Attacks on hash functions: Cat 5 storm or a drizzle?

Size: px
Start display at page:

Download "Attacks on hash functions: Cat 5 storm or a drizzle?"

Transcription

1 Attacks on hash functions: Cat 5 storm or a drizzle? Ilya Mironov Microsoft Research, Silicon Valley Campus September 15,

2 Outline Hash functions: Definitions Constructions Attacks What to do 2

3 Outline Hash functions: Definitions Constructions Attacks What to do 3

4 Functions of Hash Functions Entropy extractors Randomization Cryptography Signatures Authentication 4

5 Entropy extraction Alice random a g a g G, ord g = p Bob random b g b compute g ab compute g ab shared key = H( g ab ) 5

6 Enrtopy extraction IP, time, name, MAC address GUID H 6

7 Randomization Scenario: hash table

8 Cryptography RSA signature: parameters: N = pq, ed = 1 mod φ(n) sign C=H(M) C=M e mod e mod N, N, verify C d C=M d =H(M) mod Nmod N Attack: sign M 1, M 2, obtain C 1, C 2 (C 1 C 2 ) d =H(M =M 1 M 12 )H(M 2 ) 8

9 Authentication Alice M H K (M) shared K Bob 9

10 What is a hash function? H: {0,1}* {0,1} n 10

11 What is a hash function? H k : {0,1}* {0,1} n 11

12 What is cryptographically strong hash function? Collision resistant: Find x,y, so that H(x)=H(y) Second preimage-resistant: Given: x Find: y, so that H(x)=H(y) One-way: Given: z=h(x) Find: y, so that H(y)=z 12

13 Collision resistant x y 13

14 Second preimage-resistant x y 14

15 One-way x z y 15

16 Attacks Collision-resistance: - Compute M 1, M 2, so that H(M 1 ) = H(M 2 ) - Sign M 1 - M 2 is signed as well! Second preimage-resistance: - Find signature on M 1 - Compute M 2, so that H(M 1 ) = H(M 2 ) - M 2 is signed too! 16

17 Birthday paradox 23 17

18 Theoretical boundaries Collisions Always exist Birthday paradox: 2 n/2 Second preimage One-wayness Dan Simon 98 2 n 2 n 18

19 Outline Hash functions: Definitions Constructions Attacks What to do 19

20 Constructions Two main ingredients Fixed compression function Domain extender 20

21 Compression function 512 bits 160 bits 21

22 Compression function 512 bits 160 bits 22

23 Compression function «key» M «message» H Davies-Meyer construction (~1979) 23

24 Domain extender M 0 M 1 M 2 M 3 IV H 0 H 1 H 2 H 3 Merkle-Damgård construction (1989) 24

25 Proof? M 0 M 1 M 2 M 3 length IV H 0 H 1 H 2 H 3 H 4 25

26 Overview of construction M H(M) 26

27 Overview of construction M 0 M 1 M 2 M 3 length IV H 0 H 1 H 2 H 3 H 4 27

28 Overview of construction M 28

29 Overview of construction 29

30 Black box no more M IV H(M) 30

31 Outline Hash functions: Definitions Constructions Attacks What to do 31

32 Authentication MAC: H k (M) = H(k M) k M 1 M 2 M 3 IV H 0 H 1 H 2 H 3 H k (M M 3 ) = C(H k (M), M 3 ) 32

33 Cascading hash-functions F(M) = G 1 (M) G 2 (M) cascade «If G 1 and G 2 are independent, then finding a collision for F requires finding a collision for both simultaneously (i.e., on the same input), which one could hope would require the product of the efforts to attack them individually.» Handbook of Applied Cryptography 33

34 Joux attack M 0, N 0 M 1, N 1 M 2, N 2 M 3, N 3 IV H 0 H 1 H 2 H 3 k 2 n/2 effort to find 2 k collisions 34

35 Joux attack 1. With k 2 n/2 effort, find 2 k collisions for G 1 2. If k = n/2, we may find among them collision M, N for G 2 3. G 1 (M) = G 1 (N) and G 2 (M) = G 2 (N) 35

36 «Poisoned block» M 0 M 1 M 2, N 2 M 3 IV H 0 H 1 H 2 H 3 36

37 Attacking Postscript if (R2 (R1 == R1) then print( Dr. Jekyll ) else print( Mr. Hyde ) 37

38 Lenstra et al.: colliding X.509 X.509 certificate: version, serial number, signature algorithm identifier RSA modulo signature 38

39 Lenstra et al.: colliding X.509 X.509 certificate: version, serial number, signature algorithm identifier RSA modulo signature N 1 = <collision 1> N 2 = <collision 2>

40 Practice (second millennium) name author length # rounds year MD4 Ron Rivest 128 bit 48 rounds 1990 MD5 Ron Rivest 128 bit 64 rounds 1992 SHA0 NSA 160 bit 80 rounds 1993 SHA1 NSA 160 bit 80 rounds

