# Solutions to Skill-Assessment Exercises

Size: px
Start display at page:

Transcription

1 Solutions to Skill-Assessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons

2 Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any from or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 07 or 08 of the 976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 0923, (978) , fax (978) Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., River Street, Hoboken, NJ 07030, (20) , fax (20) , To order books please call (800) ISBN John Wiley & Sons, Inc. River Street Hoboken, NJ USA

3 Solutions to Skill-Assessment Exercises 2.. Chapter 2 The Laplace transform of t is using Table 2., Item 3. Using Table 2.2, Item 4, 2 s F(s) 2.2. (s + 5) 2. Expanding F(s) by partial fractions yields: F(s) A s + where, 0 A 2 ( s+ 2)( s+ 3) S D (s + 3) 2 df(s) ds B s C (s + 3) + D 2 (s + 3) 0 s B 0 5C s(s + 3) 2 S 2 Taking the inverse Laplace transform yields, f (t) 5 9 5e 2t te 3t e 3t s(s + 2) S 3 0 3, and Taking the Laplace transform of the differential equation assuming zero initial conditions yields: s 3 C(s) + 3s 2 C(s) + 7sC(s) + 5C(s) s 2 R(s) + 4sR(s) + 3R(s) Collecting terms, (s 3 + 3s 2 + 7s + 5)C(s) (s 2 + 4s + 3)R(s) Thus,

4 2 Solutions to Skill-Assessment Exercises C(s) R(s) s 2 + 4s + 3 s 3 + 3s 2 + 7s G(s) C(s) R(s) 2s + s 2 + 6s + 2 Cross multiplying yields, d 2 c dt dc dt + 2c 2 dr dt + r C(s) R(s)G(s) s 2 * where A Thus, s (s + 4)(s + 8) s(s + 4)(s + 8) A s + B (s + 4) + C (s + 8) (s + 4)(s + 8) S 0 32 B s(s + 8) S 4 6, and C s(s + 4) S 8 32 c(t) 32 6 e 4t + 32 e 8t 2.6. Mesh Analysis Transforming the network yields, Now, writing the mesh equations,

5 Chapter 2 3 (s + )I (s) si 2 (s) I 3 (s) V(s) si (s) + (2s + )I 2 (s) I 3 (s) 0 I (s) I 2 (s) + (s + 2)I 3 (s) 0 Solving the mesh equations for I 2 (s), I 2 (s) (s + ) V(s) s 0 0 (s + 2) (s + ) s s (2s + ) (s + 2) (s2 + 2s + )V(s) s(s 2 + 5s + 2) But, V L (s) si 2 (s) Hence, V L (s) (s2 + 2s + )V(s) (s 2 + 5s + 2) or V L (s) V(s) s2 + 2s + s 2 + 5s + 2 Nodal Analysis Writing the nodal equations, ( s + 2)V (s) V L (s) V(s) V (s) + ( 2 s + )V L (s) s V(s) Solving for V L (s), V L (s) ( + 2) V(s) s s V(s) ( + 2) s ( 2 s + ) (s2 + 2s + )V(s) (s 2 + 5s + 2) or V L (s) V(s) s2 + 2s + s 2 + 5s + 2

6 4 Solutions to Skill-Assessment Exercises 2.7. Inverting G(s) Z (s) 2 Z (s) (0 5 / s) s Noninverting G(s) [Z (s) + Z 2 (s)] Z (s) 2.8. ( 05 s + 05 ) ( 05 s ) Writing the equations of motion, (s 2 + 3s + )X (s) (3s + )X 2 (s) F(s) (3s + )X (s) + (s 2 + 4s + )X 2 (s) 0 Solving for X 2 (s), (s 2 + 3s + ) F(s) (3s + ) 0 X 2 (s) (s 2 + 3s + ) (3s + ) (3s + ) (s 2 + 4s + ) Hence, X 2 (s) F(s) (3s + ) s(s 3 + 7s 2 + 5s + ) 2.9. Writing the equations of motion, (s 2 + s + )θ (s) (s + )θ 2 (s) T(s) (s + )θ (s) + (2s + 2)θ 2 (s) 0 s + (3s + )F(s) s(s 3 + 7s 2 + 5s + ) where θ (s) is the angular displacement of the inertia. Solving for θ 2 (s), (s 2 + s + ) T(s) (s + ) 0 θ 2 (s) (s 2 + s + ) (s + ) (s + ) (2s + 2) From which, after simplification, (s + )F(s) 2s 3 + 3s 2 + 2s +

7 Chapter 2 5 θ 2 (s) s 2 + s + Transforming the network to one without gears by reflecting the 4 N-m/rad spring to the left and multiplying by (25/50) 2, we obtain, T(t) θ (t) kg N-m-s/rad θ a (t) N-m/rad Writing the equations of motion, (s 2 + s)θ (s) sθ a (s) T(s) sθ (s) + (s + )θ a (s) 0 where θ (s) is the angular displacement of the -kg inertia. Solving for θ a (s), (s 2 + s) T(s) s 0 θ a (s) (s 2 + s) s s (s + ) From which, θ a (s) T(s) s 2 + s + st(s) s 3 + s 2 + s But, θ 2 (s) 2 θ a (s). Thus, θ 2 (s) T(s) /2 s 2 + s First find the mechanical constants. J m J a + J L ( 5 * 4 ) ( 400 ) 2 D m D a + D L ( 5 * 4 ) ( 400 ) 7

8 6 Solutions to Skill-Assessment Exercises Now find the electrical constants. From the torque-speed equation, set ω m 0 to find stall torque and set T m 0 to find no-load speed. Hence, T stall 200 ω no load 25 which, K t R a T stall E a K b E a 00 ω no load 25 4 Substituting all values into the motor transfer function, θ m (s) E a (s) K T R a J m s(s + J m (D m + K T K b R a ) s(s ) where θ m (s) is the angular displacement of the armature. Now θ L (s) 20 θ m (s). Thus, θ L (s) E a (s) /20 s(s + 5 ) 2 ) 2.2. Letting θ (s) ω (s)/s θ 2 (s) ω 2 (s)/s in Eqs. 2.27, we obtain (J s + D + K s )ω (s) K s ω 2 (s) T(s) K s ω (s) + (J 2 s + D 2 + K s )ω 2 (s) From these equations we can draw both series and parallel analogs by considering these to be mesh or nodal equations, respectively.

9 Chapter 2 7 Series analog 2.3. Writing the nodal equation, C dv dt + i 2 i(t) r But, C v v o + δv i r e v r e v e v o +δv Parallel analog Substituting these relationships into the differential equation, d(v o + δv) + e v o +δv 2 i(t) () dt We now linearize e v. The general form is f (v) f (v o ) df dv vo δv Substituting the function, f (v) e v, with v v o + δv yields, e v o +δv e v o dev dv vo δv Solving fore v o +δv,

10 8 Solutions to Skill-Assessment Exercises e v o +δv e v o + dev dv vo δv e v o + ev o δv Substituting into Eq. () dδv dt + e v o + ev oδv 2 i(t) (2) Setting i(t) 0 and letting the circuit reach steady state, the capacitor acts like an open circuit. Thus, v o v r with i r 2. But, i r e v r or v r lni r. Hence, v o ln Substituting this value of v o into Eq. (2) yields dδv dt + 2δv i(t) Taking the Laplace transform, (s + 2)δv(s) I(s) Solving for the transfer function, we obtain δv(s) I(s) s + 2 or V(s) I(s) s + 2 about equilibrium.

