Greedy. Outline CS141. Stefano Lonardi, UCR 1. Activity selection Fractional knapsack Huffman encoding Later:

Size: px
Start display at page:

Download "Greedy. Outline CS141. Stefano Lonardi, UCR 1. Activity selection Fractional knapsack Huffman encoding Later:"

Transcription

1 October 5, 017 Greedy Chapters 5 of Dasgupta et al. 1 Activity selection Fractional knapsack Huffman encoding Later: Outline Dijkstra (single source shortest path) Prim and Kruskal (minimum spanning tree) Stefano Lonardi, UCR 1

2 Optimization problems A class of problems in which we are asked to find a set (or a sequence) of items that satisfy some constraints and simultaneously optimize (i.e., maximize or minimize) some objective function 3 Greedy method Typically applied to optimization problems, that is, problems that involve searching through a set of configurations to find one that minimizes/maximizes an objective function defined on these configuration Greedy strategy: at each step of the optimization procedure, choose the configuration which seems the best between all of those possible 4 Stefano Lonardi, UCR

3 Searching for the global minimum objective function a series of locally optimal moves may NOT lead to the global optimal configurations 5 Greedy method There are problem for which the globally optimal solution can be found by making a series of locally optimal (greedy) choices Make whatever choice seems best at the moment and then solve the sub-problem arising after the choice is made The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to sub-problems The greedy strategy does not always lead to the global optimal solution 6 Stefano Lonardi, UCR 3

4 Searching for the global minimum objective function a series of locally optimal moves will always lead to the global optimal configurations 7 Elements of greedy strategy Two ingredients that are exhibited by most problems that lend themselves to a greedy strategy Greedy-choice property: a globally optimal solution can be reached by making a locally optimal choice Optimal substructure: optimal solution to the problem results from optimal solutions to subproblems 8 Stefano Lonardi, UCR 4

5 Activity selection (aka, task scheduling ) 9 Activity Selection Input: A set of activities S = {a 1,, a n } Each activity has start time and a finish time a i =(s i, f i ) Two activities are conflicting if and only if their interval overlap Output: a maximum-size subset of nonconflicting activities 10 Stefano Lonardi, UCR 5

6 Activity Selection Here are a set of start and finish times i s i f i What is the maximum number of activities that can be completed? {a 3, a 9, a 11 } can be completed But so can {a 1, a 4, a 8, a 11 } which is a larger set But it is not unique, consider {a, a 4, a 9, a 11 } Stefano Lonardi, UCR 6

7 Stefano Lonardi, UCR 7

8 Greedy Strategies 1. Longest first. Shortest first 3. Early start first 4. Early finish first 5. None of the above 16 Stefano Lonardi, UCR 8

9 Early Finish Greedy strategy Sort the activities by finish time Schedule first activity (activity 1) Remove all activities that conflict with 1 Recurse on the remaining activities Stefano Lonardi, UCR 9

10 Stefano Lonardi, UCR 10

11 Stefano Lonardi, UCR 11

12 Stefano Lonardi, UCR 1

13 Activity selection in Python def greedy_activity_selection(a): A.sort(key=itemgetter(1)) result = [A[0]] i = 0 for j in range(1,len(a)): if A[j][0] >= A[i][1]: result.append(a[j]) i = j return result Remark: sort A by finish time Remark: first activity in the solution Remark: start[j] >= finish[i] Time complexity? O(n log n) to sort, the rest is linear. 5 Greedy Goal: build a solution in steps, never making a mistake --- maintain the invariant that the partial solution so far is always extendible to an optimal solution. Choosing activity 1 for the first job maximizes the set of remaining (possible, non-conflicting) jobs. 6 Stefano Lonardi, UCR 13

14 Correctness (optimality) Greedy choice property: First choice is consistent with some opt l soln Optimal substructure property: After this first choice, to solve the entire problem optimally, it is enough to solve the remaining sub-problem optimally. 7 Greedy-Choice Property We want to show there is an optimal solution that begins with a greedy choice (i.e., with the first activity, which has the earliest finish time) 8 Stefano Lonardi, UCR 14

15 Suppose Greedy-Choice Property A Í S is an optimal solution Order the activities in A by finish time Let k be the first activity in A If k =1, the schedule A begins with a greedy choice If k 1, show that there is another optimal solution B that begins with the greedy choice (activity 1) Let B = (A {k}) {1} Activities in B are non-conflicting because activities in A are non-conflicting, k is the first activity to finish and f 1 f k B has the same number of activities as A thus, B is optimal 9 Optimal Substructure After the greedy choice of the first activity, the problem reduces to finding an optimal solution for the activity-selection problem over those activities in S that are compatible with the first activity. Formally: Remaining sub-problem is S = { i in S: s i f 1 }. A is an optimal solution for S if and only if A U {1} is an optimal solution for S. 30 Stefano Lonardi, UCR 15

16 Optimal Substructure Remaining sub-problem is S = { i in S: s i f 1 }. Claim. A is an optimal solution for S if and only if A U {1} is an optimal solution for S. Proof. (=> direction) Let A be any optimal solution for S. Then A U {1} is a solution for S. (why?) If it is not optimal for S, then (by greedy choice) there is a larger solution B U {1} for S. But then B is a solution for S (why?), and B is larger than A. (We leave the <= direction as an exercise.) QED 31 Proof. Claim. Greedy is optimal greedy(s) = {1} U greedy(s ) - defn of greedy = {1} U opt(s ) - induction on S = opt(s) - optimal substructure base case: greedy({}) = {} = opt({}) 3 Stefano Lonardi, UCR 16