41 Practice (third millennium) name author word (bits) length (bits) rounds year SHA-256 NSA SHA-384 NSA SHA-512 NSA Whirlpool Barreto, Rijmen

42 Speed In CPU cycles/byte on PIII: MD5 3.7 SHA1 8.3 SHA SHA Whirlpool 36 42

43 Attacks on MD4-MD5 hash author type complexity year Dobbertin collision MD4 Wang et al. collision dan Boer & Bosselaers pseudocollision MD5 Dobbertin free-start (chosen IV) Wang & Yu collision

44 Attacks on MD4-MD5 hash author type complexity year Dobbertin collision MD4 Wang et al. collision dan Boer & Bosselaers pseudocollision MD5 Dobbertin free-start (chosen IV) Wang & Yu collision

45 Attack on SHA-0,1 hash author type complexity year Chabaud & Joux collision 2 61 (theory) 1998 Biham & Chen near-collision SHA0 Biham et al. collision Wang et al. collision Biham et al. collision (40 rounds) 2005 SHA1 Wang et al. collision (58 rounds) Wang et al. collision 2 63 (theory)

46 Detailed structure of MD4 M a b c d Round 1 Round 2 Round

47 Detailed structure of MD4 a b c d + <<<s 0 + <<<s 1 + <<<s 2 F t F t F t F M 0 M 1 M 2 M 47

48 Introducing differentials M a b c d Round 1 Round 2 Round

49 Outline Hash functions: Definitions Constructions Attacks What to do 49

50 What is safe? Entropy extraction Randomization Cryptography Signatures Authentication 50

51 Entropy extraction Scenario I: H(g ab ) Scenario II: IP, time, name,... GUID 51

52 Randomization Pair-wise independent functions (Wegman & Carter): f(x) = ax+b mod N probability f(x 1 )=f(x 2 ) equals 1/N f(x) = a k x k +a k-1 x k a 1 x+a 0 mod N 52

53 Randomization Scenario: hash-table a, b, c - random H(x) = ax 2 +bx+c mod N 53

54 Cryptography Authentication Alice M H K (M) shared key K Bob Eve: M 1, H K (M 1 ), M 2, H K (M 2 ) M, H K (M) 54

55 Cryptography Authentication UMAC John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway, 1999 RFC: under way for long messages ~1.5 cycle/byte 55

56 Cryptography Signatures theory: target-collision resistance practice: SHA1, SHA256, SHA512, Whirlpool Protocols, constructions?????? 56

57 Target-collision resistance H k (M) Eve: x Alice k y H k (x)=h k (y) 57

58 Signing using TCR hashes H k (M) TCR To sing M: 1. Generate k 2. Sign k H k (M) Attack? Find N so that k H k (M) = k H k (N) 58

59 Questions? 59

2: Iterated Cryptographic Hash Functions

2: Iterated Cryptographic Hash Functions 2: Iterated ryptographic Hash Functions we want hash function H : ({0, 1} n ) {0, 1} n of potentially infinite input size instead we have compression function F : {0, 1} m {0, 1} n {0, 1} n and define

More information

Week 12: Hash Functions and MAC

Week 12: Hash Functions and MAC Week 12: Hash Functions and MAC 1. Introduction Hash Functions vs. MAC 2 Hash Functions Any Message M Hash Function Generate a fixed length Fingerprint for an arbitrary length message. No Key involved.

More information

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions ENEE 457: Computer Systems Security 09/19/16 Lecture 6 Message Authentication Codes and Hash Functions Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

H Definition - hash function. Cryptographic Hash Functions - Introduction. Cryptographic hash functions. Lars R. Knudsen.

H Definition - hash function. Cryptographic Hash Functions - Introduction. Cryptographic hash functions. Lars R. Knudsen. Definition - hash function Cryptographic Hash Functions - Introduction Lars R. Knudsen April 21, 2008 Located in the southernmost part of Europe with an artic climate, Hotel Finse 1222 provides the perfect

More information

Lecture 14: Cryptographic Hash Functions

Lecture 14: Cryptographic Hash Functions CSE 599b: Cryptography (Winter 2006) Lecture 14: Cryptographic Hash Functions 17 February 2006 Lecturer: Paul Beame Scribe: Paul Beame 1 Hash Function Properties A hash function family H = {H K } K K is

More information

Crypto Engineering (GBX9SY03) Hash functions

Crypto Engineering (GBX9SY03) Hash functions Crypto Engineering (GBX9SY03) Hash functions Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2017 10 18 Hash functions 2017 10 18 1/32 First

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #6 Sep 8 th 2005 CSCI 6268/TLEN 5831, Fall 2005 Announcements Quiz #1 later today Still some have not signed up for class mailing list Perhaps

More information

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 11 Hash Functions ver.

