTICS

WAVERIDER DESIGN WITH PARAMETRIC FLOW QUALITY CON- TROL BY INVERSE METHOD OF CHARACTERISTICS Proc. Int. Symp. on Inverse Problems in Engineering Mechanics (ISIP 2000), 07-10 March 2000, Nagano, Japan Elsevier Science, (2000) WAVERIDER DESIGN WITH PARAMETRIC FLOW QUALITY CON- TROL BY INVERSE METHOD

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, yderabad - 500 043 AERONAUTICAL ENGINEERING COURE DECRIPTION FORM Course Title Course Code Regulation Course tructure Course Coordinator Team

More information

Summer AS5150# MTech Project (summer) **

Summer AS5150# MTech Project (summer) ** AE1 - M.Tech Aerospace Engineering Sem. Course No Course Name Lecture Tutorial Extended Tutorial Afternoon Lab Session Time to be spent outside of class 1 AS5010 Aerodynamics and Aircraft 3 0 0 0 6 9 performance

More information

FUNDAMENTALS OF GAS DYNAMICS

FUNDAMENTALS OF GAS DYNAMICS FUNDAMENTALS OF GAS DYNAMICS Second Edition ROBERT D. ZUCKER OSCAR BIBLARZ Department of Aeronautics and Astronautics Naval Postgraduate School Monterey, California JOHN WILEY & SONS, INC. Contents PREFACE

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 009 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

NUMERICAL DESIGN AND ASSESSMENT OF A BIPLANE AS FUTURE SUPERSONIC TRANSPORT REVISITING BUSEMANN S BIPLANE

NUMERICAL DESIGN AND ASSESSMENT OF A BIPLANE AS FUTURE SUPERSONIC TRANSPORT REVISITING BUSEMANN S BIPLANE 5 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES NUMERICAL DESIGN AND ASSESSMENT OF A BIPLANE AS FUTURE SUPERSONIC TRANSPORT ------ REVISITING BUSEMANN S BIPLANE ------ Kisa MATSUSHIMA*, Kazuhiro

More information

Analyses of Diamond - Shaped and Circular Arc Airfoils in Supersonic Wind Tunnel Airflows

Analyses of Diamond - Shaped and Circular Arc Airfoils in Supersonic Wind Tunnel Airflows Analyses of Diamond - Shaped and Circular Arc Airfoils in Supersonic Wind Tunnel Airflows Modo U. P, Chukwuneke J. L, Omenyi Sam 1 Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka,

More information

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9 April 15, 2011 Sample Quiz Exam Questions D. A. Caughey Page 1 of 9 These pages include virtually all Quiz, Midterm, Final Examination questions I have used in M&AE 5070 over the years. Note that some

More information

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering

Propulsion Systems and Aerodynamics MODULE CODE LEVEL 6 CREDITS 20 Engineering and Mathematics Industrial Collaborative Engineering TITLE Propulsion Systems and Aerodynamics MODULE CODE 55-6894 LEVEL 6 CREDITS 20 DEPARTMENT Engineering and Mathematics SUBJECT GROUP Industrial Collaborative Engineering MODULE LEADER Dr. Xinjun Cui DATE

More information

Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight

Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight DOI:.139/EUCASS17-7 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Wing geometric parameter studies of a box wing aircraft configuration for subsonic flight Fábio Cruz Ribeiro*, Adson

More information

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007

A Study of Transonic Flow and Airfoils. Presented by: Huiliang Lui 30 th April 2007 A Study of Transonic Flow and Airfoils Presented by: Huiliang Lui 3 th April 7 Contents Background Aims Theory Conservation Laws Irrotational Flow Self-Similarity Characteristics Numerical Modeling Conclusion

More information

Natural Laminar Flow and Laminar Flow Control

Natural Laminar Flow and Laminar Flow Control Natural Laminar Flow and Laminar Flow Control lcase/nasa LaRC Series Stability of Time Dependent and Spatially Varying Flows D.L. Dwoyer and M.Y. Hussaini (eds.) Studies of Vortex Dominated Flows M.Y.

More information

In-Flight Lift-Drag Characteristics for a Forward-Swept Wing Aircraft (and Comparisions With Contemporary Aircraft)

In-Flight Lift-Drag Characteristics for a Forward-Swept Wing Aircraft (and Comparisions With Contemporary Aircraft) NASA Technical Paper 3414 December 1994 In-Flight Lift-Drag Characteristics for a Forward-Swept Wing Aircraft (and Comparisions With Contemporary Aircraft) Edwin J. Saltzman and John W. Hicks NASA Technical

More information

Numerical and Experimental Investigation on Aerodynamic Characteristics of SMA Actuated Smart Wing Model

Numerical and Experimental Investigation on Aerodynamic Characteristics of SMA Actuated Smart Wing Model Numerical and Experimental Investigation on Aerodynamic Characteristics of SMA Actuated Smart Wing Model Iyyappan Balaguru #1, Sathiavelu Sendhilkumar # # Department of Mechanical Engineering, Karpagam

More information

Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion

Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion Technical Paper DOI:10.5139/IJASS.2011.12.1.63 Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion Yoo-Yeon Jung* School of Mechanical and Aerospace Engineering, Seoul National University,

More information

Syllabus for AE3610, Aerodynamics I

Syllabus for AE3610, Aerodynamics I Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory

More information

Unsteady Aerodynamic Vortex Lattice of Moving Aircraft. Master thesis

Unsteady Aerodynamic Vortex Lattice of Moving Aircraft. Master thesis Unsteady Aerodynamic Vortex Lattice of Moving Aircraft September 3, 211 Master thesis Author: Enrique Mata Bueso Supervisors: Arthur Rizzi Jesper Oppelstrup Aeronautical and Vehicle engineering department,

More information

Optimum Spanloads Incorporating Wing Structural Considerations And Formation Flying

Optimum Spanloads Incorporating Wing Structural Considerations And Formation Flying Optimum Spanloads Incorporating Wing Structural Considerations And Formation Flying Sergio Iglesias Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment

More information