17 Fractional Knapsack 33 Fractional Knapsack Given a set S of n items, such that each item i has a positive benefit b i and a positive weight w i ; the size of the knapsack W The problem is to find the amount x i of each item i which maximizes the total benefit å i b i (x i / w i ) under the condition that 0 x i w i and W å x i i 34 Stefano Lonardi, UCR 17

18 Fractional Knapsack - Example W=50 Item 1 w 1 =10 10 Item w =0 0 Item 3 w 3 = $ $ $60 b 1 =$60 b =$100 b 3 =$10 $40 $6/pound $5/pound $4/pound 35 Fractional Knapsack in Python def fractional_knapsack(s, W): v = [] for item in S: value = float(item[1]) / float(item[0]) v.append((value,item[1],item[])) v.sort(key=itemgetter(0)) w, result = 0, [] while w < W: high = v[-1] v.pop() a = min(high[1], W-w) Remark: select and remove the highest value (high) w += a result.append((a,high[])) return result Remark: sort v by value = benefit/weight Remark: a is how much item high we took 36 Stefano Lonardi, UCR 18

19 Fractional Knapsack Time complexity is O(n log n) Fact: Greedy strategy is optimal for the fractional knapsack problem Proof: We will show that the problem has the optimal substructure and the algorithm satisfies the greedy-choice property 37 Greedy Choice property holds Items (sorted by b i /w i ) 1 3 j n Optimal solution: x 1 x x 3 x j x n While x 1 < min(w 1, W): For some small d > 0, increase x 1 by d, decrease some x j by d. Increase in total benefit, d (b 1 / w 1 - b j/ / w j ), is non-negative. Stop when x 1 = min(w 1, W). Yields equally good solution with x 1 = min(w 1, W). 38 Stefano Lonardi, UCR 19

20 Optimal substructure property Let x 1 = min(w 1,W) be the greedy choice for the first step. (S, W) is the original problem, (S,W ) is the sub-problem, where S ={,3,,n}, W =W- x 1 items: 1 3 n soln for (S,W ): - x x 3 x n soln for (S, W ): x 1??? x, x 3, x n is an optimal solution to (S, W ) if and only if x 1, x, x 3, x n is an optimal solution to (S, W) Proof. Left as an exercise! 39 Huffman codes 40 Stefano Lonardi, UCR 0

21 Data Compression Text files are usually stored by representing each character with an 8-bit ASCII code The ASCII encoding is an example of fixed-length encoding, where each character is represented with the same number of bits In order to reduce the space required to store a text file, we can exploit the fact that some characters are more likely to occur than others 41 Data Compression Variable-length encoding uses binary codes of different lengths for different characters; thus, we can assign fewer bits to frequently used characters, and more bits to rarely used characters Huffman coding (section 5.) 4 Stefano Lonardi, UCR 1

22 File Compression: Example An example text: java encoding: a = 0, j = 11, v = 10 encoded text: (6 bits) How to decode in the case of ambiguity? encoding: a = 0, j = 11, v = 00 encoded text: (6 bits) could be java, or jvv, or jaaaa, or 43 Encoding To prevent ambiguities in decoding, we require that the encoding satisfies the prefix rule: no code is a prefix of another Example a = 0, j = 11, v = 10 satisfies the prefix rule a = 0, j = 11, v= 00 does not satisfy the prefix rule (the code of 'a' is a prefix of the codes of 'v') 44 Stefano Lonardi, UCR

23 Trie We use an encoding trie to satisfy this prefix rule the characters are stored at the external nodes a left child (edge) means 0 a right child (edge) means 1 D B C A R A = 010 B = 11 C = 00 D = 10 R = Example of Decoding encoded text: text: ABRACADABRA (11 bytes=88 bits) D B C A R A = 010 B = 11 C = 00 D = 10 R = Stefano Lonardi, UCR 3

24 Data Compression Problem: We want the encoded text as short as possible Example: ABRACADABRA bits C D B A R 47 Data Compression Example: ABRACADABRA bits A B R C D 48 Stefano Lonardi, UCR 4

25 Optimization problem Given a character c in the alphabet Σ let f(c) be the frequency of c in the file let d T (c) be the depth of c in the tree = the length of the codeword We want to minimize the number of bits required to encode the file, that is å min f( c) dt ( c) T c binary trees with å leaves ÎS 49 Huffman Encoding: Example Step 0 ABRACADABRA character frequency A B R 5 C D 1 1 Step 1 5 A B R C 1 D 1 50 Stefano Lonardi, UCR 5

26 Huffman Encoding: Example Step 5 A 4 B R C 1 D 1 Step A B R C D 51 Huffman Encoding: Example Step A B R C D 11 Step 5 5 A B R C D 5 Stefano Lonardi, UCR 6

27 Final Huffman Trie A B R A C A D A B R A (3 bits) 5 A B R C D 53 Step 0 Another Example ABRACADABRA character frequency A B R 5 C D 1 1 Step 1 5 A B R C 1 D 1 Step 5 A B R 4 C 1 D 1 54 Stefano Lonardi, UCR 7