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 11 Hash Functions ver. Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 11 Hash Functions ver. October 29, 2009 These slides were prepared by

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #5 Sep 7 th 2004 CSCI 6268/TLEN 5831, Fall 2004 Announcements Please sign up for class mailing list by end of today Quiz #1 will be on Thursday,

More information

Introduction to Cryptography k. Lecture 5. Benny Pinkas k. Requirements. Data Integrity, Message Authentication

Introduction to Cryptography k. Lecture 5. Benny Pinkas k. Requirements. Data Integrity, Message Authentication Common Usage of MACs for message authentication Introduction to Cryptography k Alice α m, MAC k (m) Isα= MAC k (m)? Bob k Lecture 5 Benny Pinkas k Alice m, MAC k (m) m,α Got you! α MAC k (m )! Bob k Eve

More information

ENEE 459-C Computer Security. Message authentication (continue from previous lecture)

ENEE 459-C Computer Security. Message authentication (continue from previous lecture) ENEE 459-C Computer Security Message authentication (continue from previous lecture) Last lecture Hash function Cryptographic hash function Message authentication with hash function (attack?) with cryptographic

More information

Introduction to Information Security

Introduction to Information Security Introduction to Information Security Lecture 4: Hash Functions and MAC 2007. 6. Prof. Byoungcheon Lee sultan (at) joongbu. ac. kr Information and Communications University Contents 1. Introduction - Hash

More information

Introduction Description of MD5. Message Modification Generate Messages Summary

Introduction Description of MD5. Message Modification Generate Messages Summary How to Break MD5 and other hash functions Xiaoyun Wang and Hongbo Yu (China) Presented by: Saar Benodiz May 2012 Outline Introduction Description of MD5 Differential Attack for Hash Functions Message Modification

More information

New Attacks on the Concatenation and XOR Hash Combiners

New Attacks on the Concatenation and XOR Hash Combiners New Attacks on the Concatenation and XOR Hash Combiners Itai Dinur Department of Computer Science, Ben-Gurion University, Israel Abstract. We study the security of the concatenation combiner H 1(M) H 2(M)

More information

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC Xiaoyun Wang 1,2, Hongbo Yu 1, Wei Wang 2, Haina Zhang 2, and Tao Zhan 3 1 Center for Advanced Study, Tsinghua University, Beijing 100084, China {xiaoyunwang,

More information

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 Full Attacks on HMAC/NMAC- and NMAC-MD5 Pierre-Alain Fouque, Gaëtan Leurent, Phong Nguyen Laboratoire d Informatique de l École Normale Supérieure CRYPTO 2007 1/26 WhatisaMACalgorithm? M Alice wants to

More information

Cryptographic Hash Functions Part II

Cryptographic Hash Functions Part II Cryptographic Hash Functions Part II Cryptography 1 Andreas Hülsing, TU/e Some slides by Sebastiaan de Hoogh, TU/e Hash function design Create fixed input size building block Use building block to build

More information

Hash Functions. Ali El Kaafarani. Mathematical Institute Oxford University. 1 of 34

Hash Functions. Ali El Kaafarani. Mathematical Institute Oxford University. 1 of 34 Hash Functions Ali El Kaafarani Mathematical Institute Oxford University 1 of 34 Outline 1 Definition and Notions of Security 2 The Merkle-damgård Transform 3 MAC using Hash Functions 4 Cryptanalysis:

More information

Hash Functions. A hash function h takes as input a message of arbitrary length and produces as output a message digest of fixed length.

Hash Functions. A hash function h takes as input a message of arbitrary length and produces as output a message digest of fixed length. Hash Functions 1 Hash Functions A hash function h takes as input a message of arbitrary length and produces as output a message digest of fixed length. 0 1 1 0 1 0 0 1 Long Message Hash Function 1 1 1

More information

Asymmetric Encryption

Asymmetric Encryption -3 s s Encryption Comp Sci 3600 Outline -3 s s 1-3 2 3 4 5 s s Outline -3 s s 1-3 2 3 4 5 s s Function Using Bitwise XOR -3 s s Key Properties for -3 s s The most important property of a hash function

More information

Hashes and Message Digests Alex X. Liu & Haipeng Dai

Hashes and Message Digests Alex X. Liu & Haipeng Dai Hashes and Message Digests Alex X. Liu & Haipeng Dai haipengdai@nju.edu.cn 313 CS Building Department of Computer Science and Technology Nanjing University Integrity vs. Secrecy Integrity: attacker cannot

More information

An introduction to Hash functions

An introduction to Hash functions An introduction to Hash functions Anna Rimoldi eriscs - Universitée de la Méditerranée, Marseille Secondo Workshop di Crittografia BunnyTN 2011 A. Rimoldi (eriscs) Hash function 12 September 2011 1 / 27

