V Envelope wave functions

Size: px
Start display at page:

Download "V Envelope wave functions"

Transcription

1 V Envlop wav funtions 5. atoriation of Bloh stat W onsidr htrountion of two matrials A and B. Th disussion applis as suh also for quantum wll strutur in whih A is th arrir and B th wll matrial. To mak things simpl w assum dirt gap smiondutor matrials. A on partil stat in matrial A an alwas writtn as ) r = Â f ) r u ) r m m A m A k C) whr k = for dirt gap matrial. As long as th sum is takn ovr omplt st of atomi-stats C) rmains an xat solution of wav quation A) - s th disussion of k p mthod. n matrial B w hav ) r = Â f ) r u ) r m m B m B k.. C) W will now onsidr th total wav funtion xtnding trough th htrountion. This will oviousl impl som spifi onditions to AB, fulfilld th position dpndnt wight fators f m to alld nvlop wav funtions. W will mak a vr spial assumption that th atomi parts of th total wav funtions ar idntial i.. w st k = ) u m A = um B C) n spit of ing idntial th wav funtions u diffrnt ignvalus., u ar assoiatd with m A m B 8

2 n th following w first mak a tmporar ngltd all spin-dpndnt trms. Th ro-ordr atomi amiltonian = k = ) is thrfor idntial with th total amiltonian of th total wav funtion). Th atomi parts ar thn solutions of p m V A u m A m A u m A + ) rp ) r = ) r p m V B u m B m B u m B m B u m A + ) rp ) r = ) r = ) r. C) Equations C) an fulfilld simultanousl onl if V - V = - i.. if th potntials ar idntial in shap ut diffr a onstant fator. A B m A m B ot that V AB, ar priodi potntials assoiatd with th atomi stats. Th do not inlud an slowl varing on unit ll sal) potntials indud for instan onfind arrirs. n th following w will driv a wav quation for th nvlop funtions AB, f m in th as of a W. Sin th atomi stats in C) ar ortonormal th ontinuit of th wav funtion aross th intrfas at = and = a of th W rquirs that 9

3 f m A r, ) = f r, ) f r, a) = f r, a). m B m A m B r r is th omponnt of th position vtor in th W plan and a th width of th W. Th priodi oundar ondition prpndiular to th W plan). givn is no mor valid in th - dirtion Thrfor th nvlop wav funtions ar f r, ) = xp ik rg m AB ), C4) S m AB,, whr k is th omponnt of th wav vtor in th W plan. S is th ara of th sampl rgion in th W plan. B using th stp funtions th atomi as wll as total) amiltonian an writtn in th form p = + m V A) r Y A + V B) r Y B, C5) whr Y ) =, Y ) = ; Œ, a A B a f and YA) =, YB) = ; œa, af. Using amiltonian C5) w an rwrit Eqs. C) C6) u ) r = Y + Y u ) r wll is loatd in l l A A l B B l Œa, af; A = arrir matrial, B = wll matrial) Comining Eqs. C and C4, th total planar Bloh stat is thn givn g l. C7) l, ) r = xp ik r  l AB ) u S 4

4 5. Condution and W first onsidr th singl unoupld ondution and. n this as thr is onl on trm l = in th sum of Eq. C7). Thwavquationis ) r = ) r. C8) n th arrir w hav: p + m V A) r P ) r = ) r C9) nsrting th Bloh stat p m V r A i A ) + ) P xp + k r) ) u r) S i A ) = ) r xp + k r) ) u) r S C) W start from th kinti nrg trm p p p = + m m m. Th planar omponnt of linar momntum: g ) ) A A p xp + ik r ) ) u r) = k xp + ik r ) ) u r) + fi ) A xp + ik r ) ) p u r) A ) A ) p xp + ik r ) ) u ) r = k xp + ik r ) ) u ) r + A ) g C) k xp + ik r ) ) p u r) + A ) xp + ik r ) ) p u r) g C) 4

5 -omponnt of linar momntum: g A ) A ) p u xp + ik r ) ) u r) = xp + ik r ) p ) u r) u + fi A ) xp + ik r ) ) p u r) u A ) A ) A ) g p xp + ik r ) ) u r) = xp + ik r ) p ) u r) + xp + ik r ) p ) p u r) + A ) xp + ik r ) ) p u r) n th wll th kinti nrg trm is idntial xpt A has to rplad B. g C) C4) ow multipl oth sids of wav quation C8) from lft S u * r)xp - i k r) * AB, ) ) and intgrat ovr th hol rstal. Th suprsript A,B) indiats that in th intgration ovr th rstal volum on should us nvlop funtion A in th arrirs and B in th wll. W onsidr th lft hand sid of th wav quation first. rom th planar kinti nrg trm w hav S m u )xp r -ik r ) ) p xp + ik r ) ) u ) r d r = * * AB, ) AB, ) All spa 4