28 Another Example 5 A B 4 Step 3 R C 1 D A Step 4 B 4 R C 1 D 1 55 Another Example 5 6 Step 5 A B 4 R C 1 D Step 6 A B 4 R C 1 D 1 56 Stefano Lonardi, UCR 8

29 Final Trie A B R A C A D A B R A (3 bits) 11 5 A B R C 1 D 1 57 Priority queue Use a priority queue for storing the nodes Priority queue is a queue ordered by priority (heap) For our application, priority = frequency If there are k elements in the queue: Extracting the lowest priority is O(log k) Inserting takes O(log k) 58 Stefano Lonardi, UCR 9

30 Huffman algorithm in Python def makehufftree(t): heapq.heapify(t) Remark: transforms list t in a heap in linear time while len(t) > 1: L, R = heapq.heappop(t), heapq.heappop(t) parent = (L[0] + R[0], L, R) heapq.heappush(t, parent) return t[0] Remark: returns the tree represented a nested tuple def printhufftree(t, prefix = ''): if len(t) == : print t[1], prefix else: printhufftree(t[1], prefix + '0') printhufftree(t[], prefix + '1') 59 Huffman Algorithm Running time for a text of length n with k distinct characters: O(n + k log k) If we assume k to be a constant (i.e., not a function of n) then the algorithm runs in O(n) time Fact: Using a Huffman encoding trie, the encoded text has minimal length Proof: omitted 60 Stefano Lonardi, UCR 30

31 Greedy method: summary Task scheduling Fractional knapsack Huffman encoding (section 5.) Other greedy algorithms that will be covered later: Prim (section 5.1.5), Kruskal (section 5.1.3) and Dijkstra (section 4.4) 61 Stefano Lonardi, UCR 31

Knapsack and Scheduling Problems. The Greedy Method

Knapsack and Scheduling Problems. The Greedy Method The Greedy Method: Knapsack and Scheduling Problems The Greedy Method 1 Outline and Reading Task Scheduling Fractional Knapsack Problem The Greedy Method 2 Elements of Greedy Strategy An greedy algorithm

More information

The Greedy Method. Design and analysis of algorithms Cs The Greedy Method

The Greedy Method. Design and analysis of algorithms Cs The Greedy Method Design and analysis of algorithms Cs 3400 The Greedy Method 1 Outline and Reading The Greedy Method Technique Fractional Knapsack Problem Task Scheduling 2 The Greedy Method Technique The greedy method

More information

Lecture 9. Greedy Algorithm

Lecture 9. Greedy Algorithm Lecture 9. Greedy Algorithm T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright 2000-2018

More information

Outline / Reading. Greedy Method as a fundamental algorithm design technique

Outline / Reading. Greedy Method as a fundamental algorithm design technique Greedy Method Outline / Reading Greedy Method as a fundamental algorithm design technique Application to problems of: Making change Fractional Knapsack Problem (Ch. 5.1.1) Task Scheduling (Ch. 5.1.2) Minimum

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 20: Algorithm Design Techniques 12/2/2015 Daniel Bauer 1 Algorithms and Problem Solving Purpose of algorithms: find solutions to problems. Data Structures provide ways of

More information

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd 4.8 Huffman Codes These lecture slides are supplied by Mathijs de Weerd Data Compression Q. Given a text that uses 32 symbols (26 different letters, space, and some punctuation characters), how can we

More information

21. Dynamic Programming III. FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5]

21. Dynamic Programming III. FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] 575 21. Dynamic Programming III FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] Approximation 576 Let ε (0, 1) given. Let I opt an optimal selection. No try to find a valid selection

More information

CS583 Lecture 11. Many slides here are based on D. Luebke slides. Review: Dynamic Programming

CS583 Lecture 11. Many slides here are based on D. Luebke slides. Review: Dynamic Programming // CS8 Lecture Jana Kosecka Dynamic Programming Greedy Algorithms Many slides here are based on D. Luebke slides Review: Dynamic Programming A meta-technique, not an algorithm (like divide & conquer) Applicable

More information

Slides for CIS 675. Huffman Encoding, 1. Huffman Encoding, 2. Huffman Encoding, 3. Encoding 1. DPV Chapter 5, Part 2. Encoding 2

Slides for CIS 675. Huffman Encoding, 1. Huffman Encoding, 2. Huffman Encoding, 3. Encoding 1. DPV Chapter 5, Part 2. Encoding 2 Huffman Encoding, 1 EECS Slides for CIS 675 DPV Chapter 5, Part 2 Jim Royer October 13, 2009 A toy example: Suppose our alphabet is { A, B, C, D }. Suppose T is a text of 130 million characters. What is

More information

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 4 Greedy Algorithms Slides by Kevin Wayne. Copyright Pearson-Addison Wesley. All rights reserved. 4 4.1 Interval Scheduling Interval Scheduling Interval scheduling. Job j starts at s j and finishes

More information

Greedy Algorithms My T. UF

Greedy Algorithms My T. UF Introduction to Algorithms Greedy Algorithms @ UF Overview A greedy algorithm always makes the choice that looks best at the moment Make a locally optimal choice in hope of getting a globally optimal solution

More information

Algorithms: COMP3121/3821/9101/9801

Algorithms: COMP3121/3821/9101/9801 NEW SOUTH WALES Algorithms: COMP3121/3821/9101/9801 Aleks Ignjatović School of Computer Science and Engineering University of New South Wales TOPIC 4: THE GREEDY METHOD COMP3121/3821/9101/9801 1 / 23 The

More information

3 Greedy Algorithms. 3.1 An activity-selection problem

3 Greedy Algorithms. 3.1 An activity-selection problem 3 Greedy Algorithms [BB chapter 6] with different examples or [Par chapter 2.3] with different examples or [CLR2 chapter 16] with different approach to greedy algorithms 3.1 An activity-selection problem

More information

Activity selection. Goal: Select the largest possible set of nonoverlapping (mutually compatible) activities.