11 9 3.. Chapter 3 Identifying appropriate variables on the circuit yields Writing the derivative relations C dv C dt i C L di L dt v L () C 2 dv C2 dt i C2 Using Kirchhoff s current and voltage laws, i C i L + i R i L + R (v L v C 2 ) v L v C + v i i C2 i R R (v L v C 2 ) Substituting these relationships into Eqs. () and simplifying yields the state equations as dv C dt di L dt dv C2 dt RC v C + C i L RC v C2 + RC v i L v C + L v i RC 2 v C RC 2 v C2 RC 2 v i where the output equation is v o v C2 Putting the equations in vector-matrix form,

12 0 Solutions to Skill-Assessment Exercises RC C RC RC x 0 0 x + v i (t) L 0 L RC 2 RC 2 RC 2 y [ 0 0 ]x 3.2. Writing the equations of motion (s 2 + s + )X (s) sx 2 (s) F(s) sx (s) + (s 2 + s + )X 2 (s) X 3 (s) 0 X 2 (s) + (s 2 + s + )X 3 (s) 0 Taking the inverse Laplace transform and simplifying, x x x + x 2 + f x 2 x x2 x2 + x 3 x 3 x3 x3 + x 2 Defining state variables, z i, z x ; z 2 x ; z3 x 2 ; z 4 x 2; z5 x 3 ; z 6 x 3 Writing the state equations using the definition of the state variables and the inverse transform of the differential equation, z z2 z 2 x x z 3 x2 z 4 x + x 2 + f z2 z + z 4 + f z 4 x2 x x2 x2 + x 3 z 2 z 4 z 3 + z 5 z 5 x3 z 6 z 6 x3 x3 x3 + x 2 z 6 z 5 + z 3 The output is z 5. Hence, y z 5. In vector-matrix form,

13 Chapter z z f (t); y [ ]z First derive the state equations for the transfer function without zeros. X(s) R(s) s 2 + 7s + 9 Cross multiplying yields (s 2 + 7s + 9)X(s) R(s) Taking the inverse Laplace transform assuming zero initial conditions, we get x + 7 x + 9x r Defining the state variables as, x x x 2 x Hence, x x2 x 2 x 7 x 9x + r 9x 7x 2 + r Using the zeros of the transfer function, we find the output equation to be, c 2 x + x x + 2x 2 Putting all equation in vector-matrix form yields, x x + 0 r c [ 2]x 3.4. The state equation is converted to a transfer function using G(s) C(sI A) B () where

14 2 Solutions to Skill-Assessment Exercises 4.5 A 4 0, B 2 0, and C [ ]. Evaluating (si A) yields (si A) s s Taking the inverse we obtain (si A) s 2 + 4s + 6 s.5 4 s + 4 Substituting all expressions into Eq. () yields G(s) 3s + 5 s 2 + 4s Writing the differential equation we obtain d 2 x dt + 2 2x2 0 + δf (t) () Letting x x o + δx and substituting into Eq. () yields d 2 (x o + δx) dt 2 + 2(x o + δx) δf (t) (2) Now, linearize x 2. (x o + δx) 2 x o 2 d(x2 ) dx from which (x o + δx) 2 x o 2 + 2x o δx (3) x o δx 2x o δx Substituting Eq. (3) into Eq. () and performing the indicated differentiation gives us the linearized intermediate differential equation, d 2 δx dt 2 + 4x o δx 2x 2 o δf (t) (4) The force of the spring at equilibrium is 0 N. Thus, since F 2x 2, 2 0 2x o from which x o 5

15 Chapter 3 3 Substituting this value of x o into Eq. (4) gives us the final linearized differential equation. d 2 δx dt δx δf (t) Selecting the state variables, x δx x 2 δx Writing the state and output equations x x2 x 2 δx y x 4 5x + δf (t) Converting to vector-matrix form yields the final result as x x + 0 δf (t) y [ 0]x

16 4 Chapter For a step input C(s) 0(s ) 4)(s ) 6) s(s ) )(s ) 7)(s ) 8)(s ) 0) A s + Taking the inverse Laplace transform, c(t) A + Be t + Ce 7t + De 8t + Ee 0t 4.2. B s + + C s D s E s + 0 Since a 50, T c a s; T 4 s a s; and T 2.2 r a s a. Since poles are at 6 ± j9.08, c(t) A + Be 6t cos(9.08t + φ). b. Since poles are at and.46, c(t) A + Be 78.54t + Ce.4t. c. Since poles are double on the real axis at 5 c(t) A + Be 5t + Cte 5t. d. Since poles are at ±j25, c(t) A + Bcos(25t + φ) a. ω n and 2ζω n 2; ζ 0.3 and system is underdamped. b. ω n and 2ζω n 90; ζ.5 and system is overdamped. c. ω n and 2ζω n 30; ζ and system is critically damped. d. ω n and 2ζω n 0; ζ 0 and system is undamped ω n 36 9 and 2ζω n 6; ζ Now, T s 4 ζω n 0.5 s and T p π 0.82 s. 2 ω n ζ From Figure 4.6, ω n T r Therefore, T r s. -ζπ ζ Finally, %os e 2 * %

17 Chapter a. The second-order approximation is valid, since the dominant poles have a real part of 2 and the higher-order pole is at 5, i.e. more than five-times further. b. The second-order approximation is not valid, since the dominant poles have a real part of and the higher-order pole is at 4, i.e. not more than five-times further a. Expanding G(s) by partial fractions yields G(s) s s s s But is not an order of magnitude less than residues of second-order terms (term 2 and 3). Therefore, a second-order approximation is not valid. b. Expanding G(s) by partial fractions yields G(s) s s s s But is an order of magnitude less than residues of second-order terms (term 2 and 3). Therefore, a second-order approximation is valid See Figure 4.3 in the textbook for the Simulink block diagram and the output responses a. Since si A s 2 3 s + 5, (si s A) s 2 + 5s s. Also, 0 BU(s) /(s + ). 2(s 2 + 7s + 7) The state vector is X(s) (si A) [x(0) + BU(s)] (s + )(s + 2)(s + 3) s 2 4s 6. 5s The output is Y(s) [ 2 + 2s ]X(s) (s + )(s + 2)(s + 3) s + 2 s s + 3. Taking the inverse Laplace transform yields y(t) 0.5e t 2e 2t + 7.5e 3t. b. The eigenvalues are given by the roots of si A s 2 + 5s + 6, or 2 and 3.

18 6 Solutions to Skill-Assessment Exercises 4.0. a. Since (si A) s 2 2 s + 5, (si A) s 2 + 5s + 4 transform of each term, the state transition matrix is given by 4 Φ(t) 3 e t 2 3 e 4t 3 e t 2 3 e 4t 2 3 e t e 4t 3 e t e 4t s s. Taking the Laplace 4 b. Since Φ(t τ) 3 e (t τ ) 3 e 4(t τ ) 2 3 e (t τ ) 2 3 e 4(t τ ) e (t τ ) e 4(t τ ) 3 e (t τ ) + 4 and Bu(τ) τ ) e 4(t 3 2 Φ(t τ)bu(τ) 3 e τ e t 2 3 e2τ e 4t 3 e τ e t e2τ e 4t 0 t Thus, x(t) Φ(t)x(0)+ Φ(t τ)bu(τ) dτ 3 e t e 2t 4 3 e 4t e t + e 2t e 4t c. y(t) [ 2 ]x 5e t e 2t e 2τ,

19 7 5.. Chapter 5 Combine the parallel blocks in the forward path. Then, push s pickoff point. to the left past the s R(s) s 2 + s s C(s) s Combine the parallel feedback paths and get 2s. Then, apply the feedback 3 s + formula, simplify, and get, Ts () 4 2 2s + s + 2 s G(s) Find the closed-loop transfer function, T(s) + G(s)H(s) 6 s 2 + as + 6, where G(s) 6 s(s + a) and H(s). Thus, ω n 4 and 2ζω n a, from which ζ a 8. But, for 5% overshoot, ζ ln( % 00 ) a Label nodes. π 2 + ln 2 ( % 00 ) Since, ζ a 8,

20 8 Solutions to Skill-Assessment Exercises N (s) N 2 ( s) N 3 (s ) N 4 ( s) N 5 (s) N 6 (s) N 7 (s) Draw nodes. R( s ) N (s) N 2 (s) N 3 ( s ) N 4 ( s) C (s) N 5 ( s) N 6 ( s) N 7 ( s) Connect nodes and label subsystems. R(s ) N ( s) N 2 ( s) N 3 ( s) N 4 ( s) s s s C ( s) N 5 (s) N 6 ( s) s N 7 ( s) s Eliminate unnecessary nodes. - R(s) s s s C(s) s -s 5.4. Forward-path gains are G G 2 G 3 and G G 3.

