Linear Recurrence Relations

Size: px
Start display at page:

Download "Linear Recurrence Relations"

Transcription

1 Linear Recurrence Relations

2 Linear Homogeneous Recurrence Relations The Towers of Hanoi According to legend, there is a temple in Hanoi with three posts and 64 gold disks of different sizes. Each disk has a hole through the center so that it fits on a post. In the misty past, all the disks were on the first post, with the largest on the bottom and the smallest on top. Monks in the temple have labored through the years since to move all the disks to one of the other two posts according to the following rules: The only permitted action is removing the top disk from one post and dropping it onto another post. A larger disk can never lie above a smaller disk on any post. E. Lehman, T. Leighton and A. Meyer Mathematics for Computer Science

3 Linear Homogeneous Recurrence Relations The Towers of Hanoi 7 step solution for n = 3: E. Lehman, T. Leighton and A. Meyer Mathematics for Computer Science

4 Linear Homogeneous Recurrence Relations The Towers of Hanoi recursive solution: E. Lehman, T. Leighton and A. Meyer Mathematics for Computer Science

5 The Towers of Hanoi T 0 = 1 T 1 = 1 T 2 = 3 T 3 = 7... T n = 2T n-1 + 1, for n 2

6 Linear Homogeneous Recurrence Definition Relations A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form a n = c 1 a n-1 + c 2 a n c k a n-k Where c 1, c 2,...,c k are real numbers, c k 0

7 Fibonacci numbers F n = F n F n 2, for n 2 (1) F 0 = 1 F 1 = 1 Since F n grows exponentially, we will assume that F n is proportional to x n for some base x. Let F n = x n x n = x n 1 + x n 2 x 2 = x + 1 x 2 - x - 1 = 0 x 1 = x 2 = Do they satisfy (1)?

8 Linear Homogeneous Recurrence Theorem Relations Let c 1 and c 2 be real numbers. Suppose that r 2 -c 1 r-c 2 =0 has two distinct roots r 1 and r 2. Then the sequence {a n } is a solution of the recurrence relation a n = c 1 a n-1 + c 2 a n-2 if and only if a n = α 1 r 1 n + α 2 r 2 n for n=0, 1, 2,...,where α 1 and α 2 are constants.

9 Example Linear Homogeneous Recurrence Relations

10 Linear Homogeneous Recurrence Relations Example Solve the recurrence equation a n = 5a n-1-6a n-2 for a 0 = 1, a 1 = 4 Solution: The characteristic equation and its roots: r 2-5r + 6 = 0, r 1 =2, r 2 =3 General solution: a n = 1 2 n n

11 General solution: a n = 1 2 n n System of linear equations for initial conditions and its solution: a 0 = a 1 = = = -1 4 = = 2 Final answer: a n = -1 2 n n

12 Linear Homogeneous Recurrence Example Solve the recurrence relation a n = 4 a n-1-4 a n-2, with a 0 = 1 and a 1 = 3? x 2-4x + 4 = 0 x 1,2 = 2?

13 Linear Homogeneous Recurrence Theorem Relations Let c 1 and c 2 be real numbers with c 2 0. Suppose that r 2 - c 1 r - c 2 = 0 has only one root r 0. A sequence {a n } is a solution of the recurrence relation a n = c 1 a n-1 + c 2 a n-2 if and only if a n = α 1 r 0n + α 2 nr 0 n for n=0, 1, 2,...,where α 1 and α 2 are constants.

14 Linear Homogeneous Recurrence Example Solve the recurrence relation a n = 4 a n-1-4 a n-2, with a 0 = 1 and a 1 = 3? x 2-4x + 4 = 0 x 1,2 = 2 a n = α 1 2 n + α 2 n2 n a n = 2 n n2n

15 Linear Homogeneous Recurrence Example Relations Find the solution to the recurrence relation a n = -3a n-1-3a n-2 - a n-3 With the initial conditions a 0 = 1 and a 1 = -2, and a 2 = -1. x 3 + 3x 2 + 3x + 1 = 0 x 1, 2, 3 = -1 a n = α 1 r 0n + α 2 nr 0 n + α 3 n 2 r 0 n

16 Linear Homogeneous Recurrence Word problem Relations Find a recurrence relation for the number of ternary strings that do not contain two consecutive 0s.