Activity selection. Goal: Select the largest possible set of nonoverlapping (mutually compatible) activities. Greedy Algorithm 1 Introduction Similar to dynamic programming. Used for optimization problems. Not always yield an optimal solution. Make choice for the one looks best right now. Make a locally optimal

More information

CSE 421 Greedy: Huffman Codes

CSE 421 Greedy: Huffman Codes CSE 421 Greedy: Huffman Codes Yin Tat Lee 1 Compression Example 100k file, 6 letter alphabet: File Size: ASCII, 8 bits/char: 800kbits 2 3 > 6; 3 bits/char: 300kbits better: 2.52 bits/char 74%*2 +26%*4:

More information

if the two intervals overlap at most at end

if the two intervals overlap at most at end Activity Selection Given a set of activities represented by intervals (s i f i ), i =1 ::: n. To select a maximum number of compatible intervals (activities). Two activities (s i f i ) and (s j f j ) are

More information

CS 161: Design and Analysis of Algorithms

CS 161: Design and Analysis of Algorithms CS 161: Design and Analysis of Algorithms Greedy Algorithms 3: Minimum Spanning Trees/Scheduling Disjoint Sets, continued Analysis of Kruskal s Algorithm Interval Scheduling Disjoint Sets, Continued Each

More information

General Methods for Algorithm Design

General Methods for Algorithm Design General Methods for Algorithm Design 1. Dynamic Programming Multiplication of matrices Elements of the dynamic programming Optimal triangulation of polygons Longest common subsequence 2. Greedy Methods

More information

Dynamic Programming( Weighted Interval Scheduling)

Dynamic Programming( Weighted Interval Scheduling) Dynamic Programming( Weighted Interval Scheduling) 17 November, 2016 Dynamic Programming 1 Dynamic programming algorithms are used for optimization (for example, finding the shortest path between two points,

More information

CSE 417. Chapter 4: Greedy Algorithms. Many Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

CSE 417. Chapter 4: Greedy Algorithms. Many Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. CSE 417 Chapter 4: Greedy Algorithms Many Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Greed is good. Greed is right. Greed works. Greed clarifies, cuts through,

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 8 Greedy Algorithms V Huffman Codes Adam Smith Review Questions Let G be a connected undirected graph with distinct edge weights. Answer true or false: Let e be the

More information

Greedy Algorithms and Data Compression. Curs 2018

Greedy Algorithms and Data Compression. Curs 2018 Greedy Algorithms and Data Compression. Curs 2018 Greedy Algorithms A greedy algorithm, is a technique that always makes a locally optimal choice in the myopic hope that this choice will lead to a globally

More information

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 4 Greedy Algorithms Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 4.1 Interval Scheduling Interval Scheduling Interval scheduling. Job j starts at s j and

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 6 Greedy Algorithms Interval Scheduling Interval Partitioning Scheduling to Minimize Lateness Sofya Raskhodnikova S. Raskhodnikova; based on slides by E. Demaine,

More information

Algorithm Design Strategies V

Algorithm Design Strategies V Algorithm Design Strategies V Joaquim Madeira Version 0.0 October 2016 U. Aveiro, October 2016 1 Overview The 0-1 Knapsack Problem Revisited The Fractional Knapsack Problem Greedy Algorithms Example Coin

More information

CS4800: Algorithms & Data Jonathan Ullman

CS4800: Algorithms & Data Jonathan Ullman CS4800: Algorithms & Data Jonathan Ullman Lecture 22: Greedy Algorithms: Huffman Codes Data Compression and Entropy Apr 5, 2018 Data Compression How do we store strings of text compactly? A (binary) code

More information

1 Basic Definitions. 2 Proof By Contradiction. 3 Exchange Argument

1 Basic Definitions. 2 Proof By Contradiction. 3 Exchange Argument 1 Basic Definitions A Problem is a relation from input to acceptable output. For example, INPUT: A list of integers x 1,..., x n OUTPUT: One of the three smallest numbers in the list An algorithm A solves

More information

Greedy Algorithms and Data Compression. Curs 2017

Greedy Algorithms and Data Compression. Curs 2017 Greedy Algorithms and Data Compression. Curs 2017 Greedy Algorithms An optimization problem: Given of (S, f ), where S is a set of feasible elements and f : S R is the objective function, find a u S, which

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 5 Greedy Algorithms Interval Scheduling Interval Partitioning Guest lecturer: Martin Furer Review In a DFS tree of an undirected graph, can there be an edge (u,v)

More information

Lecture 1 : Data Compression and Entropy

Lecture 1 : Data Compression and Entropy CPS290: Algorithmic Foundations of Data Science January 8, 207 Lecture : Data Compression and Entropy Lecturer: Kamesh Munagala Scribe: Kamesh Munagala In this lecture, we will study a simple model for