6 k Sm k Sm Sm Sm * * AB, ) AB, ) All spa u r)xp -ik r ) ) xp + ik r ) ) u r) d r = * * AB, ) r AB, ) All spa u ) ) ) u ) r d r+ * * AB, ) AB, ) All spa * * u ) r AB, ) AB, ) ) ) ) r All spa u ) r ) ) k p u ) r d r + p u d r C5) W valuat th intgrals assuming that th nvlop funtion is slowl varing on unit ll sal: k Sm * * AB, ) r AB, ) All spa u ) ) ) u ) r d r = k Sm  i all lls i * AB, ) i AB, ) * i r W ) ) u ) u r) d r C6) W assum that th atomi Bloh stats ar normalid as follows * * un) r um) r d r = un) r um) r d r =d nm, C7) W W all spa ll whr W is th volum of th rstal and W volum of a unit ll. Using Eq. C7) th rhs of Eq. C6) an writtn as k k AB i AB *, ), ) * * i u u d r AB, )  =  i AB, ) ) ) ) r ) r ) i ) Wi Sm Sm i all lls W i i all lls 4

7 C8) W us again th fat that th nvlop funtion is slowl varing on unit ll sal and onvrt th sum ak into an intgral: k k AB i AB Â *, ) ), ) i ) W i = * AB, ) i) AB, ) i ) d r Sm Sm i all lls all spa C9) Th nvlop funtions do not dpnd on varial r. Thrfor th intgration ovr r givs onl th ara S of th W: k k AB i AB *, ) ), ) i ) d r = Sm Sm S * AB, ) i) AB, ) i ) d ; C) all spa whr th S anl. all spa A similar produr for th othr trms in th planar kinti nrg givs S m * * AB, ) AB, ) All spa u ) r ) ) k p u ) r d r = m * AB, ) AB, ) * All spa ll ) ) d k u ) r p u ) r d r C) and 44

8 Sm * * AB, ) r AB, ) All spa u ) ) ) p u ) r d r = m * AB, ) AB, ) * All spa ll ) ) d u ) r p u ) r d r C) or th omponnt of th kinti nrg w hav Sm Sm Sm Sm All spa All spa All spa All spa * * AB, ) AB, ) u )xp r -ik r ) ) p xp + ik r ) ) u ) r d r = * * AB, ) AB, ) r u ) ) p ) u ) r d r+ * * AB, ) AB, ) r u ) ) p ) p u ) r d r+ u g * *, ), ) r AB AB ) ) ) p u ) r d r C) Whih givs in analog to - Sm m m m * * AB, ) AB, ) * AB, ) AB, ) All spa * AB, ) AB, ) * r All spa ll All spa u )xp r -ik r ) ) p xp + ik r ) ) u ) r d r = ) p ) d+ ) p ) d u ) p u ) r d r + * AB, ) AB, ) * ) ) d u ) r pu ) r dr All spa g ll Potntial nrg matrix lmnt is givn C4) 45

9 Sm Sm * * AB, ) AB, AB, ) All spa u r)xp -ik r ) ) V r)xp + ik r ) ) u r) d r = * * AB, ) AB, AB, ) All spa u ) r ) V ) r ) u ) r d r C5) W an omin this with th matrix lmnt C) and th last trm in Eq. C4) to giv : * * AB, ) AB, AB, ) All spa u ) r ) V ) r ) u ) r d r + m m All spa * * AB, ) AB, ) u ) r ) ) p u ) r d r + * * AB, ) AB, ) All spa u ) r ) ) p u ) r d r = * AB, ) AB, ) * ) ) u) r S m p + p + V A, B) r u ) r d r S All spa * AB, ) AB, ) * r AB, ) All spa ) ) u ) u ) r d r = AB, ) * AB, ) AB, ) * ) ) d u) r u) r d r = W All spa A, B) *, ) AB, ) AB All spa ) ) d ll Th right hand sid of C8) is givn S * * AB, ) AB, ) All spa * AB, ) AB, ) ) ) d All spa = P C6) u r)xp -ik r ) ) xp + ik r ) ) u r) d r = C7) 46

10 inall w ollt th potntial and kinti nrg trms. W us th following notation: l pm = ul * ) r pul) r d r. C8) W ll Th wav quation is givn *, ) A A B k i Y YB AB m m m m p, ) k p - P d = AB Allspa C9) * AB, ) AB, ) Allspa This has th standard form an ignvalu prolm d - =, C) whr k k i =- + V m m m m p ) p. C) n th amiltonian C) w hav writtn V)= A YA + B YB. C) This is th msosopi potntial rsulting from th and disontinuit. Th diagonal dipol matrix lmnts ar ro and C) rdus to k =- + V ) +. C) m m 47

