Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011

Size: px
Start display at page:

Download "Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011"

Transcription

1 Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011

2 Semi-supervised approach which attempts to incorporate partial information from unlabeled data points

3 Semi-supervised approach which attempts to incorporate partial information from unlabeled data points Normally for SSL: a small portion of data is labeled, the rest is unlabeled

4 Semi-supervised approach which attempts to incorporate partial information from unlabeled data points Normally for SSL: a small portion of data is labeled, the rest is unlabeled In current approach: some negative information about unlabeled data is known, i.e. it is known to which category they don t belong to

5 Examples

6 Examples Human, sport, animal?

7 Examples Human, sport, animal?

8 Examples Human, sport, animal? Mountain, water, building?

9 Examples Human, sport, animal? Mountain, water, building?

10 Examples Human, sport, animal? Mountain, water, building? Instead of: We have:???? 0?

11 Some notation TL true labels, χ (T) = t NL negative labels, χ (N) = n UL unlabeled data, χ (U) = u C number of classes

12 A C Introduce two matrices, Y and A t t Y C n u n a l close to 0 a u close to 1 u

13 A C Introduce two matrices, Y and A t a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l t n Y C n u a l close to 0 a u close to 1 u

14 C A Introduce two matrices, Y and A t a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l Y t n u C n u a l a l a l a l a l a l a l a l a l a l a l a l close to 0 a u close to 1

15 A C Introduce two matrices, Y and A t a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l Y t n u C n u a l a l a u a l a u a l a u a u a l a u a l a l a u a u a l a l a l a u a l a u a u a l close to 0 a u close to 1

16 C A Introduce two matrices, Y and A t a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a l a u a l a u a l a u C n a u a l a u a l a l a u a u Y a l a l a l a u a l a u a u t u a u a u a u a u a u a u a u a u a u a u a u a u a u a u n a l close to 0 a u close to 1 u

17 For each node x i calculate edge weight w ij for its k neighbors

18 For each node x i calculate edge weight w ij for its k neighbors Then normalize

19 Algorithm output is F matrix Classification of x i is argmax j F ij

20 Algorithm output is F matrix Classification of x i is argmax j F ij Iterate, for step m+1, possibility of x i belonging to the j th class

21 F t n u C n C Y A a l a l a l a l a l a l a l t t a l a l a l a l a l a l a l a l a l a l a l a l a l a l n n a l a l a u a l a u a l a u a u a l a u a l a l a u a u a l a l a l a u a l a u a u u u a u a u a u a u a u a u a u a u a u a u a u a u a u a u

22 Iterate, for step m+1, possibility of x i belonging to the j th class I (j) is a diagonal matrix with A 1j, A 2j,..., A (t+n+u)j on its diagonal line

23 Iterate, for step m+1, possibility of x i belonging to the j th class I (j) is a diagonal matrix with A 1j, A 2j,..., A (t+n+u)j on its diagonal line Λ to be a diagonal matrix with d i on diagonal

24 Theorem 1. Update rule: F j 0 = Y j

25 Theorem 1. Update rule: F j 0 = Y j

26 Theorem 1. Update rule: F j 0 = Y j

27 Theorem 1. Update rule: F j 0 = Y j

28 Theorem 1. Update rule: F j 0 = Y j

29

30

31 spectral radius of P 1

32 spectral radius of P 1 I (j) elements 0 < a l, a u < 1

33 spectral radius of P 1 I (j) elements 0 < a l, a u < 1 spectral radius ρ(i (j) P) < 1

34 spectral radius of P 1 I (j) elements 0 < a l, a u < 1 spectral radius ρ(i (j) P) < 1

35 spectral radius of P 1 I (j) elements 0 < a l, a u < 1 spectral radius ρ(i (j) P) < 1

36 spectral radius of P 1 I (j) elements 0 < a l, a u < 1 spectral radius ρ(i (j) P) < 1

37 Theorem 2. is the solution to

38 Theorem 2. is the solution to minimize

39 Theorem 2. is the solution to minimize

40 Name # samples # features # classes Coil (image) x32 20 Umist (face) x28 20 USPS (digit) x16 10 Isolet Newsgroup Corel (image)

41 Algorithms: SVM supervised, uses only TL for training

42 Algorithms: SVM supervised, uses only TL for training LapRLS different forms of loss and smoothness functions, treat NL as UL

43 Algorithms: SVM supervised, uses only TL for training LapRLS different forms of loss and smoothness functions, treat NL as UL GRF doesn t use normalized weights, treat NL as UL