More information

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography

SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS. CIS 400/628 Spring 2005 Introduction to Cryptography SIGNATURE SCHEMES & CRYPTOGRAPHIC HASH FUNCTIONS CIS 400/628 Spring 2005 Introduction to Cryptography This is based on Chapter 8 of Trappe and Washington DIGITAL SIGNATURES message sig 1. How do we bind

More information

Avoiding collisions Cryptographic hash functions. Table of contents

Avoiding collisions Cryptographic hash functions. Table of contents Avoiding collisions Cryptographic hash functions Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction Davies-Meyer Hashes in Practice Hash

More information

Message Authentication Codes (MACs)

Message Authentication Codes (MACs) Message Authentication Codes (MACs) Tung Chou Technische Universiteit Eindhoven, The Netherlands October 8, 2015 1 / 22 About Me 2 / 22 About Me Tung Chou (Tony) 2 / 22 About Me Tung Chou (Tony) Ph.D.

More information

Leftovers from Lecture 3

Leftovers from Lecture 3 Leftovers from Lecture 3 Implementing GF(2^k) Multiplication: Polynomial multiplication, and then remainder modulo the defining polynomial f(x): (1,1,0,1,1) *(0,1,0,1,1) = (1,1,0,0,1) For small size finite

More information

A Composition Theorem for Universal One-Way Hash Functions

A Composition Theorem for Universal One-Way Hash Functions A Composition Theorem for Universal One-Way Hash Functions Victor Shoup IBM Zurich Research Lab, Säumerstr. 4, 8803 Rüschlikon, Switzerland sho@zurich.ibm.com Abstract. In this paper we present a new scheme

More information

Notes for Lecture 9. 1 Combining Encryption and Authentication

Notes for Lecture 9. 1 Combining Encryption and Authentication U.C. Berkeley CS276: Cryptography Handout N9 Luca Trevisan February 17, 2009 Notes for Lecture 9 Notes scribed by Joel Weinberger, posted March 1, 2009 Summary Last time, we showed that combining a CPA-secure

More information

Cryptographic Hashes. Yan Huang. Credits: David Evans, CS588

Cryptographic Hashes. Yan Huang. Credits: David Evans, CS588 Cryptographic Hashes Yan Huang Credits: David Evans, CS588 Recap: CPA 1. k KeyGen(1 n ). b {0,1}. Give Enc(k, ) to A. 2. A chooses as many plaintexts as he wants, and receives the corresponding ciphertexts

More information

Problem 1. k zero bits. n bits. Block Cipher. Block Cipher. Block Cipher. Block Cipher. removed

Problem 1. k zero bits. n bits. Block Cipher. Block Cipher. Block Cipher. Block Cipher. removed Problem 1 n bits k zero bits IV Block Block Block Block removed January 27, 2011 Practical Aspects of Modern Cryptography 2 Problem 1 IV Inverse Inverse Inverse Inverse Missing bits January 27, 2011 Practical

More information

Evaluation Report. Security Level of Cryptography SHA-384 and SHA- 512

Evaluation Report. Security Level of Cryptography SHA-384 and SHA- 512 Branche Développement France Télécom R&D FTR&D/DTL/SSR/80/HG Evaluation Report Security Level of Cryptography SHA-384 and SHA- 512 Dr. Henri Gilbert Dr. Helena Handschuh France Télécom R&D DTL/SSR Gemplus

More information

New Techniques for Cryptanalysis of Cryptographic Hash Functions. Rafael Chen

New Techniques for Cryptanalysis of Cryptographic Hash Functions. Rafael Chen New Techniques for Cryptanalysis of Cryptographic Hash Functions Rafael Chen New Techniques for Cryptanalysis of Cryptographic Hash Functions Research Thesis Submitted in partial fulfillment of the requirements

More information

Introduction to Cryptography

Introduction to Cryptography B504 / I538: Introduction to Cryptography Spring 2017 Lecture 12 Recall: MAC existential forgery game 1 n Challenger (C) k Gen(1 n ) Forger (A) 1 n m 1 m 1 M {m} t 1 MAC k (m 1 ) t 1 m 2 m 2 M {m} t 2

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 15 October 20, 2014 CPSC 467, Lecture 15 1/37 Common Hash Functions SHA-2 MD5 Birthday Attack on Hash Functions Constructing New

More information

ECS 189A Final Cryptography Spring 2011

ECS 189A Final Cryptography Spring 2011 ECS 127: Cryptography Handout F UC Davis Phillip Rogaway June 9, 2011 ECS 189A Final Cryptography Spring 2011 Hints for success: Good luck on the exam. I don t think it s all that hard (I do believe I

More information

Lecture 1. Crypto Background

Lecture 1. Crypto Background Lecture 1 Crypto Background This lecture Crypto background hash functions random oracle model digital signatures and applications Cryptographic Hash Functions Hash function takes a string of arbitrary

More information

New Proofs for NMAC and HMAC: Security without Collision-Resistance

New Proofs for NMAC and HMAC: Security without Collision-Resistance New Proofs for NMAC and HMAC: Security without Collision-Resistance Mihir Bellare Dept. of Computer Science & Engineering 0404, University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093-0404,