17 Linear Homogeneous Recurrence Word problem Relations

18 Linear Homogeneous Recurrence Word problem Relations

19

20 Linear Homogeneous Recurrence Word problem Relations

21

22

23 Linear Non-Homogeneous Recurrence Relations with Constant Coefficients Linear homogeneous recurrence relations of degree k with constant coefficients: a n = 5a n-1-6a n-2 a n = 4 a n-1-4 a n-2, a n = -3a n-1-3a n-2 - a n-3 Linear non-homogeneous recurrence relation of degree k with constant coefficients: a n = 5a n-1-6a n n a n = 4 a n-1-4 a n-2 + n a n = -3a n-1-3a n-2 - a n n (n+1)

24 Linear Non-Homogeneous Recurrence Relations with Constant Coefficients A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form a n = c 1 a n-1 + c 2 a n c k a n-k where c 1, c 2,...,c k are real numbers, c k 0 A linear non-homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form a n = c 1 a n-1 + c 2 a n c k a n-k + g(n) where c 1, c 2,...,c k are real numbers, c k 0, and g(n) a function not identically zero depending only on n.

25 Linear Non-Homogeneous Recurrence Relations with Constant Coefficients If non-homogeneous recurrence is f n = c 1 f n-1 + c 2 f n c k f n-k + g(n) the associate homogeneous recurrence is f nc = c 1 f n-1 + c 2 f n c k f n-k Let f n be the general solution of f nc, and f n a particular ( arbitrary) solution of f n. Then f n = f n + f n

26 Linear Non-Homogeneous Recurrence Relations Theorem (particular solution) Suppose {f n } satisfies the linear nonhomogeneous recurrence relation f n = c 1 f n-1 + c 2 f n c k f n-k + g(n), and g(n) = (b t n t + b t-1 n t b 1 n + b 0 ) s n where b 0,b 1,..,b n,s R. If s is not a root of f nc, there is a particular solution of the form f n = (p t n t + p t-1 n t-1 + +p 1 n + p 0 ) s n If s is a root of f nc, and its multiplicity is m, there is a particular solution of the form f n = n m (p t n t + p t-1 n t-1 + +p 1 n + p 0 ) s n

27 Linear Non-Homogeneous Recurrence Relations What form does a particular solution of the linear nonhomogeneous recurrence relation f n = 6f n-1-9f n-2 + g(n) g(n) = 5 have when g(n) = 5n + 1 g(n) = 5n g(n) = 5n 2 + n + 1 g(n) = n2 n g(n) = 2 n (5n 2 + n + 1) g(n) = n3 n g(n) = 3 n (5n 2 + n + 1)

28 Linear Non-Homogeneous Recurrence Relations f n = 6f n-1-9f n-2 + g(n) f nc = 1 3 n + 2 n3 n f n = (p t n t + p t-1 n t-1 + +p 1 n + p 0 ) s n g(n) = 5 f n = p 0 g(n) = 5n + 1 f n = p 1 n + p 0 g(n) = 5n f n = p 2 n 2 +p 1 n + p 0 g(n) = 5n 2 + n + 1 f n = p 2 n 2 +p 1 n + p 0 g(n) = n2 n f n = (p 1 n + p 0 ) 2 n g(n) = 2 n (5n 2 + n + 1) f n = (p 2 n 2 +p 1 n + p 0 ) 2 n

29 Linear Non-Homogeneous Recurrence Relations f n = 6f n-1-9f n-2 + g(n) f nc = 1 3 n + 2 n3 n f n = (p t n t + p t-1 n t-1 + +p 1 n + p 0 ) s n g(n) = n2 n g(n) = 2 n (5n 2 + n + 1) g(n) = n3 n g(n) = 3 n (5n 2 + n + 1) f n = (p 1 n + p 0 ) 2 n f n = (p 2 n 2 +p 1 n + p 0 ) 2 n f n = n 2 (p 1 n + p 0 ) 3 n f n = n 2 (p 2 n 2 + p 1 n + p 0 ) 3 n

30 Linear Non-Homogeneous Recurrence Relations f n = (p t n t + p t-1 n t-1 + +p 1 n + p 0 ) s n g(n) = 5 f n = p 0 g(n) = 5n + 1 f n = p 1 n + p 0 What if s = 1? Solve f n = f n-1 + n with f 1 = 1; f n = n(p 1 n + p 0 ) and f n = n(n + 1)/2

31 Solve Example

32 Example (cont.)

33 Linear Non-Homogeneous Recurrence Relations Word Problems Example

34 Linear Non-Homogeneous Recurrence Relations Word Problems Example Recurrence

35 Recurrence Word Problems

36 Recurrence Word Problems

37 Extra Credit, Max number of points 5(HW) DUE Tuesday, February 10, 11AM, in LATEX NO HELP FROM ANYBODY! from quiz 3, sample 3

38 One More Problem

39 One More Problem

40

41

42

Learning Objectives

Learning Objectives Learning Objectives Learn about recurrence relations Learn the relationship between sequences and recurrence relations Explore how to solve recurrence relations by iteration Learn about linear homogeneous