21 Chapter 5 9 Loop gains are G G 2 H, G 2 H 2, and G 3 H 3. Nontouching loops are [ G G 2 H ][ G 3 H 3 ] G G 2 G 3 H H 3 and [ G 2 H 2 ][ G 3 H 3 ] G 2 G 3 H 2 H 3. Also, + G G 2 H + G 2 H 2 + G 3 H 3 + G G 2 G 3 H H 3 + G 2 G 3 H 2 H 3. Finally, and 2. Substituting these values into T(s) C(s) R(s) T(s) 5.5. k T k k yields G (s)g 3 (s)[ + G 2 (s)] [ + G 2 (s)h 2 (s) + G (s)g 2 (s)h (s)][ + G 3 (s)h 3 (s)] The state equations are, x 2x + x 2 x 2 x 3 3x 2 + x 3 3x 4x 2 5x 3 + r y x 2 Drawing the signal-flow diagram from the state equations yields r s x 3 s x 2 s x y (s + 5) From G(s) we draw the signal-flow graph in controller canonical s 2 + 5s + 6 form and add the feedback.

22 20 Solutions to Skill-Assessment Exercises 00 r 500 y Writing the state equations from the signal-flow diagram, we obtain. x x+ 0 0 r y x [ ] 5.7. From the transformation equations, P Taking the inverse, P Now, P AP P B CP [ 4] Therefore, z z + 3 u y [ ]z [ ]

23 Chapter First find the eigenvalues. λi A λ 0 0 λ λ 3 4 λ + 6 λ2 + 5λ + 6 From which the eigenvalues are 2 and 3. Now use Ax i λx i for each eigenvalue, λ. Thus, For λ 2, x x 2 3x + 3x 2 0 4x 4x 2 0 Thus x x 2 For λ 3 4x + 3x 2 0 4x 3x 2 0 λ x x 2 Thus x x 2 and x 0.75x 2 ; from which we let P Taking the inverse yields P 5 5 Hence, D P AP P B CP [ 4] [ ]

24 22 Solutions to Skill-Assessment Exercises Finally, z z u y [ ]z

25 Make a Routh table. Chapter 6 s s s s s s s s Since there are four sign changes and no complete row of zeros, there are four right half-plane poles and three left half-plane poles Make a Routh table. We encounter a row of zeros on the s 3 row. The even polynomial is contained in the previous row as 6s 4 + 0s Taking the derivative yields 24s 3 + 0s. Replacing the row of zeros with the coefficients of the derivative yields the s 3 row. We also encounter a zero in the first column at the s 2 row. We replace the zero with ε and continue the table. The final result is shown now as s s s s ROZ s 2 ε s 44/ε s There is one sign change below the even polynomial. Thus the even polynomial (4 th order) has one right half-plane pole, one left half-plane pole, and 2 imaginary axis poles. From the top of the table down to the even polynomial yields one sign change. Thus, the rest of the polynomial has one right half-plane root, and one left

26 24 Solutions to Skill-Assessment Exercises half-plane root. The total for the system is two right half-plane poles, two left half-plane poles, and 2 imaginary poles K(s + 20) Since G(s) s(s + 2)(s + 3), T(s) G(s) + G(s) K(s + 20) s 3 + 5s 2 + (6 + K)s + 20K Form the Routh table. s 3 (6 + K) s K s s K 5 20K From the s row, K < 2. From the s 0 row, K > 0. Thus, for stability, 0 < K < First find s (s 2) si A 0 s 0 7 (s 7) s 3 4s 2 33s s (s + 5) Now form the Routh table. s 3-33 s S S 0 5 There are two sign changes. Thus, there are two rhp poles and one lhp pole.

27 a. First check stability. T(s) Chapter 7 G(s) + G(s) 0s s s s s (s + 30)(s + 20) (s )(s )(s ) Poles are in the lhp. Therefore, the system is stable. Stability also could be checked via Routh-Hurwitz using the denominator of T(s). Thus, 5 5 5u(t): e step ( ) + limg(s) + 0 s 0 5 5tu(t): e ramp ( ) lim sg(s) * 20 * 30 s 0 25* t 2 u(t): e parabola ( ) lim s 0 s2 G(s) 30 0, since L [5t 2 ] 30 s 3 b. First check stability. T(s) G(s) + G(s) 0s s s 5 + 0s s e04s s (s + 30)(s + 20) (s )(s + 35)(s + 25)(s e 04s ) From the second-order term in the denominator, we see that the system is unstable. Instability could also be determined using the Routh-Hurwitz criteria on the denominator of T(s). Since the system is unstable, calculations about steadystate error cannot be made a. The system is stable, since T(s) G(s) + G(s) 000(s + 8) (s + 9)(s + 7) + 000(s + 8) 000(s + 8) and is of s s Type 0. Therefore, K p limg(s) 000 * 8 s 0 7*9 b. e step ( ) 27; K v lim s 0 + limg(s) 7.8e s 0 sg(s) 0; and K a lim s 2 G(s) 0 s 0

28 26 Solutions to Skill-Assessment Exercises e ramp ( ) lim sg(s) 0 s 0 e parabola ( ) lim s 0 s2 G(s) System is stable for positive K. System is Type 0. Therefore, for a step input e step ( ) 0.. Solving for K p yields K p 9 limg(s) 2K + K s 0 p 4 *8 ; from which we obtain K System is stable. Since G (s) 000, and G 2 (s) e D ( ) 7.5. lim s 0 G 2 (s) + limg (s) s 0 (s + 2) (s + 4), 9.98e System is stable. Create a unity-feedback system, where H e (s) s + s s +. The system is as follows: R(s) + E a (s) 00 C(s) s s s + Thus, G e (s) G(s) + G(S)H e (s) 00 (s + 4) 00s (s + )(s + 4) 00(s + ) S 2 95s + 4 Hence, the system is Type 0. Evaluating K p yields

29 Chapter 7 27 K p The steady-state error is given by e step ( ) 3.846e 02 + K P K(s + 7) Since G(s) s 2 + 2s + 0, e( ) + K p + 7K 0 Calculating the sensitivity, we get S e:k K e 7.7. Given e K K K ( 0)7 (0 + 7K) 7K K A ; B 0 ; C [ ]; R(s) s. Using the final value theorem, e step ( ) lim s 0 sr(s)[ C(sI A) B] lim s 0 [ [ ] lim s 0 [ Using input substitution, s s 0 s 2 + 6s + 3 ] lim s 0 ( ) + step CA B 3 [ ] + 6 [ ] K. [ ] s 3 s + 6 s 2 + 5s + 2 s 2 + 6s [ ] ]

30 28 Chapter a. F( 7 + j9) ( 7 + j9 + 2)( 7 + j9 + 4) ( 7 + j9)( 7 + j9 + 3)( 7 + j9 + 6) ( 5 + j9)( 3 + j9) ( 7 + j9)( 4 + j9)( + j9) ( 66 j72) j < 0.7o (944 j378) b. The arrangement of vectors is shown as follows: jω (-7+j9) s-plane M M2 M 3 M 4 M 5-7 X X X 0 σ From the diagram, F( 7 + j9) M 2M 4 ( 3 + j9)( 5 + j9) M M 3 M 5 ( + j9)( 4 + j9)( 7 + j9) 8.2. a. First draw the vectors. ( 66 j72) j < 0.7o (944 j378)

31 Chapter 8 29 jω X j3 j2 s-plane j σ -j -j2 X -j3 From the diagram, 3 angles 80 o tan 3 tan 80o o o 80 o. b. Since the angle is 80 0, the point is on the root locus. ( )( ) 2 Π pole lengths c. K Π zero lengths First, find the asymptotes. σ a poles - zeros # poles-# zeros ( 2 4 6) (0) (2k + )π θ a π 3 3, π, 5π 3 Next draw root locus following the rules for sketching.