More information

Finding good differential patterns for attacks on SHA-1

Finding good differential patterns for attacks on SHA-1 Finding good differential patterns for attacks on SHA-1 Krystian Matusiewicz and Josef Pieprzyk Centre for Advanced Computing - Algorithms and Cryptography, Department of Computing, Macquarie University,

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Appendix A: Symmetric Techniques Block Ciphers A block cipher f of block-size

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 16 October 30, 2017 CPSC 467, Lecture 16 1/52 Properties of Hash Functions Hash functions do not always look random Relations among

More information

Exam Security January 19, :30 11:30

Exam Security January 19, :30 11:30 Exam Security January 19, 2016. 8:30 11:30 You can score a maximum of 100. Each question indicates how many it is worth. You are NOT allowed to use books or notes, or a (smart) phone. You may answer in

More information

Title of Presentation

Title of Presentation The First 30 Years of Cryptographic Hash Functions and the NIST SHA-3 Competition Title of Presentation Bart Preneel COSIC/Kath. Univ. Leuven (Belgium) Session ID: CRYP-202 Session Classification: Hash

More information

Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash Collisions

Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash Collisions Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash Collisions Scott Contini 1 and Yiqun Lisa Yin 2 1 Macquarie University, Centre for Advanced Computing ACAC, NSW 2109, Australia scontini@comp.mq.edu.au

More information

SMASH - A Cryptographic Hash Function

SMASH - A Cryptographic Hash Function SMASH - A Cryptographic Hash Function Lars R. Knudsen Department of Mathematics, Technical University of Denmark Abstract. 1 This paper presents a new hash function design, which is different from the

More information

Cryptographic Hash Functions

Cryptographic Hash Functions Cryptographic Hash Functions Çetin Kaya Koç koc@ece.orst.edu Electrical & Computer Engineering Oregon State University Corvallis, Oregon 97331 Technical Report December 9, 2002 Version 1.5 1 1 Introduction

More information

SMASH - A Cryptographic Hash Function

SMASH - A Cryptographic Hash Function SMASH - A Cryptographic Hash Function Lars R. Knudsen Department of Mathematics, Technical University of Denmark Abstract. 1 This paper presents a new hash function design, which is different from the

More information

Second Preimages for Iterated Hash Functions and their Implications on MACs

Second Preimages for Iterated Hash Functions and their Implications on MACs Second Preimages for Iterated Hash Functions and their Implications on MACs Mario Lamberger, Norbert Pramstaller, and Vincent Rijmen Institute for Applied Information Processing and Communications (IAIK)

More information

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions Presentation Article presentation, for the ENS Lattice Based Crypto Workgroup http://www.di.ens.fr/~pnguyen/lbc.html, 30 September 2009 How to Use Short Basis : Trapdoors for http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

More information

AES-VCM, AN AES-GCM CONSTRUCTION USING AN INTEGER-BASED UNIVERSAL HASH FUNCTION.

AES-VCM, AN AES-GCM CONSTRUCTION USING AN INTEGER-BASED UNIVERSAL HASH FUNCTION. AES-VCM, AN AES-GCM CONSTRUCTION USING AN INTEGER-BASED UNIVERSAL HASH FUNCTION. ED KNAPP Abstract. We give a framework for construction and composition of universal hash functions. Using this framework,

More information

2 n 2 n 2 n/2. Bart Preneel Generic Constructions for Iterated Hash Functions. Generic Constructions for Iterated Hash Functions.

2 n 2 n 2 n/2. Bart Preneel Generic Constructions for Iterated Hash Functions. Generic Constructions for Iterated Hash Functions. or Iterated Hash Functions or Iterated Hash Functions COSIC Kath. Univ. Leuven, Belgium & ABT Crypto bart.preneel(at)esat.kuleuven.be April 2007 Outline deinitions applications generic attacks attacks

More information

Lecture V : Public Key Cryptography

Lecture V : Public Key Cryptography Lecture V : Public Key Cryptography Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Amir Rezapoor Computer Science Department, National Chiao Tung University 2 Outline Functional

More information

CHAPTER 6: OTHER CRYPTOSYSTEMS, PSEUDO-RANDOM NUMBER GENERATORS and HASH FUNCTIONS. Part VI

CHAPTER 6: OTHER CRYPTOSYSTEMS, PSEUDO-RANDOM NUMBER GENERATORS and HASH FUNCTIONS. Part VI CHAPTER 6: OTHER CRYPTOSYSTEMS, PSEUDO-RANDOM NUMER GENERATORS and HASH FUNCTIONS Part VI Public-key cryptosystems, II. Other cryptosystems, security, PRG, hash functions A large number of interesting

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Authenticated Encryption Syntax Syntax: Enc: K M à C Dec: K C à M { } Correctness: For all k K, m M, Dec(k, Enc(k,m) ) = m Unforgeability