More information

Advanced Counting Techniques. Chapter 8

Advanced Counting Techniques. Chapter 8 Advanced Counting Techniques Chapter 8 Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence Relations Nonhomogeneous Recurrence Relations Divide-and-Conquer

More information

Advanced Counting Techniques

Advanced Counting Techniques . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Advanced Counting

More information

CS 2210 Discrete Structures Advanced Counting. Fall 2017 Sukumar Ghosh

CS 2210 Discrete Structures Advanced Counting. Fall 2017 Sukumar Ghosh CS 2210 Discrete Structures Advanced Counting Fall 2017 Sukumar Ghosh Compound Interest A person deposits $10,000 in a savings account that yields 10% interest annually. How much will be there in the account

More information

Handout 7: Recurrences (Cont d)

Handout 7: Recurrences (Cont d) ENGG 2440B: Discrete Mathematics for Engineers Handout 7: Recurrences (Cont d) 2018 19 First Term Instructor: Anthony Man Cho So October 8, 2018 In the last handout, we studied techniques for solving linear

More information

6.2 SOLVING EASY RECURRENCES

6.2 SOLVING EASY RECURRENCES Section 6.2 Solving Easy Recurrences 6.2.1 6.2 SOLVING EASY RECURRENCES We identify a type of recurrence that can be solved by special methods. def: A recurrence relation a n = f(a 0,..., a n 1 ) has degree

More information

6.042/18.062J Mathematics for Computer Science March 17, 2005 Srini Devadas and Eric Lehman. Recurrences

6.042/18.062J Mathematics for Computer Science March 17, 2005 Srini Devadas and Eric Lehman. Recurrences 6.04/8.06J Mathematics for Computer Science March 7, 00 Srini Devadas and Eric Lehman Lecture Notes Recurrences Recursion breaking an object down into smaller objects of the same type is a major theme

More information

Math.3336: Discrete Mathematics. Advanced Counting Techniques

Math.3336: Discrete Mathematics. Advanced Counting Techniques Math.3336: Discrete Mathematics Advanced Counting Techniques Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information

Recursion and Induction

Recursion and Induction Recursion and Induction Themes Recursion Recurrence Definitions Recursive Relations Induction (prove properties of recursive programs and objects defined recursively) Examples Tower of Hanoi Gray Codes

More information

Discrete Mathematics -- Chapter 10: Recurrence Relations

Discrete Mathematics -- Chapter 10: Recurrence Relations Discrete Mathematics -- Chapter 10: Recurrence Relations Hung-Yu Kao ( 高宏宇 ) Department of Computer Science and Information Engineering, National Cheng Kung University First glance at recurrence F n+2

More information

Part III, Sequences and Series CS131 Mathematics for Computer Scientists II Note 16 RECURRENCES

Part III, Sequences and Series CS131 Mathematics for Computer Scientists II Note 16 RECURRENCES CS131 Part III, Sequences and Series CS131 Mathematics for Computer Scientists II Note 16 RECURRENCES A recurrence is a rule which defines each term of a sequence using the preceding terms. The Fibonacci

More information

Jong C. Park Computer Science Division, KAIST

Jong C. Park Computer Science Division, KAIST Jong C. Park Computer Science Division, KAIST Today s Topics Introduction Solving Recurrence Relations Discrete Mathematics, 2008 2 Computer Science Division, KAIST Definition A recurrence relation for

More information

CMSC 132, Object-Oriented Programming II Summer Lecture 10:

CMSC 132, Object-Oriented Programming II Summer Lecture 10: CMSC 132, Object-Oriented Programming II Summer 2016 Lecturer: Anwar Mamat Lecture 10: Disclaimer: These notes may be distributed outside this class only with the permission of the Instructor. 10.1 RECURSION

More information

Recursion: Introduction and Correctness

Recursion: Introduction and Correctness Recursion: Introduction and Correctness CSE21 Winter 2017, Day 7 (B00), Day 4-5 (A00) January 25, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Today s Plan From last time: intersecting sorted lists and

More information

CHAPTER 8 Advanced Counting Techniques

CHAPTER 8 Advanced Counting Techniques 96 Chapter 8 Advanced Counting Techniques CHAPTER 8 Advanced Counting Techniques SECTION 8. Applications of Recurrence Relations 2. a) A permutation of a set with n elements consists of a choice of a first

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.6 Defining Sequences Recursively Copyright Cengage Learning. All rights reserved.