11 5. Coupld ands and nvlop wav funtions W now onsidr 8 strongl oupld ands and som distant wakl oupld ands. W modif th prvious tratmnt for ulk -V smiondutor asd on simultanous us of onfiguration intration and prturation thor mthods to inlud nvlop funtions instad of position indpndnt onstants l strongl oupld ands ) and n distant ands). W now assum that th priodi amiltonian inluds also th spin-orit intration p m V r = k = ) = + AB, ) + s VAB, p 4m h. D) To mak th notations mor ompat w dnot th sum of th priodi amiltonian and spin-orit intration S VAB, = VAB, ) r + VAB, 4m s h p D) With this notation w an writ th quations C) as p m V A s u m A m A u m A + ) rp ) r = ) r p m V B S u m B m B u m B m B u m A + ) rp ) r = ) r = ) r. D) Equations C) ar again fulfilld simultanousl onl if V - V = - i.. if th potntials ar idntial in shap ut diffr a onstant fator. A S B S m A m B Th atomi Bloh stats u. m AB, m ) r u ) r ar now qual to thos listd in Tal n analog to singl and as th planar Bloh stat fulfills now th ignvalu quation 48

12 p m V S r AB i AB AB + P l ul u S +, ),  +, ) ) xp k r ) ) ) r Ân ) n ) r l AB, ) AB, ) = ) r xp + ik r) Âl ) ul ) r + Ân ) un) r S D4) whr th sums ovr strongl oupld and distant ands ar writtn sparatl. l n n W now driv a oupld st of ignvalu quations whih ar similar to Eqs. A). ow multipl oth sids of wav quation D4) from lft S u m * r)xp - i k r) * m AB, ) ) D5) and intgrat ovr th hol rstal. r m is on of th strongl oupld stats and as aov th suprsript A,B) indiats that in th intgration ovr th rstal volum on should us nvlop funtion A in th arrirs and B in th wll. ollowing th sam stps as in singl-and as w otain  l R S T k i + Y + - -d P m l m m + k m - p m mp l m A A m B AB, ) Y B ml l k i +  m p n - n m m mp n R S T U P V W AB, ) n Corrspondingl multipling from lft S u m )xp r - i k r) m ) whr m is on of th distant ands w hav = * * AB, ) U P V W D6) 49

13  n  l R S T R S T k i + Y + + -d P m n mp n m m + k m - p m A B AB, ) ny A n B mn n k m i m p l - m m p l U P V W AB, ) l = D7) U P V W + B omparing D6-7) with Eq. A of Bastard it an sn that th matrix lmnts of oprator W in A ar rplad and mw l k i Æ+ m l - m m mp l p mπl D8a) mw l k Æ + m= l. D8) m m f w rdfin W rplaing k Æ- i, whr th diffrntial oprats on th nvlop wav funtions onl w an rwrit Eqs. D6-7) in th sam form as A) ut with th offiints l,n rplad with th nvlop funtions AB, ) l, n A B AB n Y A + n Y B - d mn + mwnn mw l  P A B AB, ) AB, ) m A m B l  Y + Y - d lm + mw l +  mwn n = l n, ) AB, )  + l = n l D9a) D9) whr w hav writtn W instad of W to indiat that th formr also inluds a diffrntial opration on nvlop funtions. ow w an follow th sam argumnts that wr usd for ulk smiondutor. Sin th l ands ar onl wakl oupld with n ands w hav AB, ) AB, ) l n ) >> ). D) 5

14 A B m A m B Thn th Eq. D9) givs w an assum Y + Y - >> mwn aus th nrgis m ar dfinition far largr than whihisassumdto los to th and dg of th l stats):  mwl l AB, ) AB, ) m ª+ A B l -ny A -ny B D) W insrt this ak in Eq. D9a) R S T n n m A A m B AB Y YB d lm mw l mw W l  + - +, ) +  A B l = D) l n -ny A -ny B whih aftr som rarrangmnt givs R S T n n m A A m B AB  Y + YB - d lm + mw l + mw  A B l n n Y A n Y Wl, ) = l - - B n analog to A dfin U V W U V W D) ~ n n W = W + W - Y - Y Wl A B n n A n B D4) Aftr this dfinition th drivation of th ulk uttingr-kohn formalism an rpatd without an modifiations, xpt that in all matrix lmnts th - omponnt of wav vtor has to rplad k Æ- i D5) An important fatur of th oupld quations is th position dpndn of th fftiv mass and th uttingr paramtrs. Th origin of position dpndn an sn as follows. Considr th fator 5