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

Breaking H 2 -MAC Using Birthday Paradox

Breaking H 2 -MAC Using Birthday Paradox Breaking H 2 -MAC Using Birthday Paradox Fanbao Liu 1,2, Tao Xie 1 and Changxiang Shen 2 1 School of Computer, National University of Defense Technology, Changsha, 410073, Hunan, P. R. China 2 School of

More information

Further progress in hashing cryptanalysis

Further progress in hashing cryptanalysis Further progress in hashing cryptanalysis Arjen K. Lenstra Lucent Technologies, Bell Laboratories February 26, 2005 Abstract Until further notice all new designs should use SHA-256. Existing systems using

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

Preimage and Pseudo-Collision Attacks on Step-Reduced SM3 Hash Function

Preimage and Pseudo-Collision Attacks on Step-Reduced SM3 Hash Function Preimage and Pseudo-Collision Attacks on Step-Reduced SM3 Hash Function Gaoli Wang 1 and Yanzhao Shen 1 1 School of Computer Science and Technology, Donghua University, Shanghai 201620, China wanggaoli@dhu.edu.cn,

More information

Chapter 8 Public-key Cryptography and Digital Signatures

Chapter 8 Public-key Cryptography and Digital Signatures Chapter 8 Public-key Cryptography and Digital Signatures v 1. Introduction to Public-key Cryptography 2. Example of Public-key Algorithm: Diffie- Hellman Key Exchange Scheme 3. RSA Encryption and Digital

More information

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 Author manuscript, published in "Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference 4622 (2007) 13-30" DOI : 10.1007/978-3-540-74143-5_2 Full Key-Recovery Attacks on

More information

Weaknesses in the HAS-V Compression Function

Weaknesses in the HAS-V Compression Function Weaknesses in the HAS-V Compression Function Florian Mendel and Vincent Rijmen Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Inffeldgasse 16a, A-8010

More information

Linearization and Message Modification Techniques for Hash Function Cryptanalysis

Linearization and Message Modification Techniques for Hash Function Cryptanalysis Linearization and Message Modification Techniques for Hash Function Cryptanalysis Jian Guo Institute for Infocomm Research, Singapore. ASK 2011, 30 August 2011 Jian Guo Linearization and Message Modification

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #4 Sep 2 nd 2004 CSCI 6268/TLEN 5831, Fall 2004 Announcements Please sign up for class mailing list Quiz #1 will be on Thursday, Sep 9 th

More information

Thanks to: University of Illinois at Chicago NSF CCR Alfred P. Sloan Foundation

Thanks to: University of Illinois at Chicago NSF CCR Alfred P. Sloan Foundation The Poly1305-AES message-authentication code D. J. Bernstein Thanks to: University of Illinois at Chicago NSF CCR 9983950 Alfred P. Sloan Foundation The AES function ( Rijndael 1998 Daemen Rijmen; 2001

More information

Cryptography. Course 1: Remainder: RSA. Jean-Sébastien Coron. September 21, Université du Luxembourg

Cryptography. Course 1: Remainder: RSA. Jean-Sébastien Coron. September 21, Université du Luxembourg Course 1: Remainder: RSA Université du Luxembourg September 21, 2010 Public-key encryption Public-key encryption: two keys. One key is made public and used to encrypt. The other key is kept private and

More information

A Study of the MD5 Attacks: Insights and Improvements

A Study of the MD5 Attacks: Insights and Improvements A Study of the MD5 Attacks: Insights and Improvements John Black 1 and Martin Cochran 1 and Trevor Highland 2 1 University of Colorado at Boulder, USA www.cs.colorado.edu/ jrblack, ucsu.colorado.edu/ cochranm

More information

b = 10 a, is the logarithm of b to the base 10. Changing the base to e we obtain natural logarithms, so a = ln b means that b = e a.

b = 10 a, is the logarithm of b to the base 10. Changing the base to e we obtain natural logarithms, so a = ln b means that b = e a. INTRODUCTION TO CRYPTOGRAPHY 5. Discrete Logarithms Recall the classical logarithm for real numbers: If we write b = 10 a, then a = log 10 b is the logarithm of b to the base 10. Changing the base to e

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

Distinguishing Attacks on MAC/HMAC Based on A New Dedicated Compression Function Framework

Distinguishing Attacks on MAC/HMAC Based on A New Dedicated Compression Function Framework Distinguishing Attacks on MAC/HMAC Based on A New Dedicated Compression Function Framework Zheng Yuan 1,2,3, Haixia Liu 1, Xiaoqiu Ren 1 1 Beijing Electronic Science and Technology Institute, Beijing 100070,China

More information

Martin Cochran. August 24, 2008

Martin Cochran. August 24, 2008 Notes on the Wang et al. 2 63 SHA-1 Differential Path Martin Cochran August 24, 2008 Abstract Although advances in SHA-1 cryptanalysis have been made since the 2005 announcement of a2 63 attack by Wang

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 14 October 16, 2013 CPSC 467, Lecture 14 1/45 Message Digest / Cryptographic Hash Functions Hash Function Constructions Extending

More information

Addition. Ch1 - Algorithms with numbers. Multiplication. al-khwārizmī. al-khwārizmī. Division 53+35=88. Cost? (n number of bits) 13x11=143. Cost?