More information

1 Sequences and Summation

1 Sequences and Summation 1 Sequences and Summation A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer. For example, a m, a m+1,...,

More information

Recurrence Relations

Recurrence Relations Recurrence Relations Winter 2017 Recurrence Relations Recurrence Relations A recurrence relation for the sequence {a n } is an equation that expresses a n in terms of one or more of the previous terms

More information

Recursion and Induction

Recursion and Induction Recursion and Induction Themes Recursion Recursive Definitions Recurrence Relations Induction (prove properties of recursive programs and objects defined recursively) Examples Tower of Hanoi Gray Codes

More information

Recursion and Induction

Recursion and Induction Recursion and Induction Themes Recursion Recursive Definitions Recurrence Relations Induction (prove properties of recursive programs and objects defined recursively) Examples Tower of Hanoi Gray Codes

More information

CSC2100B Data Structures Analysis

CSC2100B Data Structures Analysis CSC2100B Data Structures Analysis Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Algorithm An algorithm

More information

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska LECTURE 1 INTRODUCTION Course Web Page www.cs.stonybrook.edu/ cse547 The webpage contains: detailed lectures notes slides; very detailed

More information

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee Algorithm Analysis Recurrence Relation Chung-Ang University, Jaesung Lee Recursion 2 Recursion 3 Recursion in Real-world Fibonacci sequence = + Initial conditions: = 0 and = 1. = + = + = + 0, 1, 1, 2,

More information

5. Sequences & Recursion

5. Sequences & Recursion 5. Sequences & Recursion Terence Sim 1 / 42 A mathematician, like a painter or poet, is a maker of patterns. Reading Sections 5.1 5.4, 5.6 5.8 of Epp. Section 2.10 of Campbell. Godfrey Harold Hardy, 1877

More information

Notes for Recitation 14

Notes for Recitation 14 6.04/18.06J Mathematics for Computer Science October 7, 006 Tom Leighton and Ronitt Rubinfeld Notes for Recitation 14 Guessing a Particular Solution A general linear recurrence has the form: fn) = b 1

More information

Binomial Coefficient Identities/Complements

Binomial Coefficient Identities/Complements Binomial Coefficient Identities/Complements CSE21 Fall 2017, Day 4 Oct 6, 2017 https://sites.google.com/a/eng.ucsd.edu/cse21-fall-2017-miles-jones/ permutation P(n,r) = n(n-1) (n-2) (n-r+1) = Terminology

More information

CSI2101-W08- Recurrence Relations

CSI2101-W08- Recurrence Relations Motivation CSI2101-W08- Recurrence Relations where do they come from modeling program analysis Solving Recurrence Relations by iteration arithmetic/geometric sequences linear homogenous recurrence relations

More information

Math 475, Problem Set #8: Answers

Math 475, Problem Set #8: Answers Math 475, Problem Set #8: Answers A. Brualdi, problem, parts (a), (b), and (d). (a): As n goes from to 6, the sum (call it h n ) takes on the values,, 8, 2, 55, and 44; we recognize these as Fibonacci

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

Intermediate Math Circles March 11, 2009 Sequences and Series

Intermediate Math Circles March 11, 2009 Sequences and Series 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Intermediate Math Circles March 11, 009 Sequences and Series Tower of Hanoi The Tower of Hanoi is a game

More information

Enumerating Binary Strings

Enumerating Binary Strings International Mathematical Forum, Vol. 7, 2012, no. 38, 1865-1876 Enumerating Binary Strings without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University Melbourne,

More information

Chapter 8: Recursion. March 10, 2008

Chapter 8: Recursion. March 10, 2008 Chapter 8: Recursion March 10, 2008 Outline 1 8.1 Recursively Defined Sequences 2 8.2 Solving Recurrence Relations by Iteration 3 8.4 General Recursive Definitions Recursively Defined Sequences As mentioned

More information

Advanced Counting Techniques. 7.1 Recurrence Relations

Advanced Counting Techniques. 7.1 Recurrence Relations Chapter 7 Advanced Counting Techniques 71 Recurrence Relations We have seen that a recursive definition of a sequence specifies one or more initial terms and a rule for determining subsequent terms from

More information

1 Recursive Algorithms

1 Recursive Algorithms 400 lecture note #8 [ 5.6-5.8] Recurrence Relations 1 Recursive Algorithms A recursive algorithm is an algorithm which invokes itself. A recursive algorithm looks at a problem backward -- the solution

More information

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution Logic and Discrete Mathematics Section 6.7 Recurrence Relations and Their Solution Slides version: January 2015 Definition A recurrence relation for a sequence a 0, a 1, a 2,... is a formula giving a n

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU Math Review 1 Why do we need math in a data structures course? To nalyze data structures and algorithms Deriving formulae for time and memory requirements Will the solution scale? Quantify the results

More information

Mathematical Fundamentals

Mathematical Fundamentals Mathematical Fundamentals Sets Factorials, Logarithms Recursion Summations, Recurrences Proof Techniques: By Contradiction, Induction Estimation Techniques Data Structures 1 Mathematical Fundamentals Sets

More information

Why do we need math in a data structures course?