15 ~ n n W - W = mwâ - Y - Y Wl A B n n A n B D6) in Eq. D). n th nondiagonal matrix lmnts w an us Eq. D8a). W dfin m = a, ml m  mp a n n p l A B -n Y A -n Y B n D7) whr is th avrag nrg of th strongl oupld ands - s th ulk as. This givs ~ W W i - = - k + k +  a a a a ml  a, = x, a = x, k k a a ml ml ml D8) Sin th ondution and fftiv mass and th uttingr paramtrs ar xprssd in trms of quantitis Eq. D7) it follows from D8) that th diffrntial oprators must applid also on ths paramtrs. or th ondution and th diagonaliation of th 8 and amiltonian rplas th prvious nvlop wav quation k AB, V AB, ) D9),, m m AB AB = whr w now hav position dpndnt fftiv mass instad of th ar ltron mass. or th W disussd hr th rsult for 4x4 sumatrix dsriing th and ands is givn 5

16 hh - * lh - * lh * * hh whr P + hh x p = g + g ) k + k )- - ) V ) m g g P + lh x p = g - g ) k + k )- + ) V ) m g g k ) =+ i kx + iki + m g g d k ) = g kx -k)-ikxk. m K D) ot that in driving wav quation for nvlop funtions w hav not assumd slow variation of and dg on latti ll sal. t is oviousl nough to assum that th atomi Bloh stats ar unhangd aross th rstal and that thr is onl a finit numr of htrountions in th sampl. Thrfor w an appl our rsults also for W s, whr th and dg modifiation is not smooth ut arupt and taks pla within on monolar. 5

17 V Appliations of nvlop wav funtions 6. Basis st transformations and axial approximation Two diffrnt asis sts, whih ar rlatd a unitar transformation ar gnrall usd in th disussion of th Kohn-uttingr formalism. Both ths asis sts ar slightl diffrnt from thos usd Bastard). n this stion all quations in ltron pitur valn and fftiv mass is ngativ) Dfin th asis st split-off and ngltd),,-,,- g X + iy A 6 i 6 i X - iy ga+ Z B X + iygb- Z A X g - iy B E) Th orrsponding uttingr-kohn ulk amiltonian is givn hh * lh - * lh - * * hh 54

18 E) whr hh =- g - g gk + kx + kg + g g E) m lh =- g + g gk + kx + kg -g g E4) m x x E5) k ) =- g k -k -ig k k m d xi g k ) = m k + ik k g. E6) Th uttingr paramtrs g, g, g hav n dfind prviousl. Basis st is dfind, g X + iy A ga,- - X - iy + Z 6 B E7), 6 X + iy gb- Z A,- - - B X iy g 55

19 Th nw amiltonian is givn ' = A = G - i -i J Th matrix ' is thn givn i ' = Aiii A ~ ~ AA whr E8) E9) Aordingl, diagonal matrix lmnts hh nondiagonal matrix lmnts on otains and lh ar unhangd. or th Æ - Æ - Æ -i * * * * Æ i. E) As a final rsult amiltonian an writtn as hh ' * lh - ' * lh -' * ' * hh E) n E th diagonal trms ar givn E and E4 ut th nondiagonal trms om 56

20 k ) = g k -k -ig k k m x x d i g k ) = m k x - ik g k. 6. uantum wll or quantum wll sustitution asis st E7) lads to a ral amiltonian whn th k Æ-i is mad in matrix lmnts. Adding also th onfinmnt potntial V diagonal trms This givs P + k k V g g g g g g g g g P + ) =- g - g g k + g + g g k - + V m g g g ) hh x p = m lh x p p )to th and for th nondiagonal lmnts k ) = kx + - kx + m g g g g m k k k ) = xg - - g g Th disadvantag of this hoi of oordinat sstm is that th and stats ar oupld vn at G point. Th doupling taks pla onl if th -axis is takn orthogonal to th W. P 57

21 plan. f ours th hoi of oordinat sstm dos not modif th planar fftiv masss or an othr masural phsial proprt) at th and dg. 6. uantum wir or quantum wir th rplamnt k Æ- i x x =, givs = g - g + -k g + V g m x P + hh p g g P ) E) g g g k - V g g g P ) E) k x x k + g g P E4) k g + m x E5) = m x lh p ' k ) =- + m ' k ) =- + and for th omplx onugat lmnts ' * k ) =- g + k m x - g x k P E6) ' * k ) =- -k g + m x g. E7) g + g Th axial approximation implis stting g, g Æ in offiints K whihthnom and ' k ) =- g + g + m K x k K E8) 58

22 ' * k ) =- g + g - m K x k K. E9) 59

23 6.4 uttingr-kohn amiltonian in axiall smmtri D Th D uttingr-kohn amiltonian in Cartsian oordinat sstm is hh ' * lh - ' * lh -' * ' * hh whr aftr making th rplamnt k w hav hh lh Æ-i ; k Æ-i ; k Æ-i x x Vp r g g g g g g P,) ) i - g g x P ) g i. m x 4) = Vp r m g g g g g g x P +,) ) = m x '=- - m x '=- - uttingr paramtrs ar assumd to position indpndnt in th following disussion) or th omplx onugats w hav 6