32 30 Solutions to Skill-Assessment Exercises Imag Axis Real Axis 8.4. a. jω j3 X s-plane O σ -j3 X b. Using the Routh-Hurwitz criteria, we first find the closed-loop transfer function. T(s) G(s) + G(s) K(s + 2) s 2 + (K 4)s + (2K + 3) Using the denominator of T(s), make a Routh table.

33 Chapter 8 3 s 2 2K+3 s K-4 0 s 0 2K+3 0 We get a row of zeros for K 4. From the s 2 row with K 4, s From which we evaluate the imaginary axis crossing at 2. c. From part (b), K 4. d. Searching for the minimum gain to the left of 2 on the real axis yields 7 at a gain of 8. Thus the break-in point is at 7. e. First, draw vectors to a point ε close to the complex pole. At the point ε close to the complex pole, the angles must add up to zero. Hence, angle from zero angle from pole in 4 th quadrant angle from pole in st quadrant , or tan 4 90o θ 80 o. Solving for the angle of departure, θ

34 32 Solutions to Skill-Assessment Exercises 8.5. a. ζ 0.5 jω X j4 s-plane -3 0 o 2 o 4 σ X -j4 b. Search along the imaginary axis and find the 80 0 point at s ±j4.06. c. For the result in part (b), K. d. Searching between 2 and 4 on the real axis for the minimum gain yields the break-in at s e. Searching along ζ 0.5 for the 80 0 point we find s j4.8. f. For the result in part (e), K g. Using the result from part (c) and the root locus, K < a. ζ 0.59 jω s-plane X -6 X -4 X -2 0 σ

35 Chapter 8 33 b. Searching along the ζ 0.59 (0% overshoot) line for the 80 0 point yields j2.768 with K c. T s 4 Re s; T p π Im π.3 s; ω n T r.8346 from the rise-time chart and graph in Chapter 4. Since ω n is the radial distance to the pole, ω n Thus, T r 0.53 s; since the system is Type 0, K p e step ( ) + K p 0.5. K 2*4* Thus, 48 d. Searching the real axis to the left of 6 for the point whose gain is 45.55, we find Comparing this value to the real part of the dominant pole, , we find that it is not five times further. The second-order approximation is not valid Find the closed-loop transfer function and put it the form that yields p i as the root locus variable. Thus, 00 T(s) G(s) + G(s) 00 s 2 + p i s (s ) + p i s s p + i s s p Hence, KG(s)H(s) i s. The following shows the root locus. s

36 34 Solutions to Skill-Assessment Exercises jω s-plane X j0 O 0 σ X-j Following the rules for plotting the root locus of positive-feedback systems, we obtain the following root locus: jω s-plane o -4 X -3 X -2 X - 0 σ

37 Chapter The closed-loop transfer function is T(s) denominator with respect to K yields 2s s s s + (K + 2) + (s + ) (2s + K + 2) + (s + ) 0 K K K Solving for s s, we get K K (s + ) (2s + K + 2). Thus, S s:k K s Substituting K 20 yields S s:k 0(s + ) s(s + ). K(s + ). Differentiating the s 2 + (K + 2)s + K s K K(s + ) s(2s + K + 2). Now find the closed-loop poles when K 20. From the denominator of T(s), s,2-2.05, , -when K 20. For the pole at 2.05, s s(s s:k ) K K ( ) ( ) For the pole at 0.95, s s(s s:k ) K K ( ) ( )

38 36 Chapter a. Searching along the 5% overshoot line, we find the point on the root locus at j5.8 at a gain of K Thus, for the uncompensated system, K v lim sg(s) K / / s 0 Hence, e ramp_uncompensated ( ) / K v b. Compensator zero should be 20x further to the left than the compensator pole. (s + 0.2) Arbitrarily select G c (s) (s + 0.0). c. Insert compensator and search along the 5% overshoot line and find the root locus at j5.63 with a gain, K Thus, for the compensated system, K v 44.64(0.2) 27.5 and e ramp_compensated ( ) (7)(0.0) K v d. e ramp_uncompensated e ramp_compensated a. Searching along the 5% overshoot line, we find the point on the root locus at j5.8 at a gain of K Thus, for the uncompensated system, T s 4 Re 4.43 s. 3.5 b. The real part of the design point must be three times larger than the uncompensated pole s real part. Thus the design point is 3(-3.5) + j 3(5.8) j7.4. The angular contribution of the plant s poles and compensator zero at the design point is Thus, the compensator pole must contribute Using the following diagram,

39 Chapter 9 37 jω j7.4 s-plane σ -p c -0.5 we find 7.4 p c 0.5 tan 49.2o, from which, p c Adding this pole, we find the gain at the design point to be K A higher-order closed-loop pole is found to be at.54. This pole may not be close enough to the closed-loop zero at 0. Thus, we should simulate the system to be sure the design requirements have been met a. Searching along the 20% overshoot line, we find the point on the root locus at at a gain of K Thus, for the uncompensated system, T s 4 Re 4.43 s. 3.5 b. For the uncompensated system, K v lim sg(s) K / / Hence, s 0 e ramp_uncompensated ( ) / K v c. In order to decrease the settling time by a factor of 2, the design point is twice the uncompensated value, or 7 + j3.66. Adding the angles from the plant s poles and the compensator s zero at 3 to the design point, we obtain Thus, the compensator pole must contribute Using the following diagram,

40 38 Solutions to Skill-Assessment Exercises jω j3.66 s-plane σ -p c -7 we find 3.66 p c 7 tan 79.2o, from which, p c 9.6. Adding this pole, we find the gain at the design point to be K Evaluating K v for the lead-compensated system: K v lim s 0 sg(s)g lead K(3) / [(7)(9.6)] (204.9)(3) / [(7)(9.6)] K v for the uncompensated system was 8.4. For a 0x improvement in steadystate error, K v must be (8.4)(0) 84.. Since lead compensation gave us K v 9.38, we need an improvement of 84./ Thus, the lag compensator zero should be 9.2x further to the left than the (s ) compensator pole. Arbitrarily select G c (s) (s + 0.0). Using all plant and compensator poles, we find the gain at the design point to be K Summarizing the forward path with plant, compensator, and gain yields G e (s) 205.4(s + 3)(s ) s(s + 7)(9.6)(s + 0.0). Higher-order poles are found at and 2.6. It would be advisable to simulate the system to see if there is indeed pole-zero cancellation The configuration for the system is shown in the figure below.