Why do we need math in a data structures course? Math Review 1 Why do we need math in a data structures course? To nalyze data structures and algorithms Deriving formulae for time and memory requirements Will the solution scale? Quantify the results

More information

Exam 2 Solutions. x 1 x. x 4 The generating function for the problem is the fourth power of this, (1 x). 4

Exam 2 Solutions. x 1 x. x 4 The generating function for the problem is the fourth power of this, (1 x). 4 Math 5366 Fall 015 Exam Solutions 1. (0 points) Find the appropriate generating function (in closed form) for each of the following problems. Do not find the coefficient of x n. (a) In how many ways can

More information

Exercise Sheet #1 Solutions, Computer Science, A M. Hallett, K. Smith a k n b k = n b + k. a k n b k c 1 n b k. a k n b.

Exercise Sheet #1 Solutions, Computer Science, A M. Hallett, K. Smith a k n b k = n b + k. a k n b k c 1 n b k. a k n b. Exercise Sheet #1 Solutions, Computer Science, 308-251A M. Hallett, K. Smith 2002 Question 1.1: Prove (n + a) b = Θ(n b ). Binomial Expansion: Show O(n b ): (n + a) b = For any c 1 > b = O(n b ). Show

More information

MATH 243E Test #3 Solutions

MATH 243E Test #3 Solutions MATH 4E Test # Solutions () Find a recurrence relation for the number of bit strings of length n that contain a pair of consecutive 0s. You do not need to solve this recurrence relation. (Hint: Consider

More information

Solving Recurrence Relations 1. Guess and Math Induction Example: Find the solution for a n = 2a n 1 + 1, a 0 = 0 We can try finding each a n : a 0 =

Solving Recurrence Relations 1. Guess and Math Induction Example: Find the solution for a n = 2a n 1 + 1, a 0 = 0 We can try finding each a n : a 0 = Solving Recurrence Relations 1. Guess and Math Induction Example: Find the solution for a n = 2a n 1 + 1, a 0 = 0 We can try finding each a n : a 0 = 0 a 1 = 2 0 + 1 = 1 a 2 = 2 1 + 1 = 3 a 3 = 2 3 + 1

More information

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu Analysis of Algorithm Efficiency Dr. Yingwu Zhu Measure Algorithm Efficiency Time efficiency How fast the algorithm runs; amount of time required to accomplish the task Our focus! Space efficiency Amount

More information

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi Definition (Linear homogeneous recurrence) A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form a n = c 1 a n 1 + c 2 a n 2 +... + c k a

More information

CS Non-recursive and Recursive Algorithm Analysis

CS Non-recursive and Recursive Algorithm Analysis CS483-04 Non-recursive and Recursive Algorithm Analysis Instructor: Fei Li Room 443 ST II Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments lifei@cs.gmu.edu with subject: CS483 http://www.cs.gmu.edu/

More information

Some Review Problems for Exam 2: Solutions

Some Review Problems for Exam 2: Solutions Math 5366 Fall 017 Some Review Problems for Exam : Solutions 1 Find the coefficient of x 15 in each of the following: 1 (a) (1 x) 6 Solution: 1 (1 x) = ( ) k + 5 x k 6 k ( ) ( ) 0 0 so the coefficient

More information

Lecture 2. Fundamentals of the Analysis of Algorithm Efficiency

Lecture 2. Fundamentals of the Analysis of Algorithm Efficiency Lecture 2 Fundamentals of the Analysis of Algorithm Efficiency 1 Lecture Contents 1. Analysis Framework 2. Asymptotic Notations and Basic Efficiency Classes 3. Mathematical Analysis of Nonrecursive Algorithms

More information

SOLVING LINEAR RECURRENCE RELATIONS

SOLVING LINEAR RECURRENCE RELATIONS SOLVING LINEAR RECURRENCE RELATIONS Schaum's outline Sec. 6.6 6.9 Rosen Sec. 8.1 8. November 9, 017 margarita.spitsakova@ttu.ee ICY0001: Lecture 8 November 9, 017 1 / 47 Contents 1 Motivation examples

More information

Data Structure Lecture#4: Mathematical Preliminaries U Kang Seoul National University

Data Structure Lecture#4: Mathematical Preliminaries U Kang Seoul National University Data Structure Lecture#4: Mathematical Preliminaries U Kang Seoul National University U Kang 1 In This Lecture Set concepts and notation Logarithms Summations Recurrence Relations Recursion Induction Proofs

More information

Quiz 3 Reminder and Midterm Results

Quiz 3 Reminder and Midterm Results Quiz 3 Reminder and Midterm Results Reminder: Quiz 3 will be in the first 15 minutes of Monday s class. You can use any resources you have during the quiz. It covers all four sections of Unit 3. It has