24 ' * =- g - m x + ig ' * =- g + i m x Th axial approximation implis g, g Æ thn om '=- m ' * =- m g + g - i K x g + g + i K x x P 5). 6) g + g K in offiints whih 7). 8) uttingr-kohn amiltonian in lindr oordinats Dfin th oordinat transformation xæ rosf Æ rsinf Æ 9) Th partial drivativs ar givn f sinf Æos - x r r f f osf Æ sin +. ) r r f Æ Aordingl 6

25 and ± if ± i = ± x r i r, ) f + = + + ) x r r r r f ± if i ± i = - - x r r r r f ± r f r - r f P. ) Dfin R =- g + g m K 4) R =- m g. 5) Th non-diagonal trms ar givn -if i '= R - - r r r r - r r - f f r f P 6) and -if i '= R - r r f. 7) Th diagonal lmnts of amiltonian in lindr oordinats hh = Vp r m g g g g g g r r r r P + hh,)8) f 6

26 lh = Vplh r m g g g g g g r r r r P +,)9) f whr w hav assumd diffrnt onfinmnt + dformation potntials for hav- and light-hols. Th sparation of th angl dpndn Th total nvlop funtion is givn Y,) r = 4 r, ) r, ) r, ) r, ) P P = rom a) it follows that -im -) f -imf -im -) f -im -) f 4 r, ) r, ) r, ) r, ) P. a) =-im f =-m f =-im -) f =- m -) f ; ; f f 4 f f 4 =-im -) =- m -) =-im -) =- m -) 4 4. ) Th diagonal lmnts av-hols R S T hh = m g - g g + g g + g + - V r m r r r r P +,) P U V W phh ) 6

27 4 hh 4 = R ) S T g g m - 4 g - g + g g m r r r r ight-hols lh = R ) S T g g m - g + g + g g m r r r r lh = R ) S T g g m - g + g + g g m r r r r P V P +,) r U V W phh 4 P V P +,) r U V W plh P V P +,) r U V W ) plh Th oupld four and ignvalu prolm Equation hh -if i + R r r r r f r f r r f R -if i - r r f = E P P + ) Using Eq. B) to liminat th f dpndn hh m - ) m - ) + R r r r r r r r R r m - ) - r = E K P +. 4) 64

28 Equation hh + if i + R r r r r f r f r r f R -if 4 - r i 4 r f = E P P - 5) Using Eq. B) to liminat th f dpndn lh R r m - ) - r 4 4 E K m m R P - r r r r r r r = 6) Equation lh -if i 4 + R r r r r f r f r r f R + if i + r r f = Using Eq. B) to liminat th f dpndn lh E 4 4 m - ) m - ) 4 + R r r r r r r r R E r m + r = P P + 7) K P + 8) 65

29 Equation V hh 4 + if i + R r r r r f r f r r f R + if + r i r f = E 4 P P -. 9) Using Eq. ) to liminat th f dpndn hh m - ) m - ) 4 + R P - r r r r r r r. ) m - ) R + E 4 r r = 6.5 Strain indud D s - on-ro magnti fild as K n this stion w onsidr D s indud slf assmld strssors. Th strain indud onfinmnt fft is disussd in dtail in th nxt haptr. B making th minimal sustitution kα = pα + Aα th uttingr and Kohn amiltonian for Γ 8 -smmtri ands, an dsrid th fftiv amiltonian R S T k = + 5 k J k k J J m m J B + + K m q J γ B γ γ ) γ α, β α, β κ α n α βs d α β β αi α β n sn s α α ) whr k, k = k k + k k, α, β = xand,, J α ar th 4D matris rprsnting th omponnts of th angular momntum. Equation ) also ontains a st of dimnsionlss matrial paramtrs g, k and q. or a quantum onfind smiondutor th onfinmnt potntial is addd to Eq. ) and th omponnts of th linar momntum ar rplad p α = i. To xpliitl writ down Eq. ), w hoos a rprsntation for th J-matris α of th form U V W, 66

30 J J J x = = = - i i i -i - i - - P, P i P, ) nsrting Eq. ) into Eq. ), and using th spifi vtor potntial introdud aov, w otain th valn and amiltonian in th matrix form = + V hh hh + V lh lh + V - lh lh - + V hh hh P m BJ m P + k + qj B + / + / -/ - /, ) whr hh lh R S T R S T ω = ) x + ) ω γ γ γ γ ) m x ω = + ) + + x + ) ω γ γ γ γ ) m x U V W U V W 4a) 4) ω = γ i + x i ) 4) m x 67