41 Chapter 9 39 R(s) + - K + - s(s + 7)(s +0) C(s) K f s Minor-Loop Design: K For the minor loop, G(s)H(s) f. Using the following diagram, we (s + 7)(s + 0) find that the minor-loop root locus intersects the 0.7 damping ratio line at j8.67. The imaginary part was found as follows: θ cos - ζ Hence, Im 8.5 tan , from which Im ζ 0.7 ( j8.67) jω Im s-plane X X -7 θ σ The gain, K f, is found from the vector lengths as K f Major-Loop Design: Using the closed-loop poles of the minor loop, we have an equivalent forwardpath transfer function of G e (s) K s(s j8.67)(s j8.67) K s(s 2 + 7s ).

42 40 Solutions to Skill-Assessment Exercises Using the three poles of G e (s) as open-loop poles to plot a root locus, we search along ζ 0.5 and find that the root locus intersects this damping ratio line at j7.5 at a gain, K a. An active PID controller must be used. We use the circuit shown in the following figure: where the impedances are shown below as follows: Matching the given transfer function with the transfer function of the PID controller yields G c (s) (s + 0.)(s + 5) s Equating coefficients R C () R 2 C (2) s2 + 5.s s s s R 2 + C + R 2 C s + R C 2 R C 2 s R 2 + C 5. (3) R C 2 In Eq. (2) we arbitrarily let C 0 5. Thus, R Using these values along with Eqs. () and (3) we find C 2 00 µf and R 20 kω.

43 Chapter 9 4 b. The lag-lead compensator can be implemented with the following passive network, since the ratio of the lead pole-to-zero is the inverse of the ratio of the lag pole-to-zero: Matching the given transfer function with the transfer function of the passive laglead compensator yields G c (s) (s + 0.)(s + 2) (s + 0.)(s + 2) (s + 0.0)(s + 20) s s Equating coefficients R C 0. () R 2 C 2 2 (2) (3) R C R 2 C 2 R 2 C Substituting Eqs. () and (2) in Eq. (3) yields R 2 C 7.9 (4) Arbitrarily letting C 00 µf in Eq. () yields R 00 kω. Substituting C 00 µf into Eq. (4) yields R kω. Substituting R kω into Eq. (2) yields C µf. s + s + R C R 2 C 2 s s + R C R 2 C 2 R 2 C R R 2 C C 2

44 a. G(s) Chapter 0 (s + 2)(s + 4) ; G(jω) (8 - ω 2 ) + j6ω M(ω) (8 - ω 2 ) 2 + (6ω) 2 6ω For ω < 8, φ(ω) -tan - 8-ω 2. 6ω For ω > 8, φ(ω)- π + tan -. 8-ω 2 b. Bode Diagrams Phase (deg); Magnitude (db) Frequency (rad/sec)

45 Chapter 0 43 c. Nyquist Diagrams Imaginary Axis Real Axis 0.2. Asymptotic 20 log M Actual -20 db/dec -40 db/dec -20 db/dec -40 db/dec Frequency (rad/s) -45 o /dec Phase (degrees) o /dec -45 o /dec -90 o /dec -45 o /dec Asymptotic Frequency (rad/s) Actual -45 o /dec

46 44 Solutions to Skill-Assessment Exercises 0.3. The frequency response is /8 at an angle of zero degrees at ω 0. Each pole rotates 90 0 in going from ω 0 to ω. Thus, the resultant rotates 80 0 while its magnitude goes to zero. The result is shown below. Im ω ω Re 0.4. a. The frequency response is /48 at an angle of zero degrees at ω 0. Each pole rotates 90 0 in going from ω 0 to ω. Thus, the resultant rotates while its magnitude goes to zero. The result is shown below. Im ω ω 0 ω 0 48 Re b. Substituting jω into G(s) (s + 2)(s + 4)(s + 6) s 3 + 2s s + 48 and simplifying, we obtain G( jω) (48 2ω 2 ) j(44ω ω 3 ). The Nyquist ω ω ω

47 Chapter 0 45 diagram crosses the real axis when the imaginary part of G( jω) is zero. Thus, the Nyquist diagram crosses the real axis at ω 2 44, or ω rad/s. At this frequency G( jω). Thus, the system is stable for K < If K 00, the Nyquist diagram will intersect the real axis at 00/480. Thus, G M 20log db. From Skill-Assessment Exercise Solution 0.4, the frequency is 6.63 rad/s a log M Frequency (rad/s) 0-50 Phase (degrees) Frequency (rad/s) b. The phase angle is 80 0 at a frequency of rad/s. At this frequency the gain is db. Therefore, 20log K 99.67, or K 96,270. We conclude that the system is stable for K < 96,270. c. For K 0,000, the magnitude plot is moved up 20log0, db. Therefore, the gain margin is db. The 80 0 frequency is 36.7

48 46 Solutions to Skill-Assessment Exercises rad/s. The gain curve crosses 0 db at ω 7.74 rad/s, where the phase is We calculate the phase margin to be Using ζ -ln(% / 00), we find ζ 0.456, which corresponds to 20% π 2 + ln 2 (% / 00) overshoot. Using T s 2, ω BW 4 T s ζ ( 2ζ 2 ) + 4ζ 4 4ζ rad/s For both parts find that G( jω) * ( ω 2 ) + j350(ω 2 350)ω. For a range of ω ω ω values for ω, superimpose G( jω) on the a. M and N circles, and on the b. Nichols chart. a. 3 Im G-plane F 20 o 2 M M.0 30 o 40 o 50 o 70 o o M 0.7 Re o -50 o -40 o -30 o -25 o -20 o

49 Chapter 0 47 b. Nichols Charts db db db 3 db 6 db 0 db - db -3 db -6 db -2 db -20 db Open-Loop Gain (db) db -60 db -80 db -00 db -20 db -40 db -60 db db -200 db -220 db -240 db Open-Loop Phase (deg) Plotting the closed-loop frequency response from a. or b. yields the following plot:

50 48 Solutions to Skill-Assessment Exercises log M Frequency (rad/s) 0-50 Phase (degrees) Frequency (rad/s) 0.9. The open-loop frequency response is shown in the following figure:

51 Chapter 0 49 Bode Diagrams Phase (deg); Magnitude (db) Frequency (rad/sec) The open-loop frequency response is 7 at ω 4.5 rad/s. Thus, the estimated bandwidth is ω WB 4.5 rad/s. The open-loop frequency response plot goes through zero db at a frequency of 9.4 rad/s, where the phase is Hence, the phase margin is This phase margin corresponds to 2 ( ζπ / ζ ) ζ Therefore, %OS e x %, T s T p ω BW ζ ( 2ζ 2 ) + 4ζ 4 4ζ s and π ω BW ζ 2 ( 2ζ 2 ) + 4ζ 4 4ζ s The initial slope is 40 db/dec. Therefore, the system is Type 2. The initial slope intersects 0 db at ω 9.5 rad/s. Thus, K a and K p K v.

52 50 Solutions to Skill-Assessment Exercises a. Without delay, G( jω) jω( jω + ) 0, from which the zero db ω( ω + j) 0 frequency is found as follows: M. Solving for ω, ω ω 2 + ω ω 2 + 0, or after squaring both sides and rearranging, ω 4 + ω Solving for the roots, ω 2 0.5, 9.5. Taking the square root of the positive root, we find the 0 db frequency to be 3.08 rad/s. At this frequency, the phase angle, φ - ( ω + j) - ( j) 62 o. Therefore the phase margin is b. With a delay of 3 s, φ - ( ω + j) ωt - ( j) (3.08)(3) 62 o 9.24 o 7.24 o. Therefore the phase margin is c. With a delay of 7 s, φ - ( ω + j) ωt - ( j) (3.08)(7) 62 o 2.56 o o. Therefore the phase margin is Thus, the system is unstable Drawing judicially selected slopes on the magnitude and phase plot as shown below yields a first estimate.