More information

Greedy Algorithms. Kleinberg and Tardos, Chapter 4

Greedy Algorithms. Kleinberg and Tardos, Chapter 4 Greedy Algorithms Kleinberg and Tardos, Chapter 4 1 Selecting breakpoints Road trip from Fort Collins to Durango on a given route. Fuel capacity = C. Goal: makes as few refueling stops as possible. Greedy

More information

CS325: Analysis of Algorithms, Fall Final Exam

CS325: Analysis of Algorithms, Fall Final Exam CS: Analysis of Algorithms, Fall 0 Final Exam I don t know policy: you may write I don t know and nothing else to answer a question and receive percent of the total points for that problem whereas a completely

More information

CSE 431/531: Analysis of Algorithms. Dynamic Programming. Lecturer: Shi Li. Department of Computer Science and Engineering University at Buffalo

CSE 431/531: Analysis of Algorithms. Dynamic Programming. Lecturer: Shi Li. Department of Computer Science and Engineering University at Buffalo CSE 431/531: Analysis of Algorithms Dynamic Programming Lecturer: Shi Li Department of Computer Science and Engineering University at Buffalo Paradigms for Designing Algorithms Greedy algorithm Make a

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 7 Greedy Graph Algorithms Shortest paths Minimum Spanning Tree Sofya Raskhodnikova 9/14/016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith,

More information

CS781 Lecture 3 January 27, 2011

CS781 Lecture 3 January 27, 2011 CS781 Lecture 3 January 7, 011 Greedy Algorithms Topics: Interval Scheduling and Partitioning Dijkstra s Shortest Path Algorithm Minimum Spanning Trees Single-Link k-clustering Interval Scheduling Interval

More information

CS 561, Lecture: Greedy Algorithms. Jared Saia University of New Mexico

CS 561, Lecture: Greedy Algorithms. Jared Saia University of New Mexico CS 561, Lecture: Greedy Algorithms Jared Saia University of New Mexico Outline Greedy Algorithm Intro Activity Selection Knapsack 1 Greedy Algorithms Greed is Good - Michael Douglas in Wall Street A greedy

More information

Today s Outline. CS 561, Lecture 15. Greedy Algorithms. Activity Selection. Greedy Algorithm Intro Activity Selection Knapsack

Today s Outline. CS 561, Lecture 15. Greedy Algorithms. Activity Selection. Greedy Algorithm Intro Activity Selection Knapsack Today s Outline CS 561, Lecture 15 Jared Saia University of New Mexico Greedy Algorithm Intro Activity Selection Knapsack 1 Greedy Algorithms Activity Selection Greed is Good - Michael Douglas in Wall

More information

CS 374: Algorithms & Models of Computation, Spring 2017 Greedy Algorithms Lecture 19 April 4, 2017 Chandra Chekuri (UIUC) CS374 1 Spring / 1

CS 374: Algorithms & Models of Computation, Spring 2017 Greedy Algorithms Lecture 19 April 4, 2017 Chandra Chekuri (UIUC) CS374 1 Spring / 1 CS 374: Algorithms & Models of Computation, Spring 2017 Greedy Algorithms Lecture 19 April 4, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 1 Part I Greedy Algorithms: Tools and Techniques Chandra

More information

UNIT I INFORMATION THEORY. I k log 2

UNIT I INFORMATION THEORY. I k log 2 UNIT I INFORMATION THEORY Claude Shannon 1916-2001 Creator of Information Theory, lays the foundation for implementing logic in digital circuits as part of his Masters Thesis! (1939) and published a paper

More information

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 4 Greedy Algorithms Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 4.1 Interval Scheduling Interval Scheduling Interval scheduling. Job j starts at s j and

More information

Greedy Algorithms. CSE 101: Design and Analysis of Algorithms Lecture 10

Greedy Algorithms. CSE 101: Design and Analysis of Algorithms Lecture 10 Greedy Algorithms CSE 101: Design and Analysis of Algorithms Lecture 10 CSE 101: Design and analysis of algorithms Greedy algorithms Reading: Kleinberg and Tardos, sections 4.1, 4.2, and 4.3 Homework 4

More information

Dynamic Programming: Interval Scheduling and Knapsack

Dynamic Programming: Interval Scheduling and Knapsack Dynamic Programming: Interval Scheduling and Knapsack . Weighted Interval Scheduling Weighted Interval Scheduling Weighted interval scheduling problem. Job j starts at s j, finishes at f j, and has weight

More information

CSE 421 Dynamic Programming

CSE 421 Dynamic Programming CSE Dynamic Programming Yin Tat Lee Weighted Interval Scheduling Interval Scheduling Job j starts at s(j) and finishes at f j and has weight w j Two jobs compatible if they don t overlap. Goal: find maximum

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Announcement: Homework 1 due soon! Due: January 25 th at midnight (Blackboard) Recap: Graphs Bipartite Graphs Definition

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Dynamic Programming II Date: 10/12/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Dynamic Programming II Date: 10/12/17 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Dynamic Programming II Date: 10/12/17 12.1 Introduction Today we re going to do a couple more examples of dynamic programming. While

More information

CS60007 Algorithm Design and Analysis 2018 Assignment 1

CS60007 Algorithm Design and Analysis 2018 Assignment 1 CS60007 Algorithm Design and Analysis 2018 Assignment 1 Palash Dey and Swagato Sanyal Indian Institute of Technology, Kharagpur Please submit the solutions of the problems 6, 11, 12 and 13 (written in