31 ω =+ γ i + x m x x ω ω iγ + i x x x x + + K J ω d x. i 4d) Sin th nondiagonal trms of th Pikus-Bir strain amiltonian wr found to small, spiall for th fw lowst stats, th onfinmnt potntial was takn to diagonal. Th and hav diffrnt potntials Vhh, lh,) r = Vh ) + Vh,) r ± Vh,) r,whrth+ -) sign orrsponds to ). r V hw )is th hol and dg onfinmnt potntial, V,) r = a + + ) th hdrostati dformation potntial, and h v xx V, r ) = - + )/ th shar dformation potntial. Th smmtr axis of th h S v xx onfinmnt potntial is prpndiular to th W plan and paralll to th magnti fild. W S To furthr simplif th alulations w will assum th axial approximation in th uttingr paramtrs, making th rplamnt g, g Æ g + g / g. W also st th offiint q =, sin this paramtr is vr small for th prsnt D strutur. Sin th potntials ar assumd lindriall smmtri, th -omponnt of th total angular momntum, J = J +, is a onsrvd quantit. Th ignfuntions of Eq. ) ar thus also tot ignfuntions of J tot and th four omponnt nvlop funtion in lindrial oordinats must thn of th form Y r,, f) =,, rf) P,, rf),, rf) P = -,, rf) - i -J ) f Z,) r P,) r,) r, r) P = - - i -) f i -) f i + ) f - i + ) f -, r ), r ), r ), ) r P, 5) whr is th ignvalu of th -omponnt of th total angular momntum. Sin th wav funtion must uniqu undr a rotation of π around th -axis, must a positiv or ngativ half intgr ut not an intgr). Using Eqs. 5) and 6) w otain th following xprssion for th amiltonian 68

32 = B C hh + lh + + lh C B hh B C C B P JB P + κ + / + / / /, 6) whr th diagonal trms ar givn g g r hh ± ± = ) w - ± w g g g - Vhh r g m r r r r ) P +, ), P 7a) th diagonal trms g g r lh ± ± = ) w - ± w g g g - Vlh r g m r r r r ) P +, ) P and th off-diagonal trms 7) B ± + ± =± γ + ) + ω r m r r C ± = 7) K J + P + γ + γ ± + ± ) + ω r ) + ω r. 7d) m r r r r P 69

33 ot that in lindrial oordinats =, aus of th r-dpndnt volum r r r lmnt. Th ignvalu prolm aov lads to four ral oupld partial diffrntial quations whih hav to solvd numriall. 7

Lecture 14 (Oct. 30, 2017)

Lecture 14 (Oct. 30, 2017) Ltur 14 8.31 Quantum Thory I, Fall 017 69 Ltur 14 (Ot. 30, 017) 14.1 Magnti Monopols Last tim, w onsidrd a magnti fild with a magnti monopol onfiguration, and bgan to approah dsribing th quantum mhanis

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Classical Magnetic Dipole

Classical Magnetic Dipole Lctur 18 1 Classical Magntic Dipol In gnral, a particl of mass m and charg q (not ncssarily a point charg), w hav q g L m whr g is calld th gyromagntic ratio, which accounts for th ffcts of non-point charg

More information

Assignment 4 Biophys 4322/5322

Assignment 4 Biophys 4322/5322 Assignmnt 4 Biophys 4322/5322 Tylr Shndruk Fbruary 28, 202 Problm Phillips 7.3. Part a R-onsidr dimoglobin utilizing th anonial nsmbl maning rdriv Eq. 3 from Phillips Chaptr 7. For a anonial nsmbl p E

More information

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice.

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice. Utilizing xat and Mont Carlo mthods to invstigat proprtis of th Blum Capl Modl applid to a nin sit latti Nik Franios Writing various xat and Mont Carlo omputr algorithms in C languag, I usd th Blum Capl

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals AP Calulus BC Problm Drill 6: Indtrminat Forms, L Hopital s Rul, & Impropr Intrgals Qustion No. of Instrutions: () Rad th problm and answr hois arfully () Work th problms on papr as ndd () Pik th answr

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Lecture 16: Bipolar Junction Transistors. Large Signal Models.

Lecture 16: Bipolar Junction Transistors. Large Signal Models. Whits, EE 322 Ltur 16 Pag 1 of 8 Ltur 16: Bipolar Juntion Transistors. Larg Signal Modls. Transistors prform ky funtions in most ltroni iruits. This is rtainly tru in RF iruits, inluding th NorCal 40A.

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

Fr Carrir : Carrir onntrations as a funtion of tmpratur in intrinsi S/C s. o n = f(t) o p = f(t) W will find that: n = NN i v g W want to dtrmin how m

Fr Carrir : Carrir onntrations as a funtion of tmpratur in intrinsi S/C s. o n = f(t) o p = f(t) W will find that: n = NN i v g W want to dtrmin how m MS 0-C 40 Intrinsi Smiondutors Bill Knowlton Fr Carrir find n and p for intrinsi (undopd) S/Cs Plots: o g() o f() o n( g ) & p() Arrhnius Bhavior Fr Carrir : Carrir onntrations as a funtion of tmpratur

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District Logarithms Sondary Mathmatis Pag 6 Jordan Shool Distrit Unit Clustr 6 (F.LE. and F.BF.): Logarithms Clustr 6: Logarithms.6 For ponntial modls, prss as a arithm th solution to a and d ar numrs and th as