53 Chapter Experimental 0 Phase(deg) Gain(dB) Frequency (rad/sec) We see an initial slope on the magnitude plot of 20 db/dec. We also see a final 20 db/dec slope with a break frequency around 2 rad/s. Thus, an initial estimate is G (s) s(s + 2). Subtracting G (s)from the original frequency response yields the frequency response shown below.

54 52 Solutions to Skill-Assessment Exercises 90 Experimental Minus /s(s+2) 80 Gain(dB) Phase(deg) Frequency (rad/sec) Drawing judicially selected slopes on the magnitude and phase plot as shown yields a final estimate. We see first-order zero behavior on the magnitude and phase plots with a break frequency of about 5.7 rad/s and a dc gain of about 44 db 20log(5.7K), or K Thus, we estimate G 2 (s) 27.8(s + 7). Thus, 27.8(s + 5.7) G(s) G (s)g 2 (s). It is interesting to note that the original s(s + 2) 30(s + 5) problem was developed from G(s) s(s + 20).

55 53 Chapter.. The Bode plot for K is shown below. Bode Diagrams Phase (deg); Magnitude (db) Frequency (rad/sec) A 20% overshoot requires ζ log % This damping ratio % π 2 + log 2 00 implies a phase margin of 48.0, which is obtained when the _ This phase angle occurs at ω 27.6rad/s. The magnitude at this frequency is 5.5 x 0-6. Since the magnitude must be unity K 94, x0

56 54 Solutions to Skill-Assessment Exercises.2. To meet the steady-state error requirement, K,942,000. The Bode plot for this gain is shown below. Bode Diagrams Phase (deg); Magnitude (db) Frequency (rad/sec) log % A 20% overshoot requires ζ This damping ratio % π 2 + log 2 00 implies a phase margin of Adding 0 0 to compensate for the phase angle contribution of the lag, we use Thus, we look for a phase angle of The frequency at which this phase occurs is 20.4 rad/s. At this frequency the magnitude plot must go through zero db. Presently, the magnitude plot is 23.2 db. Therefore draw the high frequency asymptote of the lag compensator at 23.2 db. Insert a break at 0.(20.4) 2.04 rad/s. At this frequency, draw 20 db/dec slope until it intersects 0 db. The frequency of intersection will be the low frequency break or 0.4 rad/s. Hence the

57 Chapter 55 (s ) compensator is G c (s) K c, where the gain is chosen to yield 0 db at (s + 0.4) low frequencies, or K c 0.4 / In summary, (s ) G c (s) (s + 0.4) and G(s),942,000 s(s + 50)(s + 20)..3. A 20% overshoot requires ζ log % The required % π 2 + log 2 00 bandwidth is then calculated as ω BW 4 T s ζ ( 2ζ 2 ) + 4ζ 4 4ζ rad/s. In order to meet the steady-state error requirement of K v 50 K (50)(20), we calculate K 300,000. The uncompensated Bode plot for this gain is shown below. Bode Plot for K Phase (deg); Magnitude (db) Frequency (rad/sec)

58 56 Solutions to Skill-Assessment Exercises The uncompensated system s phase margin measurement is taken where the magnitude plot crosses 0 db. We find that when the magnitude plot crosses 0 db, the phase angle is Therefore, the uncompensated system s phase margin is The required phase margin based on the required damping 2ζ ratio is Φ M tan 48. o. Adding a 0 0 correction factor, the 2ζ ζ 4 required phase margin is Hence, the compensator must contribute φ max Using φ max sin β + β, β sin φ max + sin φ max The compensator s peak magnitude is calculated as M max.5. Now find the β frequency at which the uncompensated system has a magnitude / M max, or 3.58 db. From the Bode plot, this magnitude occurs atω max 50 rad/s. The compensator s zero is at z c T. But, ω max T β. Therefore, z c The compensator s pole is at p c βt z c β The compensator gain is chosen to yield unity gain at dc. Hence, K c 75.4 / Summarizing, (s ) G c (s) 2.27 (s ), and G(s) 300,000 s(s + 50)(s + 20)..4. A 0% overshoot requiresζ is then calculated as ω BW log % The required bandwidth % π 2 + log 2 00 π T p ζ 2 ( 2ζ 2 ) + 4ζ 4 4ζ rad/s. In order to meet the steady-state error requirement of K v 0 K (8)(30), we calculate K The uncompensated Bode plot for this gain is shown below.

59 Chapter 57 Bode Diagrams Phase (deg); Magnitude (db) Frequency (rad/sec) Let us select a new phase-margin frequency at 0.8ω BW 6.02 rad/s. The required phase margin based on the required damping ratio 2ζ is Φ M tan 58.6 o. Adding a 5 0 correction factor, the 2ζ ζ 4 required phase margin is At 6.02 rad/s, the new phase-margin frequency, the phase angle is which represents a phase margin of Thus, the lead compensator must contribute φ max Using φ max sin β + β,β sin φ max + sin φ max We now design the lag compensator by first choosing its higher break frequency one decade below the new phase-margin frequency, that is, z lag rad/s. The lag compensator s pole is p lag βz lag Finally, the lag compensator s gain is K lag β

60 58 Solutions to Skill-Assessment Exercises Now we design the lead compensator. The lead zero is the product of the new phase margin frequency and β, or z lead 0.8ω BW β Also, p lead z lead β Finally, K lead 2.9. Summarizing, β (s ) G lag (s) (s ) ; G (s ) lead (s) 2.9 ; and K (s )

61 Chapter 2 We first find the desired characteristic equation. A 5% overshoot requiresζ log % 00 π Also, ω n 4.47 rad/s. Thus, the % π 2 + log 2 2 T p ζ 00 characteristic equation is s 2 + 2ζω n s + ω n 2 s s Adding a pole at 0 to cancel the zero at 0 yields the desired characteristic equation, (s s )(s + 0) s s s The compensated system 0 0 matrix in phase-variable form is A BK 0 0. The (k ) (36 + k 2 ) (5 + k 3 ) characteristic equation for this system is si (A BK)) s 3 + (5 + k 3 )s 2 + (36 + k 2 )s + (k ). Equating coefficients of this equation with the coefficients of the desired characteristic equation yields the gains as K [ k k 2 k 3 ] [ ] The controllability matrix is C M [ B AB A 2 B] Since C M 80, 6 C M is full rank, that is, rank 3. We conclude that the system is controllable First check controllability. The controllability matrix is 0 0 C Mz [ B AB A 2 B ] 0 7. Since C Mz, C Mz is full rank, that is, rank We conclude that the system is controllable. We now find the desired characteristic equation. A 20% overshoot

62 60 Solutions to Skill-Assessment Exercises requiresζ log % 00 % π 2 + log Also, ω n 4 ζt s rad/s. Thus, the characteristic equation is s 2 + 2ζω n s + ω n 2 s 2 + 4s Adding a pole at 6 to cancel the zero at 6 yields the resulting desired characteristic equation, (s 2 + 4s )(s + 6) s 3 + 0s s Since G(s) (s + 6) (s + 7)(s + 8)(s + 9) s + 6, we can write the phase- s s 2 + 9s variable representation as A p 0 0 ; B p 0 ; C p [ 6 0] The compensated system matrix in phase-variable form is 0 0 A p B p K p 0 0. The characteristic equation for (504 + k ) (9 + k 2 ) (24 + k 3 ) this system is si (A p B p K p )) s 3 + (24 + k 3 )s 2 + (9 + k 2 )s + (504 + k ). Equating coefficients of this equation with the coefficients of the desired characteristic equation yields the gains as K p [ k k 2 k 3 ][ ]. We now develop the transformation matrix to transform back to the z-system. 0 0 C Mz [ B z A z B z A 2 z B z ] 0 7 and 9 8 C Mp [ B p A p B p A 2 p B p ] Therefore, P C Mz C Mx Hence,