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2015S-23 NP-Completeness and Undecidablity David Galles Department of Computer Science University of San Francisco 23-0: Hard Problems Some algorithms take exponential

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 14 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 14 Notes Goals for this week Big-O complexity

More information

Section 5.2 Solving Recurrence Relations

Section 5.2 Solving Recurrence Relations Section 5.2 Solving Recurrence Relations If a g(n) = f (a g(0),a g(1),..., a g(n 1) ) find a closed form or an expression for a g(n). Recall: nth degree polynomials have n roots: a n x n + a n 1 x n 1

More information

Divide and Conquer. Recurrence Relations

Divide and Conquer. Recurrence Relations Divide and Conquer Recurrence Relations Divide-and-Conquer Strategy: Break up problem into parts. Solve each part recursively. Combine solutions to sub-problems into overall solution. 2 MergeSort Mergesort.

More information

Chapter12. Relations, Functions, and Induction

Chapter12. Relations, Functions, and Induction . Relations. Functions. Seuences.4 Mathematical Induction.5 Recurrence Relations Chapter Review Chapter Relations, Functions, and Induction In this chapter we introduce the concepts of a relation and a

More information

CS361 Homework #3 Solutions

CS361 Homework #3 Solutions CS6 Homework # Solutions. Suppose I have a hash table with 5 locations. I would like to know how many items I can store in it before it becomes fairly likely that I have a collision, i.e., that two items

More information

The Trees of Hanoi. Joost Engelfriet

The Trees of Hanoi. Joost Engelfriet The Trees of Hanoi Joost Engelfriet Leiden Institute of Advanced Computer Science Leiden University, The Netherlands j.engelfriet@liacs.leidenuniv.nl Abstract The game of the Towers of Hanoi is generalized

More information

CSCE 222 Discrete Structures for Computing. Dr. Hyunyoung Lee

CSCE 222 Discrete Structures for Computing. Dr. Hyunyoung Lee CSCE 222 Discrete Structures for Computing Sequences and Summations Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Sequences 2 Sequences A sequence is a function from a subset of the set of

More information

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example Partition of Integers into Even Summands We ask for the number of partitions of m Z + into positive even integers The desired number is the coefficient of x m in + x + x 4 + ) + x 4 + x 8 + ) + x 6 + x

More information

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n.

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n. 11 Recurrences A recurrence equation or recurrence counts things using recursion. 11.1 Recurrence Equations We start with an example. Example 11.1. Find a recurrence for S(n), the number of subsets of

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

4. How to prove a problem is NPC

4. How to prove a problem is NPC The reducibility relation T is transitive, i.e, A T B and B T C imply A T C Therefore, to prove that a problem A is NPC: (1) show that A NP (2) choose some known NPC problem B define a polynomial transformation

More information

Recurrence Relations

Recurrence Relations Recurrence Relations Recurrence Relations Reading (Epp s textbook) 5.6 5.8 1 Recurrence Relations A recurrence relation for a sequence aa 0, aa 1, aa 2, ({a n }) is a formula that relates each term a k

More information

4 Linear Recurrence Relations & the Fibonacci Sequence

4 Linear Recurrence Relations & the Fibonacci Sequence 4 Linear Recurrence Relations & the Fibonacci Sequence Recall the classic example of the Fibonacci sequence (F n ) n=1 the relations: F n+ = F n+1 + F n F 1 = F = 1 = (1, 1,, 3, 5, 8, 13, 1,...), defined

More information

Discrete Mathematics. Kishore Kothapalli

Discrete Mathematics. Kishore Kothapalli Discrete Mathematics Kishore Kothapalli 2 Chapter 4 Advanced Counting Techniques In the previous chapter we studied various techniques for counting and enumeration. However, there are several interesting

More information

Section 7.2 Solving Linear Recurrence Relations

Section 7.2 Solving Linear Recurrence Relations Section 7.2 Solving Linear Recurrence Relations If a g(n) = f (a g(0),a g(1),..., a g(n 1) ) find a closed form or an expression for a g(n). Recall: nth degree polynomials have n roots: a n x n + a n 1

More information

Exam 3 December 1, 2010

Exam 3 December 1, 2010 Exam 3 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. All work must be shown to receive credit.