Addition. Ch1 - Algorithms with numbers. Multiplication. al-khwārizmī. al-khwārizmī. Division 53+35=88. Cost? (n number of bits) 13x11=143. Cost? Ch - Algorithms with numbers Addition Basic arithmetic Addition ultiplication Division odular arithmetic factoring is hard Primality testing 53+35=88 Cost? (n number of bits) O(n) ultiplication al-khwārizmī

More information

Cryptanalysis of the Hash Functions MD4 and RIPEMD

Cryptanalysis of the Hash Functions MD4 and RIPEMD Cryptanalysis of the Hash Functions MD4 and RIPEMD Xiaoyun Wang 1, Xuejia Lai 2, Dengguo Feng 3, Hui Chen 1, and Xiuyuan Yu 4 1 Shandong University, Jinan250100, China xywang@sdu.edu.cn 2 Shanghai Jiaotong

More information

Practical consequences of the aberration of narrow-pipe hash designs from ideal random functions

Practical consequences of the aberration of narrow-pipe hash designs from ideal random functions Practical consequences of the aberration of narrow-pipe hash designs from ideal random functions Danilo Gligoroski 1 and Vlastimil Klima 2 1 Faculty of Information Technology, Mathematics and Electrical

More information

Algebraic properties of SHA-3 and notable cryptanalysis results

Algebraic properties of SHA-3 and notable cryptanalysis results Algebraic properties of SHA-3 and notable cryptanalysis results Christina Boura University of Versailles, France ICMC 2015, January 9, 2014 1 / 51 Cryptographic Hash Functions H : {0,1} {0,1} n m H h =

More information

Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash Family

Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash Family Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash Family Somitra Kr. Sanadhya and Palash Sarkar Cryptology Research Group Applied Statistics Unit Indian Statistical Institute, Kolkata

More information

Some Attacks on Merkle-Damgård Hashes

Some Attacks on Merkle-Damgård Hashes Overview Some Attacks on Merkle-Damgård Hashes John Kelsey, NIST and KU Leuven May 8, 2018 m 0 m 1 m 2 m 3 10*L h 0 h 1 h 2 h final Introduction 1 / 63 Overview Cryptographic Hash unctions Thinking About

More information

Attacks on hash functions. Birthday attacks and Multicollisions

Attacks on hash functions. Birthday attacks and Multicollisions Attacks on hash functions Birthday attacks and Multicollisions Birthday Attack Basics In a group of 23 people, the probability that there are at least two persons on the same day in the same month is greater

More information

Introduction to the Design and. Cryptanalysis of Cryptographic Hash Functions

Introduction to the Design and. Cryptanalysis of Cryptographic Hash Functions Introduction to the Design and Bart Preneel KU Leuven - COSIC irstname.lastname@esat.kuleuven.be Title o Presentation Cryptanalysis o Cryptographic Hash Functions Design and Security o Cryptographic Functions,

More information

Introduction to Cryptography Lecture 4

Introduction to Cryptography Lecture 4 Data Integrity, Message Authentication Introduction to Cryptography Lecture 4 Message authentication Hash functions Benny Pinas Ris: an active adversary might change messages exchanged between and M M

More information

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 Pierre-Alain Fouque, Gaëtan Leurent, Phong Q. Nguyen École Normale Supérieure Département d Informatique, 45 rue d Ulm, 75230 Paris Cedex 05, France

More information

Functional Graph Revisited: Updates on (Second) Preimage Attacks on Hash Combiners

Functional Graph Revisited: Updates on (Second) Preimage Attacks on Hash Combiners Functional Graph Revisited: Updates on (Second) Preimage Attacks on Hash Combiners Zhenzhen Bao 1,2, Lei Wang 1,3, Jian Guo 2, and Dawu Gu 1 1 Shanghai Jiao Tong University, Shanghai, China 2 Nanyang Technological

More information

Preimage Attacks on Reduced Tiger and SHA-2

Preimage Attacks on Reduced Tiger and SHA-2 Preimage Attacks on Reduced Tiger and SHA-2 Takanori Isobe and Kyoji Shibutani Sony Corporation 1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan {Takanori.Isobe,Kyoji.Shibutani}@jp.sony.com Abstract. This

More information

Intro to Public Key Cryptography Diffie & Hellman Key Exchange

Intro to Public Key Cryptography Diffie & Hellman Key Exchange Introduction to Modern Cryptography Lecture 5 Number Theory: 1. Quadratic residues. 2. The discrete log problem. Intro to Public Key Cryptography Diffie & Hellman Key Exchange Course Summary - Math Part