63 Chapter K z K p P [ ] [ ]. (24 + l ) 0 For the given system e x (A LC)e x (9 + l 2 ) 0 e x. The characteristic (504 + l 3 ) 0 0 polynomial is given by [si (A LC) s 3 + (24 + l )s 2 + (9 + l 2 )s + (504 + l 3 ). Now we find the desired characteristic equation. The dominant poles from Skill-Assessment Exercise 2.3 come from (s 2 + 4s ). Factoring yields (-2 + j3.9) and (-2 - j3.9). Increasing these poles by a factor of 0 and adding a third pole 0 times the real part of the dominant second-order poles yields the desired characteristic polynomial, (s j39)(s + 20 j39)(s + 200) s s s Equating coefficients of the desired characteristic equation to the system s characteristic 26 equation yields L C The observability matrix is O M CA , where CA A The matrix is of full rank, that is, rank 3, since O M Therefore the system is observable The system is represented in cascade form by the following state and output equations: z 0 8 z + 0 u y [ 0 0]z

64 62 Solutions to Skill-Assessment Exercises 0 0 The observability matrix is O Mz C z A z 7 0, where 2 C z A z 49 5 C z 49 5 A 2 z Since G(s) (s + 7)(s + 8)(s + 9) s s 2 + 9s + 504, we can write the observable canonical form as x 9 0 x + 0 u y [ 0 0]x 0 0 The observability matrix for this form is O Mx C x A x 24 0, where 2 C x A x A 2 x We next find the desired characteristic equation. A 0% overshoot requiresζ log % 00 % π 2 + log 2 00 C x Also, ω n 4 ζt s rad/s. Thus, the characteristic equation is s 2 + 2ζω n s + ω n 2 s s Adding a pole at 400, or 0 times the real part of the dominant second-order poles, yields the resulting desired characteristic equation, (s s )(s + 400) s s s +.83x0 6. For the system represented in observable canonical form e x (24 + l ) 0 (A x L x C x )e x (9 + l 2 ) 0 e x. The characteristic polynomial is given (504 + l 3 ) 0 0 by [si (A x L x C x ) s 3 + (24 + l )s 2 + (9 + l 2 )s + (504 + l 3 ). Equating coefficients of the desired characteristic equation to the system s characteristic equation yields

65 Chapter L x 36,389.,830, 496 Now, develop the transformation matrix between the observer canonical and cascade forms. 0 0 P O Mz O Mx Finally, L z PL x ,389 28,637 28, ,830, 496,539,93,540, We first find the desired characteristic equation. A 0% overshoot requires log % ζ % π 2 + log π Also, ω n.948 rad/s. Thus, the characteristic equation is 2 T p ζ s 2 + 2ζω n s + ω 2 n s s Adding a pole at 4, which corresponds to the original system s zero location, yields the resulting desired characteristic equation, (s s )(s + 4) s s 2 + 3s Now, x x N (A BK) BK e x C 0 x N + 0 x r; and y [ C 0] x N, where A BK k [ k 2 ] k k 2 0 (7 + k ) (9 + k 2 ) [ ] C 4

66 64 Solutions to Skill-Assessment Exercises Bk e 0 k 0 e k e Thus, x x 2 x N 0 0 (7 + k ) (9 + k 2 ) k e 4 0 Finding the characteristic equation of this system yields x x 2 x N + 0 r; y 4 0 [ ] (A BK) si BK s e C 0 0 s 0 (7 + k ) (9 + k 2 ) k e 0 0 s 4 0 s 0 (7 + k ) s + (9 + k 2 ) k e s 3 + (9 + k 2 )s 2 + (7 + k + k e )s + 4k e 4 s Equating this polynomial to the desired characteristic equation, s s 2 + 3s s 3 + (9 + k 2 )s 2 + (7 + k + k e )s + 4k e Solving for the k s, K [ ] and k e x x 2 x N.

67 Chapter 3 f (t) sin(ωkt); f * (t) k 0 F * (s) sin(ωkt) e kts But, Thus, k 0 x k k 0 x sin(ωkt) δ(t kt); k 0 F * (s) 2 j e T (s jω ) e 3.2. F(z) F(z) z (e jωkt e jωkt )e kts T (s+ jω ) 2 j 2 j k 0 (e T (s jω ) ) k (e T (s+ jω ) k e Ts e jωt e Ts e jωt 2 j (e Ts e jωt e Ts e jωt ) + e 2Ts sin(ωt) e Ts e Ts 2cos(ωT) + e 2Ts z sin(ωt) 2z cos(ωt) + z 2 z(z + )(z + 2) (z 0.5)(z 0.7)(z 0.9) (z + )(z + 2) (z 0.5)(z 0.7)(z 0.9) z z z 0.9 z F(z) z z z z z 0.9, f (kt) (0.5) k 4.75(0.7) k (0.9) k Since G(s) ( e Ts ) s(s + 4), G(z) ( z 8 )z s(s + 4) z z z A s + B s + 4 z z z 2 s + 2 s + 4. Let G 2 (s) 2 s + 2 s + 4. Therefore, g 2 (t) 2 2e 4t, or g 2 (kt) 2 2e 4kT. Hence, G 2 (z) 2z z 2z z e 2z( e 4T ) 4T (z )(z e 4T ).

68 66 Solutions to Skill-Assessment Exercises Therefore, G(z) z z G 2(z) 2( e 4T ) (z e 4T ). For T 4 s, G(z).264 z Add phantom samplers to the input, feedback after H(s), and to the output. Push G (s)g 2 (s), along with its input sampler, to the right past the pickoff point and obtain the block diagram shown below. Hence, T(z) 3.5. G G 2 (z) + HG G 2 (z). Let G(s) 20 s + 5. Let G G(s) 2 (s) s 20 s(s + 5) 4 s 4. Taking the inverse s + 5 Laplace transform and letting t kt, g 2 (kt) 4 4e 5kT. Taking the z-transform yields G 2 (z) 4z z 4z z e 4z( e 5T ) 5T (z )(z e 5T ). Now, G(z) z z G 2(z) 4( e 5T ) G(z). Finally, T(z) (z e 5T ) + G(z) 4( e 5T ) z 5e 5T + 4. The pole of the closed-loop system is at 5e 5T 4. Substituting values of T, we find that the pole is greater than if T > s. Hence, the system is stable for 0 < T < s Substituting z s + s into D(z) z3 z 2 0.5z + 0.3, we obtain D(s) s 3 8s 2 27s 6. The Routh table for this polynomial is shown below.

69 Chapter 3 67 s 3-27 s s s Since there is one sign change, we conclude that the system has one pole outside the unit circle and two poles inside the unit circle. The table did not produce a row of zeros and thus, there are no jω poles. The system is unstable because of the pole outside the unit circle Defining G(s) as G (s) in cascade with a zero-order-hold, G(s) 20( e Ts (s + 3) ) s(s + 4)(s + 5) 20 e Ts Taking the z-transform yields ( ) G(z) 20 z (3 / 20)z z- ( ) 3/20 ( / 4)z (2 / 5)z + 4T z-e z-e 5T s + /4 (s + 4) 2/5 (s + 5) 5(z -) 8(z -) 3 + 4T z-e z-e. 5T Hence for T 0. second, K p limg(z) 3, K v z T lim (z -)G(z) 0, and z K a T lim (z -) 2 G(z) 0. Checking for stability, we find that the system is 2 z stable for T 0. second, since T(z) inside the unit circle at and G(z) + G(z).5z.09 z z has poles Again, checking for stability, we find that the system is unstable for T 0.5 second, since T(z) G(z) + G(z) 3.02z has poles inside and outside z z the unit circle at and 3.0, respectively Draw the root locus superimposed over the ζ 0.5 curve shown below. Searching along a line, which intersects the root locus and the ζ 0.5 curve, we find the point o (0.348+j0.468) and K 0.3.