More information

Dynamic Programming. Cormen et. al. IV 15

Dynamic Programming. Cormen et. al. IV 15 Dynamic Programming Cormen et. al. IV 5 Dynamic Programming Applications Areas. Bioinformatics. Control theory. Operations research. Some famous dynamic programming algorithms. Unix diff for comparing

More information

CSE 421 Greedy Algorithms / Interval Scheduling

CSE 421 Greedy Algorithms / Interval Scheduling CSE 421 Greedy Algorithms / Interval Scheduling Yin Tat Lee 1 Interval Scheduling Job j starts at s(j) and finishes at f(j). Two jobs compatible if they don t overlap. Goal: find maximum subset of mutually

More information

Lecture 4 : Adaptive source coding algorithms

Lecture 4 : Adaptive source coding algorithms Lecture 4 : Adaptive source coding algorithms February 2, 28 Information Theory Outline 1. Motivation ; 2. adaptive Huffman encoding ; 3. Gallager and Knuth s method ; 4. Dictionary methods : Lempel-Ziv

More information

6. DYNAMIC PROGRAMMING I

6. DYNAMIC PROGRAMMING I 6. DYNAMIC PROGRAMMING I weighted interval scheduling segmented least squares knapsack problem RNA secondary structure Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013

More information

CSE 421 Weighted Interval Scheduling, Knapsack, RNA Secondary Structure

CSE 421 Weighted Interval Scheduling, Knapsack, RNA Secondary Structure CSE Weighted Interval Scheduling, Knapsack, RNA Secondary Structure Shayan Oveis haran Weighted Interval Scheduling Interval Scheduling Job j starts at s(j) and finishes at f j and has weight w j Two jobs

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 2

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 2 582487 Data Compression Techniques (Spring 22) Model Solutions for Exercise 2 If you have any feedback or corrections, please contact nvalimak at cs.helsinki.fi.. Problem: Construct a canonical prefix

More information

SIGNAL COMPRESSION Lecture 7. Variable to Fix Encoding

SIGNAL COMPRESSION Lecture 7. Variable to Fix Encoding SIGNAL COMPRESSION Lecture 7 Variable to Fix Encoding 1. Tunstall codes 2. Petry codes 3. Generalized Tunstall codes for Markov sources (a presentation of the paper by I. Tabus, G. Korodi, J. Rissanen.

More information

CS Analysis of Recursive Algorithms and Brute Force

CS Analysis of Recursive Algorithms and Brute Force CS483-05 Analysis of Recursive Algorithms and Brute Force Instructor: Fei Li Room 443 ST II Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments lifei@cs.gmu.edu with subject: CS483 http://www.cs.gmu.edu/

More information

Proof methods and greedy algorithms

Proof methods and greedy algorithms Proof methods and greedy algorithms Magnus Lie Hetland Lecture notes, May 5th 2008 1 Introduction This lecture in some ways covers two separate topics: (1) how to prove algorithms correct, in general,

More information

CS Lunch. Dynamic Programming Recipe. 2 Midterm 2! Slides17 - Segmented Least Squares.key - November 16, 2016

CS Lunch. Dynamic Programming Recipe. 2 Midterm 2! Slides17 - Segmented Least Squares.key - November 16, 2016 CS Lunch 1 Michelle Oraa Ali Tien Dao Vladislava Paskova Nan Zhuang Surabhi Sharma Wednesday, 12:15 PM Kendade 307 2 Midterm 2! Monday, November 21 In class Covers Greedy Algorithms Closed book Dynamic

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Reminder: Homework 1 due tonight at 11:59PM! Recap: Greedy Algorithms Interval Scheduling Goal: Maximize number of meeting

More information

Matching Residents to Hospitals

Matching Residents to Hospitals Midterm Review Matching Residents to Hospitals Goal. Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process. Unstable pair: applicant x and

More information

Divide-and-Conquer Algorithms Part Two

Divide-and-Conquer Algorithms Part Two Divide-and-Conquer Algorithms Part Two Recap from Last Time Divide-and-Conquer Algorithms A divide-and-conquer algorithm is one that works as follows: (Divide) Split the input apart into multiple smaller

More information

CS 6901 (Applied Algorithms) Lecture 3

CS 6901 (Applied Algorithms) Lecture 3 CS 6901 (Applied Algorithms) Lecture 3 Antonina Kolokolova September 16, 2014 1 Representative problems: brief overview In this lecture we will look at several problems which, although look somewhat similar

More information

Minimizing the Number of Tardy Jobs

Minimizing the Number of Tardy Jobs Minimizing the Number of Tardy Jobs 1 U j Example j p j d j 1 10 10 2 2 11 3 7 13 4 4 15 5 8 20 Ideas: Need to choose a subset of jobs S that meet their deadlines. Schedule the jobs that meet their deadlines

More information

2018/5/3. YU Xiangyu

2018/5/3. YU Xiangyu 2018/5/3 YU Xiangyu yuxy@scut.edu.cn Entropy Huffman Code Entropy of Discrete Source Definition of entropy: If an information source X can generate n different messages x 1, x 2,, x i,, x n, then the

More information

Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet)

Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet) Compression Motivation Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet) Storage: Store large & complex 3D models (e.g. 3D scanner

More information

Algorithms: Lecture 12. Chalmers University of Technology

Algorithms: Lecture 12. Chalmers University of Technology Algorithms: Lecture 1 Chalmers University of Technology Today s Topics Shortest Paths Network Flow Algorithms Shortest Path in a Graph Shortest Path Problem Shortest path network. Directed graph G = (V,