More information

Written Homework #1: Analysis of Algorithms

Written Homework #1: Analysis of Algorithms Written Homework #1: Analysis of Algorithms CIS 121 Fall 2016 cis121-16fa-staff@googlegroups.com Due: Thursday, September 15th, 2015 before 10:30am (You must submit your homework online via Canvas. A paper

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 15 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 15 Notes Goals for this week Big-O complexity

More information

COMP 555 Bioalgorithms. Fall Lecture 3: Algorithms and Complexity

COMP 555 Bioalgorithms. Fall Lecture 3: Algorithms and Complexity COMP 555 Bioalgorithms Fall 2014 Lecture 3: Algorithms and Complexity Study Chapter 2.1-2.8 Topics Algorithms Correctness Complexity Some algorithm design strategies Exhaustive Greedy Recursion Asymptotic

More information

Notes for Recitation 14

Notes for Recitation 14 6.04/18.06J Mathematics for Computer Science October 4, 006 Tom Leighton and Marten van Dijk Notes for Recitation 14 1 The Akra-Bazzi Theorem Theorem 1 (Akra-Bazzi, strong form). Suppose that: is defined

More information

Data Structure Lecture#4: Mathematical Preliminaries U Kang Seoul National University

Data Structure Lecture#4: Mathematical Preliminaries U Kang Seoul National University Data Structure Lecture#4: Mathematical Preliminaries U Kang Seoul National University U Kang 1 In This Lecture Set Concepts and Notation Relation Logarithm and Summations Recurrence Relations Recursion

More information

Recursion. Algorithms and Data Structures. (c) Marcin Sydow. Introduction. Linear 2nd-order Equations. Important 3 Cases. Quicksort Average Complexity

Recursion. Algorithms and Data Structures. (c) Marcin Sydow. Introduction. Linear 2nd-order Equations. Important 3 Cases. Quicksort Average Complexity Recursion Topics covered by this lecture: Recursion: Fibonacci numbers, Hanoi Towers,... cases of recursive equations (with proofs) QuickSort (Proof) Recursion e.g.: n! = (n 1)!n Mathematics: recurrent

More information

12 Sequences and Recurrences

12 Sequences and Recurrences 12 Sequences and Recurrences A sequence is just what you think it is. It is often given by a formula known as a recurrence equation. 12.1 Arithmetic and Geometric Progressions An arithmetic progression

More information

Recursion. Computational complexity

Recursion. Computational complexity List. Babes-Bolyai University arthur@cs.ubbcluj.ro Overview List 1 2 List Second Laboratory Test List Will take place week 12, during the laboratory You will receive one problem statement, from what was

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Recurrence Relations and Recursion: MATH 180

Recurrence Relations and Recursion: MATH 180 Recurrence Relations and Recursion: MATH 180 1: Recursively Defined Sequences Example 1: The sequence a 1,a 2,a 3,... can be defined recursively as follows: (1) For all integers k 2, a k = a k 1 + 1 (2)

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Sequences Copyright Cengage Learning. All rights reserved. Objectives List the terms of a sequence. Determine whether a sequence converges

More information

Recursion. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007

Recursion. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Fall 2007 1 / 47 Computer Science & Engineering 235 to Discrete Mathematics Sections 7.1-7.2 of Rosen Recursive Algorithms 2 / 47 A recursive

More information

Page references correspond to locations of Extra Examples icons in the textbook.

Page references correspond to locations of Extra Examples icons in the textbook. Rosen, Discrete Mathematics and Its Applications, 7th edition Extra Examples Section 8. Recurrence Relations Page references correspond to locations of Extra Examples icons in the textbook. p.50, icon

More information

MI 4 Mathematical Induction Name. Mathematical Induction

MI 4 Mathematical Induction Name. Mathematical Induction Mathematical Induction It turns out that the most efficient solution to the Towers of Hanoi problem with n disks takes n 1 moves. If this isn t the formula you determined, make sure to check your data

More information

17 Advancement Operator Equations

17 Advancement Operator Equations November 14, 2017 17 Advancement Operator Equations William T. Trotter trotter@math.gatech.edu Review of Recurrence Equations (1) Problem Let r(n) denote the number of regions determined by n lines that

More information

CS 5114: Theory of Algorithms. Tractable Problems. Tractable Problems (cont) Decision Problems. Clifford A. Shaffer. Spring 2014

CS 5114: Theory of Algorithms. Tractable Problems. Tractable Problems (cont) Decision Problems. Clifford A. Shaffer. Spring 2014 Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2014 by Clifford A. Shaffer : Theory of Algorithms Title page : Theory of Algorithms Clifford A. Shaffer Spring 2014 Clifford

More information

MATH 3012 N Solutions to Review for Midterm 2

MATH 3012 N Solutions to Review for Midterm 2 MATH 301 N Solutions to Review for Midterm March 7, 017 1. In how many ways can a n rectangular checkerboard be tiled using 1 and pieces? Find a closed formula. If t n is the number of ways to tile the

More information

Sums. ITT9131 Konkreetne Matemaatika

Sums. ITT9131 Konkreetne Matemaatika Sums ITT9131 Konkreetne Matemaatika Chapter Two Notation Sums and Recurrences Manipulation of Sums Multiple Sums General Methods Finite and Innite Calculus Innite Sums Contents 1 Sequences 2 Notations