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Differential Equations

Differential Equations Prfac Hr ar m onlin nots for m diffrntial quations cours that I tach hr at Lamar Univrsit. Dspit th fact that ths ar m class nots, th should b accssibl to anon wanting to larn how to solv diffrntial quations

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

1 General boundary conditions in diffusion

1 General boundary conditions in diffusion Gnral boundary conditions in diffusion Πρόβλημα 4.8 : Δίνεται μονοδιάτατη πλάκα πάχους, που το ένα άκρο της κρατιέται ε θερμοκραία T t και το άλλο ε θερμοκραία T 2 t. Αν η αρχική θερμοκραία της πλάκας

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

Characteristic Equations and Boundary Conditions

Characteristic Equations and Boundary Conditions Charatriti Equation and Boundary Condition Øytin Li-Svndn, Viggo H. Hantn, & Andrw MMurry Novmbr 4, Introdution On of th mot diffiult problm on i onfrontd with In numrial modlling oftn li in tting th boundary

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Calculus Revision A2 Level

Calculus Revision A2 Level alculus Rvision A Lvl Tabl of drivativs a n sin cos tan d an sc n cos sin Fro AS * NB sc cos sc cos hain rul othrwis known as th function of a function or coposit rul. d d Eapl (i) (ii) Obtain th drivativ

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

The pn junction: 2 Current vs Voltage (IV) characteristics

The pn junction: 2 Current vs Voltage (IV) characteristics Th pn junction: Currnt vs Voltag (V) charactristics Considr a pn junction in quilibrium with no applid xtrnal voltag: o th V E F E F V p-typ Dpltion rgion n-typ Elctron movmnt across th junction: 1. n

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor M 11 of matrix B.

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor M 11 of matrix B. 7636S ADVANCED QUANTUM MECHANICS Solutions Spring. Considr a thr dimnsional kt spac. If a crtain st of orthonormal kts, say, and 3 ar usd as th bas kts, thn th oprators A and B ar rprsntd by a b A a and

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1). Eamn EDO. Givn th family of curvs y + C nd th particular orthogonal trajctory from th family of orthogonal trajctoris passing through point (0; ). Solution: In th rst plac, lt us calculat th di rntial

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved. 6.1 Intgration by Parts and Prsnt Valu Copyright Cngag Larning. All rights rsrvd. Warm-Up: Find f () 1. F() = ln(+1). F() = 3 3. F() =. F() = ln ( 1) 5. F() = 6. F() = - Objctivs, Day #1 Studnts will b

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Title: Vibrational structure of electronic transition

Title: Vibrational structure of electronic transition Titl: Vibrational structur of lctronic transition Pag- Th band spctrum sn in th Ultra-Violt (UV) and visibl (VIS) rgions of th lctromagntic spctrum can not intrprtd as vibrational and rotational spctrum

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

Problem 22: Journey to the Center of the Earth

Problem 22: Journey to the Center of the Earth Problm : Journy to th Cntr of th Earth Imagin that on drilld a hol with smooth sids straight through th ntr of th arth If th air is rmod from this tub (and it dosn t fill up with watr, liquid rok, or iron

More information

PHA 5127 Answers Homework 2 Fall 2001

PHA 5127 Answers Homework 2 Fall 2001 PH 5127 nswrs Homwork 2 Fall 2001 OK, bfor you rad th answrs, many of you spnt a lot of tim on this homwork. Plas, nxt tim if you hav qustions plas com talk/ask us. Thr is no nd to suffr (wll a littl suffring

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

Theoretical study of quantization of magnetic flux in a superconducting ring

Theoretical study of quantization of magnetic flux in a superconducting ring Thortial study of quantization of magnti flux in a supronduting ring DaHyon Kang Bagunmyon offi, Jinan 567-880, Kora -mail : samplmoon@hanmail.nt W rfind th onpts of ltri urrnt and fluxoid, and London

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Chapter 37 The Quantum Revolution

Chapter 37 The Quantum Revolution Chaptr 37 Th Quantum Rvolution Max Plank Th Nobl Priz in Physis 1918 "in rognition of th srvis h rndrd to th advanmnt of Physis by his disovry of nrgy quanta" Albrt Einstin Th Nobl Priz in Physis 191 "for

More information

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by: Elctromagntic Induction. Lorntz forc on moving charg Point charg moving at vlocity v, F qv B () For a sction of lctric currnt I in a thin wir dl is Idl, th forc is df Idl B () Elctromotiv forc f s any

More information

Physics 506 Winter 2006 Homework Assignment #12 Solutions. Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12

Physics 506 Winter 2006 Homework Assignment #12 Solutions. Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12 Physis 56 Wintr 6 Homwork Assignmnt # Solutions Ttbook problms: Ch. 4: 4., 4.4, 4.6, 4. 4. A partil of harg is moving in narly uniform nonrlativisti motion. For tims nar t = t, its vtorial position an

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

11: Echo formation and spatial encoding

11: Echo formation and spatial encoding 11: Echo formation and spatial ncoding 1. What maks th magntic rsonanc signal spatiall dpndnt? 2. How is th position of an R signal idntifid? Slic slction 3. What is cho formation and how is it achivd?