More information

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD Greedy s Greedy s Shortest path Claim 2: Let S be a subset of vertices containing s such that we know the shortest path length l(s, u) from s to any vertex in u S. Let e = (u, v) be an edge such that 1

More information

Text Compression. Jayadev Misra The University of Texas at Austin December 5, A Very Incomplete Introduction to Information Theory 2

Text Compression. Jayadev Misra The University of Texas at Austin December 5, A Very Incomplete Introduction to Information Theory 2 Text Compression Jayadev Misra The University of Texas at Austin December 5, 2003 Contents 1 Introduction 1 2 A Very Incomplete Introduction to Information Theory 2 3 Huffman Coding 5 3.1 Uniquely Decodable

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 252: Data Structures and Algorithms Lecture 32 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati The All-Pairs Shortest Paths Problem

More information

Discrete Wiskunde II. Lecture 5: Shortest Paths & Spanning Trees

Discrete Wiskunde II. Lecture 5: Shortest Paths & Spanning Trees , 2009 Lecture 5: Shortest Paths & Spanning Trees University of Twente m.uetz@utwente.nl wwwhome.math.utwente.nl/~uetzm/dw/ Shortest Path Problem "#$%&'%()*%"()$#+,&- Given directed "#$%&'()*+,%+('-*.#/'01234564'.*,'7+"-%/8',&'5"4'84%#3

More information

Priority queues implemented via heaps

Priority queues implemented via heaps Priority queues implemented via heaps Comp Sci 1575 Data s Outline 1 2 3 Outline 1 2 3 Priority queue: most important first Recall: queue is FIFO A normal queue data structure will not implement a priority

More information

Greedy Alg: Huffman abhi shelat

Greedy Alg: Huffman abhi shelat L15 Greedy Alg: Huffman 4102 10.17.201 abhi shelat Huffman Coding image: wikimedia In testimony before the committee, Mr. Lew stressed that the Treasury Department would run out of extraordinary measures

More information

1. Problem I calculated these out by hand. It was tedious, but kind of fun, in a a computer should really be doing this sort of way.

1. Problem I calculated these out by hand. It was tedious, but kind of fun, in a a computer should really be doing this sort of way. . Problem 5.2-. I calculated these out by hand. It was tedious, but kind of fun, in a a computer should really be doing this sort of way. 2 655 95 45 243 77 33 33 93 86 5 36 8 3 5 2 4 2 2 2 4 2 2 4 4 2

More information

This means that we can assume each list ) is

This means that we can assume each list ) is This means that we can assume each list ) is of the form ),, ( )with < and Since the sizes of the items are integers, there are at most +1pairs in each list Furthermore, if we let = be the maximum possible

More information

PART III. Outline. Codes and Cryptography. Sources. Optimal Codes (I) Jorge L. Villar. MAMME, Fall 2015

PART III. Outline. Codes and Cryptography. Sources. Optimal Codes (I) Jorge L. Villar. MAMME, Fall 2015 Outline Codes and Cryptography 1 Information Sources and Optimal Codes 2 Building Optimal Codes: Huffman Codes MAMME, Fall 2015 3 Shannon Entropy and Mutual Information PART III Sources Information source:

More information

10-704: Information Processing and Learning Fall Lecture 10: Oct 3

10-704: Information Processing and Learning Fall Lecture 10: Oct 3 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 0: Oct 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Dynamic Programming. Data Structures and Algorithms Andrei Bulatov

Dynamic Programming. Data Structures and Algorithms Andrei Bulatov Dynamic Programming Data Structures and Algorithms Andrei Bulatov Algorithms Dynamic Programming 18-2 Weighted Interval Scheduling Weighted interval scheduling problem. Instance A set of n jobs. Job j

More information

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code Chapter 3 Source Coding 3. An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code 3. An Introduction to Source Coding Entropy (in bits per symbol) implies in average

More information

Lecture 16. Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code

Lecture 16. Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code Lecture 16 Agenda for the lecture Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code Variable-length source codes with error 16.1 Error-free coding schemes 16.1.1 The Shannon-Fano-Elias

More information

CS 4407 Algorithms Lecture: Shortest Path Algorithms

CS 4407 Algorithms Lecture: Shortest Path Algorithms CS 440 Algorithms Lecture: Shortest Path Algorithms Prof. Gregory Provan Department of Computer Science University College Cork 1 Outline Shortest Path Problem General Lemmas and Theorems. Algorithms Bellman-Ford

More information

Huffman Coding. C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University

Huffman Coding. C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University Huffman Coding C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University http://www.csie.nctu.edu.tw/~cmliu/courses/compression/ Office: EC538 (03)573877 cmliu@cs.nctu.edu.tw

More information

CMSC 451: Lecture 7 Greedy Algorithms for Scheduling Tuesday, Sep 19, 2017

CMSC 451: Lecture 7 Greedy Algorithms for Scheduling Tuesday, Sep 19, 2017 CMSC CMSC : Lecture Greedy Algorithms for Scheduling Tuesday, Sep 9, 0 Reading: Sects.. and. of KT. (Not covered in DPV.) Interval Scheduling: We continue our discussion of greedy algorithms with a number

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2011, 28 November 2011 Memoryless Sources Arithmetic Coding Sources with Memory 2 / 19 Summary of last lecture Prefix-free