More information

Algorithms. Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY. Algorihms, A.Yazici, Fall 2007 CEng 315

Algorithms. Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY. Algorihms, A.Yazici, Fall 2007 CEng 315 Algorithms Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY Algorihms, A.Yazici, Fall 2007 CEng 315 1 Design and Analysis of Algorithms Aspects of studying algorithms:

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES A sequence is an ordered list of numbers. SEQUENCES AND SERIES Note, in this context, ordered does not mean that the numbers in the list are increasing or decreasing. Instead it means that there is a first

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

Asymptotic Algorithm Analysis & Sorting

Asymptotic Algorithm Analysis & Sorting Asymptotic Algorithm Analysis & Sorting (Version of 5th March 2010) (Based on original slides by John Hamer and Yves Deville) We can analyse an algorithm without needing to run it, and in so doing we can

More information

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes?

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes? 1 Section 4.1 Mathematical Induction Consider an infinite row of dominoes, labeled by 1,, 3,, where each domino is standing up. What should one do to knock over all dominoes? Principle of Mathematical

More information

Algorithms CMSC The Method of Reverse Inequalities: Evaluation of Recurrent Inequalities

Algorithms CMSC The Method of Reverse Inequalities: Evaluation of Recurrent Inequalities Algorithms CMSC 37000 The Method of Reverse Inequalities: Evaluation of Recurrent Inequalities László Babai Updated 1-19-2014 In this handout, we discuss a typical situation in the analysis of algorithms:

More information

Administrivia. COMP9020 Lecture 7 Session 2, 2017 Induction and Recursion. Lecture 6 recap. Lecture 6 recap

Administrivia. COMP9020 Lecture 7 Session 2, 2017 Induction and Recursion. Lecture 6 recap. Lecture 6 recap Administrivia COMP9020 Lecture 7 Session 2, 2017 Induction and Recursion Guidelines for good mathematical writing Assignment 1 Solutions now available; marks available soon Assignment 2 available on Saturday,

More information

Electrical Engineering and Computer Science Department The University of Toledo Toledo, OH 43606

Electrical Engineering and Computer Science Department The University of Toledo Toledo, OH 43606 Gursel Serpen and David L. Livingston Electrical Engineering and Computer Science Department The University of Toledo Toledo, OH 43606 ANNIE 98 PRESENTATION THE RESEARCH WORK A higher-order single-layer

More information

Counting Palindromic Binary Strings Without r-runs of Ones

Counting Palindromic Binary Strings Without r-runs of Ones 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 16 (013), Article 13.8.7 Counting Palindromic Binary Strings Without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University

More information

One Pile Nim with Arbitrary Move Function

One Pile Nim with Arbitrary Move Function One Pile Nim with Arbitrary Move Function by Arthur Holshouser and Harold Reiter Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA, 28208 Harold Reiter Department of Mathematics UNC Charlotte Charlotte,

More information

MATH 3012 N Homework Chapter 9

MATH 3012 N Homework Chapter 9 MATH 01 N Homework Chapter 9 February, 017 The recurrence r n+ = r n+1 + r n can be expressed with advancement operators as A A )r n = 0 The quadratic can then be factored using the quadratic formula,

More information

CS 4104 Data and Algorithm Analysis. Recurrence Relations. Modeling Recursive Function Cost. Solving Recurrences. Clifford A. Shaffer.

CS 4104 Data and Algorithm Analysis. Recurrence Relations. Modeling Recursive Function Cost. Solving Recurrences. Clifford A. Shaffer. Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2010,2017 by Clifford A. Shaffer Data and Algorithm Analysis Title page Data and Algorithm Analysis Clifford A. Shaffer Spring

More information

CS483 Design and Analysis of Algorithms

CS483 Design and Analysis of Algorithms CS483 Design and Analysis of Algorithms Chapter 2 Divide and Conquer Algorithms Instructor: Fei Li lifei@cs.gmu.edu with subject: CS483 Office hours: Room 5326, Engineering Building, Thursday 4:30pm -

More information

Topics in Algorithms. 1 Generation of Basic Combinatorial Objects. Exercises. 1.1 Generation of Subsets. 1. Consider the sum:

Topics in Algorithms. 1 Generation of Basic Combinatorial Objects. Exercises. 1.1 Generation of Subsets. 1. Consider the sum: Topics in Algorithms Exercises 1 Generation of Basic Combinatorial Objects 1.1 Generation of Subsets 1. Consider the sum: (ε 1,...,ε n) {0,1} n f(ε 1,..., ε n ) (a) Show that it may be calculated in O(n)

More information