More information

TMMI37, vt2, Lecture 8; Introductory 2-dimensional elastostatics; cont.

TMMI37, vt2, Lecture 8; Introductory 2-dimensional elastostatics; cont. Lctr 8; ntrodctor 2-dimnsional lastostatics; cont. (modifid 23--3) ntrodctor 2-dimnsional lastostatics; cont. W will now contin or std of 2-dim. lastostatics, and focs on a somwhat mor adancd lmnt thn

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory Ch. 4 Molcular Raction Dynamics 1. Collision Thory Lctur 16. Diffusion-Controlld Raction 3. Th Matrial Balanc Equation 4. Transition Stat Thory: Th Eyring Equation 5. Transition Stat Thory: Thrmodynamic

More information

Why is a E&M nature of light not sufficient to explain experiments?

Why is a E&M nature of light not sufficient to explain experiments? 1 Th wird world of photons Why is a E&M natur of light not sufficint to xplain xprimnts? Do photons xist? Som quantum proprtis of photons 2 Black body radiation Stfan s law: Enrgy/ ara/ tim = Win s displacmnt

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Electron energy in crystal potential

Electron energy in crystal potential Elctron nry in crystal potntial r r p c mc mc mc Expand: r r r mc mc mc r r p c mc mc mc r pc m c mc p m m m m r E E m m m r p E m r nr nr whr: E V mc E m c Wav quation Hamiltonian: Tim-Indpndnt Schrodinr

More information

Electron Transport Properties for Argon and Argon-Hydrogen Plasmas

Electron Transport Properties for Argon and Argon-Hydrogen Plasmas Chaptr-5 Eltron Transport Proprtis for Argon and Argon-Hydrogn Plasmas Argon and argon-hydrogn plasmas hav important appliations in many thrmal plasma dvis (Patyron t al., 1992; Murphy, 2000; Crssault

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

Total Wave Function. e i. Wave function above sample is a plane wave: //incident beam

Total Wave Function. e i. Wave function above sample is a plane wave: //incident beam Total Wav Function Wav function abov sampl is a plan wav: r i kr //incidnt bam Wav function blow sampl is a collction of diffractd bams (and ): r i k r //transmittd bams k ks W nd to know th valus of th.

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations MATH 39, WEEK 5: Th Fundamntal Matrix, Non-Homognous Systms of Diffrntial Equations Fundamntal Matrics Considr th problm of dtrmining th particular solution for an nsmbl of initial conditions For instanc,

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

High Energy Physics. Lecture 5 The Passage of Particles through Matter

High Energy Physics. Lecture 5 The Passage of Particles through Matter High Enrgy Physics Lctur 5 Th Passag of Particls through Mattr 1 Introduction In prvious lcturs w hav sn xampls of tracks lft by chargd particls in passing through mattr. Such tracks provid som of th most

More information

ENGR 323 BHW 15 Van Bonn 1/7

ENGR 323 BHW 15 Van Bonn 1/7 ENGR 33 BHW 5 Van Bonn /7 4.4 In Eriss and 3 as wll as man othr situations on has th PDF o X and wishs th PDF o Yh. Assum that h is an invrtibl untion so that h an b solvd or to ild. Thn it an b shown

More information

Machine Detector Interface Workshop: ILC-SLAC, January 6-8, 2005.

Machine Detector Interface Workshop: ILC-SLAC, January 6-8, 2005. Intrnational Linar Collidr Machin Dtctor Intrfac Workshop: ILCSLAC, January 68, 2005. Prsntd by Brtt Parkr, BNLSMD Mssag: Tools ar now availabl to optimiz IR layout with compact suprconducting quadrupols

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

Uncertainty in non-linear long-term behavior and buckling of. shallow concrete-filled steel tubular arches

Uncertainty in non-linear long-term behavior and buckling of. shallow concrete-filled steel tubular arches CCM14 8-3 th July, Cambridg, England Unrtainty in non-linar long-trm bhavior and bukling of shallow onrt-filld stl tubular arhs *X. Shi¹, W. Gao¹, Y.L. Pi¹ 1 Shool of Civil and Environmnt Enginring, Th

More information

dx equation it is called a second order differential equation.

dx equation it is called a second order differential equation. TOPI Diffrntial quations Mthods of thir intgration oncption of diffrntial quations An quation which spcifis a rlationship btwn a function, its argumnt and its drivativs of th first, scond, tc ordr is calld

More information