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2013, 29 November 2013 Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 2 / 21 Encoding the output

More information

Lecture 6: Greedy Algorithms I

Lecture 6: Greedy Algorithms I COMPSCI 330: Design and Analysis of Algorithms September 14 Lecturer: Rong Ge Lecture 6: Greedy Algorithms I Scribe: Fred Zhang 1 Overview In this lecture, we introduce a new algorithm design technique

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 //8 Fast Integer Division Too (!) Schönhage Strassen algorithm CS 8: Algorithm Design and Analysis Integer division. Given two n-bit (or less) integers s and t, compute quotient q = s / t and remainder

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 208 Announcement: Homework 3 due February 5 th at :59PM Final Exam (Tentative): Thursday, May 3 @ 8AM (PHYS 203) Recap: Divide

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE General e Image Coder Structure Motion Video x(s 1,s 2,t) or x(s 1,s 2 ) Natural Image Sampling A form of data compression; usually lossless, but can be lossy Redundancy Removal Lossless compression: predictive

More information

Entropy as a measure of surprise

Entropy as a measure of surprise Entropy as a measure of surprise Lecture 5: Sam Roweis September 26, 25 What does information do? It removes uncertainty. Information Conveyed = Uncertainty Removed = Surprise Yielded. How should we quantify

More information

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Matroids Shortest Paths Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Marc Uetz University of Twente m.uetz@utwente.nl Lecture 2: sheet 1 / 25 Marc Uetz Discrete Optimization Matroids

More information

Analysis of Algorithms. Outline. Single Source Shortest Path. Andres Mendez-Vazquez. November 9, Notes. Notes

Analysis of Algorithms. Outline. Single Source Shortest Path. Andres Mendez-Vazquez. November 9, Notes. Notes Analysis of Algorithms Single Source Shortest Path Andres Mendez-Vazquez November 9, 01 1 / 108 Outline 1 Introduction Introduction and Similar Problems General Results Optimal Substructure Properties

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

Week 5: Quicksort, Lower bound, Greedy

Week 5: Quicksort, Lower bound, Greedy Week 5: Quicksort, Lower bound, Greedy Agenda: Quicksort: Average case Lower bound for sorting Greedy method 1 Week 5: Quicksort Recall Quicksort: The ideas: Pick one key Compare to others: partition into

More information

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code Chapter 2 Date Compression: Source Coding 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code 2.1 An Introduction to Source Coding Source coding can be seen as an efficient way

More information

CS 410/584, Algorithm Design & Analysis, Lecture Notes 4

CS 410/584, Algorithm Design & Analysis, Lecture Notes 4 CS 0/58,, Biconnectivity Let G = (N,E) be a connected A node a N is an articulation point if there are v and w different from a such that every path from 0 9 8 3 5 7 6 David Maier Biconnected Component

More information

What is Dynamic Programming

What is Dynamic Programming What is Dynamic Programming Like DaC, Greedy algorithms, Dynamic Programming is another useful method for designing efficient algorithms. Why the name? Eye of the Hurricane: An Autobiography - A quote

More information

Quiz 1 Solutions. (a) f 1 (n) = 8 n, f 2 (n) = , f 3 (n) = ( 3) lg n. f 2 (n), f 1 (n), f 3 (n) Solution: (b)

Quiz 1 Solutions. (a) f 1 (n) = 8 n, f 2 (n) = , f 3 (n) = ( 3) lg n. f 2 (n), f 1 (n), f 3 (n) Solution: (b) Introduction to Algorithms October 14, 2009 Massachusetts Institute of Technology 6.006 Spring 2009 Professors Srini Devadas and Constantinos (Costis) Daskalakis Quiz 1 Solutions Quiz 1 Solutions Problem

More information

Analysis of Algorithms - Midterm (Solutions)

Analysis of Algorithms - Midterm (Solutions) Analysis of Algorithms - Midterm (Solutions) K Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@cseewvuedu} 1 Problems 1 Recurrences: Solve the following recurrences exactly or asymototically

More information

Quantum-inspired Huffman Coding

Quantum-inspired Huffman Coding Quantum-inspired Huffman Coding A. S. Tolba, M. Z. Rashad, and M. A. El-Dosuky Dept. of Computer Science, Faculty of Computers and Information Sciences, Mansoura University, Mansoura, Egypt. tolba_954@yahoo.com,

More information

University of Toronto Department of Electrical and Computer Engineering. Final Examination. ECE 345 Algorithms and Data Structures Fall 2016

University of Toronto Department of Electrical and Computer Engineering. Final Examination. ECE 345 Algorithms and Data Structures Fall 2016 University of Toronto Department of Electrical and Computer Engineering Final Examination ECE 345 Algorithms and Data Structures Fall 2016 Print your first name, last name, UTORid, and student number neatly

More information

CSE 202 Dynamic Programming II

CSE 202 Dynamic Programming II CSE 202 Dynamic Programming II Chapter 6 Dynamic Programming Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Algorithmic Paradigms Greed. Build up a solution incrementally,

More information

CSC 421: Algorithm Design & Analysis. Spring 2018

CSC 421: Algorithm Design & Analysis. Spring 2018 CSC 421: Algorithm Design & Analysis Spring 2018 Complexity & Computability complexity theory tractability, decidability P vs. NP, Turing machines NP-complete, reductions approximation algorithms, genetic

More information