More information

A (Second) Preimage Attack on the GOST Hash Function

A (Second) Preimage Attack on the GOST Hash Function A (Second) Preimage Attack on the GOST Hash Function Florian Mendel, Norbert Pramstaller, and Christian Rechberger Institute for Applied Information Processing and Communications (IAIK), Graz University

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Cryptography Assignment 5

Cryptography Assignment 5 Cryptography Assignment 5 Michael Orlov (orlovm@cs.bgu.ac.il) Yanik Gleyzer (yanik@cs.bgu.ac.il) June 9, 2003 Abstract Solution for Assignment 5. One-way functions are assumed to be computable in polynomial

More information

Practical Free-Start Collision Attacks on full SHA-1

Practical Free-Start Collision Attacks on full SHA-1 Practical Free-Start Collision Attacks on full SHA-1 Inria and École polytechnique, France Nanyang Technological University, Singapore Joint work with Thomas Peyrin and Marc Stevens Séminaire Cryptologie

More information

Merkle-Damgård Revisited : how to Construct a Hash Function

Merkle-Damgård Revisited : how to Construct a Hash Function Merkle-Damgård Revisited : how to Construct a Hash Function Jean-Sébastien Coron 1, Yevgeniy Dodis 2, Cécile Malinaud 3, and Prashant Puniya 2 1 University of Luxembourg coron@clipper.ens.fr 2 New-York

More information

Question 1. The Chinese University of Hong Kong, Spring 2018

Question 1. The Chinese University of Hong Kong, Spring 2018 CSCI 5440: Cryptography The Chinese University of Hong Kong, Spring 2018 Homework 2 Solutions Question 1 Consider the following encryption algorithm based on the shortlwe assumption. The secret key is

More information

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks 1 Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks Michael Albert michael.albert@cs.otago.ac.nz 2 This week Arithmetic Knapsack cryptosystems Attacks on knapsacks Some

More information

Lecture 10 - MAC s continued, hash & MAC

Lecture 10 - MAC s continued, hash & MAC Lecture 10 - MAC s continued, hash & MAC Boaz Barak March 3, 2010 Reading: Boneh-Shoup chapters 7,8 The field GF(2 n ). A field F is a set with a multiplication ( ) and addition operations that satisfy

More information

Why not SHA-3? A glimpse at the heart of hash functions.

Why not SHA-3? A glimpse at the heart of hash functions. Why not SHA-3? A glimpse at the heart of hash functions. Alexis Breust, François Etcheverry June 18, 2013 Abstract. October 2012, the NIST (National Institute of Standards and Technology) hash function

More information

March 19: Zero-Knowledge (cont.) and Signatures

March 19: Zero-Knowledge (cont.) and Signatures March 19: Zero-Knowledge (cont.) and Signatures March 26, 2013 1 Zero-Knowledge (review) 1.1 Review Alice has y, g, p and claims to know x such that y = g x mod p. Alice proves knowledge of x to Bob w/o

More information

Authentication. Chapter Message Authentication

Authentication. Chapter Message Authentication Chapter 5 Authentication 5.1 Message Authentication Suppose Bob receives a message addressed from Alice. How does Bob ensure that the message received is the same as the message sent by Alice? For example,

More information

The Impact of Carries on the Complexity of Collision Attacks on SHA-1

The Impact of Carries on the Complexity of Collision Attacks on SHA-1 The Impact o Carries on the Complexity o Collision Attacks on SHA-1 Florian Mendel, Norbert Pramstaller, Christian Rechberger and Vincent Rijmen Norbert.Pramstaller@iaik.tugraz.at Institute or Applied

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline Authentication CPSC 467b: Cryptography and Computer Security Lecture 18 Michael J. Fischer Department of Computer Science Yale University March 29, 2010 Michael J. Fischer CPSC 467b, Lecture 18

More information

Lecture 10: NMAC, HMAC and Number Theory

Lecture 10: NMAC, HMAC and Number Theory CS 6903 Modern Cryptography April 10, 2008 Lecture 10: NMAC, HMAC and Number Theory Instructor: Nitesh Saxena Scribes: Jonathan Voris, Md. Borhan Uddin 1 Recap 1.1 MACs A message authentication code (MAC)

More information

Avoiding collisions Cryptographic hash functions. Table of contents

Avoiding collisions Cryptographic hash functions. Table of contents Avoiding collisions Cryptographic hash functions Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction Collision resistance Birthday attacks

More information

Question: Total Points: Score:

Question: Total Points: Score: University of California, Irvine COMPSCI 134: Elements of Cryptography and Computer and Network Security Midterm Exam (Fall 2016) Duration: 90 minutes November 2, 2016, 7pm-8:30pm Name (First, Last): Please

More information