44 Algorithms: SVM supervised, uses only TL for training LapRLS different forms of loss and smoothness functions, treat NL as UL GRF doesn t use normalized weights, treat NL as UL Consistency - normalized weights, treat NL as UL

45 Algorithms: SVM supervised, uses only TL for training LapRLS different forms of loss and smoothness functions, treat NL as UL GRF doesn t use normalized weights, treat NL as UL Consistency - normalized weights, treat NL as UL LNP instead of weights uses local linear approximation coefficients, treat NL as UL

46 NL instances: x i

47 NL instances: x i x i

48 NL instances: x i x i x i

49 NL instances: x i TL instances: x i x i

50 NL instances: x i x i x i The more NL/point is given, the more certainty about the classification

51 Name # NL points # NL/point Coil (image) 10 5 Umist (face) 10 5 USPS (digit) 10 5 Isolet Newsgroup 50 2

52

53 USPS Umist Newsgroup Isolet

54

55

56 Four inputs: σ, k, al, au

57 Four inputs: σ, k, a l, a u τ (0, 1); d the average of all distances

58 Four inputs: σ, k, a l, a u τ (0, 1); d the average of all distances a l and a u by searching the grid {0.01, 0.02,..., 0.09} and {0.90, 0.91,..., 0.99}

59 Four inputs: σ, k, a l, a u τ (0, 1); d the average of all distances a l and a u by searching the grid {0.01, 0.02,..., 0.09} and {0.90, 0.91,..., 0.99} k -?

60 Ex: i for Isolet, τ = 10 (i 1) /10 for i = 1, 2,..., 9 USPS Umist Coil Isolet

61 z is a new point (unlabeled) z s label is defined by weighted labels of its neighbors

62 Time complexity is O((t + n + u) 2 D), where D is the dimensionality of the samples Space complexity is O((t + n + u) 2 )

63 Variable information incorporation of different type labels (NL vs. UL)

64 Variable information incorporation of different type labels (NL vs. UL) Too much of parameter tuning, i.e. σ, k, a l, a u

65 Variable information incorporation of different type labels (NL vs. UL) Too much of parameter tuning, i.e. σ, k, a l, a u Negative labeling defeats the purpose of SSL, i.e. annotating negative labels can be even more time consuming than annotating positive labels

66 Introduction to Semi-Supervised Learning. Xiaojin Zhu, Andrew B. Goldberg Semisupervised Learning Using Negative Labels. Chenping Hou, Feiping Nie, Fei Wang, Changshui Zhang, Yi Wu. IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 3, MARCH Humans Perform Semi-Supervised Classification Too. Xiaojin Zhu, Timothy Rogers, Ruichen Qian, Chuck Kalish. Twenty-Second AAAI Conference on Artificial Intelligence (AAAI-07) Unlabeled data: Now it helps, now it doesn t. Aarti Singh, Robert D. Nowak, Xiaojin Zhu. Advances in Neural Information Processing Systems (NIPS) Manifold Regularization: A Geometric Framework for Learning from Examples. Mikhail Belkin, Partha Niyogi, Vikas Sindhwani. 2004

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin Andrew B. Goldberg goldberg@cs.wisc.edu Department of Computer Sciences University of

More information

Semi-Supervised Learning by Multi-Manifold Separation

Semi-Supervised Learning by Multi-Manifold Separation Semi-Supervised Learning by Multi-Manifold Separation Xiaojin (Jerry) Zhu Department of Computer Sciences University of Wisconsin Madison Joint work with Andrew Goldberg, Zhiting Xu, Aarti Singh, and Rob

More information

Graphs, Geometry and Semi-supervised Learning

Graphs, Geometry and Semi-supervised Learning Graphs, Geometry and Semi-supervised Learning Mikhail Belkin The Ohio State University, Dept of Computer Science and Engineering and Dept of Statistics Collaborators: Partha Niyogi, Vikas Sindhwani In

More information

What is semi-supervised learning?

What is semi-supervised learning? What is semi-supervised learning? In many practical learning domains, there is a large supply of unlabeled data but limited labeled data, which can be expensive to generate text processing, video-indexing,

More information

Semi-Supervised Classification with Universum

Semi-Supervised Classification with Universum Semi-Supervised Classification with Universum Dan Zhang 1, Jingdong Wang 2, Fei Wang 3, Changshui Zhang 4 1,3,4 State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory

More information

A graph based approach to semi-supervised learning

A graph based approach to semi-supervised learning A graph based approach to semi-supervised learning 1 Feb 2011 Two papers M. Belkin, P. Niyogi, and V Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples.