70 68 Solutions to Skill-Assessment Exercises z-plane Root Locus.5 Imag Axis (0.348+j0.468) K Real Axis 3.9. Let G e (s) G(s)G c (s) 00K 2.38(s ) s(s + 36)(s + 00) (s ) The following shows the frequency response of G e ( jω) (s ) s(s + 36)(s + 00)(s ).

71 Chapter 3 69 Bode Diagrams Phase (deg); Magnitude (db) Frequency (rad/sec) We find that the zero db frequency, ω Φ M, for G e ( jω)is 39 rad/s. Using Astrom s guideline the value of T should be in the range, 0.5 / ω Φ M second to 0.5 / ω Φ M second. Let us use T 0.00 second. Now find the Tustin transformation for the compensator. Substituting s into G c (s) 2.38(s ) with T 0.00 second yields (s ) (z 0.975) G c (z) 2.34 (z 0.946) G c (z) X(z) E(z) 899z2 376z Cross-multiply and obtain z 2.908z (z ) T(z + ) (z 2.908z )X(z) (899z 2 376z + 86)E(z). Solve for the highest power of z operating on the output, X(z), and obtain z 2 X(z) (899z 2 376z + 86)E(z) (.908z )X(z). Solving for

72 70 Solutions to Skill-Assessment Exercises X(z) on the left-hand side yields X(z) ( z z 2 )E(z) (.908z z 2 )X(z). Finally, we implement this last equation with the following flow chart:

### Homework 7 - Solutions

Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

### EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

EE C28 / ME C34 Fall 24 HW 8 - Solutions HW 8 - Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot

### MAS107 Control Theory Exam Solutions 2008

MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

### Course Summary. The course cannot be summarized in one lecture.

Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

### Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

### Chapter 7. Digital Control Systems

Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steady-state error, and transient response for computer-controlled systems. Transfer functions,

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

### Frequency Response Techniques

4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10

### ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

### Software Engineering 3DX3. Slides 8: Root Locus Techniques

Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007

### (b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

### Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRONICS ENGINEERING

### Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

### Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

### Performance of Feedback Control Systems

Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

### VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year

### Time Response Analysis (Part II)

Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

### SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

### CYBER EXPLORATION LABORATORY EXPERIMENTS

CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

### INTRODUCTION TO DIGITAL CONTROL

ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

### If you need more room, use the backs of the pages and indicate that you have done so.

EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty

### Dr Ian R. Manchester

Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

### R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

### Last week: analysis of pinion-rack w velocity feedback

Last week: analysis of pinion-rack w velocity feedback Calculation of the steady state error Transfer function: V (s) V ref (s) = 0.362K s +2+0.362K Step input: V ref (s) = s Output: V (s) = s 0.362K s

### ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

### Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer

### R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

### Control Systems. University Questions

University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write

### EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller

### STABILITY ANALYSIS TECHNIQUES

ECE4540/5540: Digital Control Systems 4 1 STABILITY ANALYSIS TECHNIQUES 41: Bilinear transformation Three main aspects to control-system design: 1 Stability, 2 Steady-state response, 3 Transient response

### First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015

First and Second Order Circuits Claudio Talarico, Gonzaga University Spring 2015 Capacitors and Inductors intuition: bucket of charge q = Cv i = C dv dt Resist change of voltage DC open circuit Store voltage

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

### Introduction to Root Locus. What is root locus?

Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response

### Compensator Design to Improve Transient Performance Using Root Locus

1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

### DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)

### 10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A

10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) Faculty : Shreyus G & Prashanth V Chapter Title/ Class # Reference Literature Topic to be covered Part A No of Hours:52 % of Portions covered Reference Cumulative

### Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter

GATE-2016 Index 1. Question Paper Analysis 2. Question Paper & Answer keys : 080-617 66 222, info@thegateacademy.com Copyright reserved. Web:www.thegateacademy.com ANALYSIS OF GATE 2016 Electrical Engineering

### Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.

Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control

### Chapter 8: Converter Transfer Functions

Chapter 8. Converter Transfer Functions 8.1. Review of Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right half-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.

NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni-625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501

### CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

EC6405 - CONTROL SYSTEM ENGINEERING Questions and Answers Unit - I Control System Modeling Two marks 1. What is control system? A system consists of a number of components connected together to perform

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2

### VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared

### Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

### ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]

ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative

### Chapter 9: Controller design

Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

### EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

### Dynamic circuits: Frequency domain analysis

Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

### CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.

### ECE 486 Control Systems

ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following

### EEE 184: Introduction to feedback systems

EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

### CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1

### AN INTRODUCTION TO THE CONTROL THEORY

Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

### ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

### 7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM

ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)

### CONTROL * ~ SYSTEMS ENGINEERING

CONTROL * ~ SYSTEMS ENGINEERING H Fourth Edition NormanS. Nise California State Polytechnic University, Pomona JOHN WILEY& SONS, INC. Contents 1. Introduction 1 1.1 Introduction, 2 1.2 A History of Control

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:

### Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This

### Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

### Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)

Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar

### Appendix A Complex Variable Theory

Appendix A Complex Variable Theory TO ACCOMPANY AUTOMATIC CONTROL SYSTEMS EIGHTH EDITION BY BENJAMIN C. KUO FARID GOLNARAGHI JOHN WILEY & SONS, INC. Copyright 2003 John Wiley & Sons, Inc. All rights reserved.

### ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned

### Goals for today 2.004

Goals for today Block diagrams revisited Block diagram components Block diagram cascade Summing and pickoff junctions Feedback topology Negative vs positive feedback Example of a system with feedback Derivation

### Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and

### Transient Response of a Second-Order System

Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

### Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions

Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus

### School of Engineering Faculty of Built Environment, Engineering, Technology & Design

Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

### 1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant

### APPLICATIONS FOR ROBOTICS

Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

### Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

### Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

### Linear Control Systems Solution to Assignment #1

Linear Control Systems Solution to Assignment # Instructor: H. Karimi Issued: Mehr 0, 389 Due: Mehr 8, 389 Solution to Exercise. a) Using the superposition property of linear systems we can compute the

### (a) Find the transfer function of the amplifier. Ans.: G(s) =

126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

### Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc.

Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Electrical Engineering Department University of Indonesia 2 Steady State Error How well can

### Richiami di Controlli Automatici

Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

### Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

### Table of Laplacetransform

Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

### Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 9. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering

### Control of Electromechanical Systems

Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

### Introduction to Feedback Control

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

### AMME3500: System Dynamics & Control

Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13

### R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1. Review of Bode plots Decibels Table 8.1. Expressing magnitudes in decibels G db = 0 log 10

### FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION

### Lecture 4 Classical Control Overview II. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 4 Classical Control Overview II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Stability Analysis through Transfer Function Dr. Radhakant

### Root Locus Techniques

4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since

### Chapter 2 SDOF Vibration Control 2.1 Transfer Function

Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:

### EC 8391-CONTROL SYSTEMS ENGINEERING. Questions and Answers PART-A. Unit - I Systems Components And Their Representation

EC 8391-CONTROL SYSTEMS ENGINEERING Questions and Answers PART-A Unit - I Systems Components And Their Representation 1. What is control system? A system consists of a number of components connected together

### EE 4343/ Control System Design Project LECTURE 10

Copyright S. Ikenaga 998 All rights reserved EE 4343/5329 - Control System Design Project LECTURE EE 4343/5329 Homepage EE 4343/5329 Course Outline Design of Phase-lead and Phase-lag compensators using

### MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,

### Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

### Control Systems. EC / EE / IN. For

Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop

### Root Locus Methods. The root locus procedure

Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain

### 1 (20 pts) Nyquist Exercise

EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

### Problem Weight Score Total 100

EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total