More information

Seeing stars when there aren't many stars Graph-based semi-supervised learning for sentiment categorization

Seeing stars when there aren't many stars Graph-based semi-supervised learning for sentiment categorization Seeing stars when there aren't many stars Graph-based semi-supervised learning for sentiment categorization Andrew B. Goldberg, Xiaojin Jerry Zhu Computer Sciences Department University of Wisconsin-Madison

More information

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31 Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking Dengyong Zhou zhou@tuebingen.mpg.de Dept. Schölkopf, Max Planck Institute for Biological Cybernetics, Germany Learning from

More information

Analysis of Spectral Kernel Design based Semi-supervised Learning

Analysis of Spectral Kernel Design based Semi-supervised Learning Analysis of Spectral Kernel Design based Semi-supervised Learning Tong Zhang IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Rie Kubota Ando IBM T. J. Watson Research Center Yorktown Heights,

More information

Nonnegative Matrix Factorization Clustering on Multiple Manifolds

Nonnegative Matrix Factorization Clustering on Multiple Manifolds Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Nonnegative Matrix Factorization Clustering on Multiple Manifolds Bin Shen, Luo Si Department of Computer Science,

More information

Large-Scale Graph-Based Semi-Supervised Learning via Tree Laplacian Solver

Large-Scale Graph-Based Semi-Supervised Learning via Tree Laplacian Solver Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Large-Scale Graph-Based Semi-Supervised Learning via Tree Laplacian Solver Yan-Ming Zhang and Xu-Yao Zhang National Laboratory

More information

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter Classification Semi-supervised learning based on network Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS 249-2 2017 Winter Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions Xiaojin

More information

Manifold Regularization

Manifold Regularization Manifold Regularization Vikas Sindhwani Department of Computer Science University of Chicago Joint Work with Mikhail Belkin and Partha Niyogi TTI-C Talk September 14, 24 p.1 The Problem of Learning is

More information

Integrating Global and Local Structures: A Least Squares Framework for Dimensionality Reduction

Integrating Global and Local Structures: A Least Squares Framework for Dimensionality Reduction Integrating Global and Local Structures: A Least Squares Framework for Dimensionality Reduction Jianhui Chen, Jieping Ye Computer Science and Engineering Department Arizona State University {jianhui.chen,

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko Inria Lille - Nord Europe, France TA: Pierre Perrault Partially based on material by: Mikhail Belkin, Jerry Zhu, Olivier Chapelle, Branislav Kveton October 30, 2017

More information

Adaptive Affinity Matrix for Unsupervised Metric Learning

Adaptive Affinity Matrix for Unsupervised Metric Learning Adaptive Affinity Matrix for Unsupervised Metric Learning Yaoyi Li, Junxuan Chen, Yiru Zhao and Hongtao Lu Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering,

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Introduction Supervised learning: x r, y r R r=1 E.g.x r : image, y r : class labels Semi-supervised learning: x r, y r r=1 R, x u R+U u=r A set of unlabeled data, usually U >>

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

Query Rules Study on Active Semi-Supervised Learning using Particle Competition and Cooperation

Query Rules Study on Active Semi-Supervised Learning using Particle Competition and Cooperation The Brazilian Conference on Intelligent Systems (BRACIS) and Encontro Nacional de Inteligência Artificial e Computacional (ENIAC) Query Rules Study on Active Semi-Supervised Learning using Particle Competition

More information

Graph-Based Semi-Supervised Learning

Graph-Based Semi-Supervised Learning Graph-Based Semi-Supervised Learning Olivier Delalleau, Yoshua Bengio and Nicolas Le Roux Université de Montréal CIAR Workshop - April 26th, 2005 Graph-Based Semi-Supervised Learning Yoshua Bengio, Olivier

More information

Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically

Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically Yuan Fang Kevin Chen-Chuan Chang Hady W. Lauw University of Illinois at Urbana-Champaign, USA Advanced Digital Sciences

More information

Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT)

Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT) Semi-Supervised Learning in Gigantic Image Collections Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT) Gigantic Image Collections What does the world look like? High

More information

Unlabeled Data: Now It Helps, Now It Doesn t

Unlabeled Data: Now It Helps, Now It Doesn t institution-logo-filena A. Singh, R. D. Nowak, and X. Zhu. In NIPS, 2008. 1 Courant Institute, NYU April 21, 2015 Outline institution-logo-filena 1 Conflicting Views in Semi-supervised Learning The Cluster

More information

Coupled Dictionary Learning for Unsupervised Feature Selection

Coupled Dictionary Learning for Unsupervised Feature Selection Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Coupled Dictionary Learning for Unsupervised Feature Selection Pengfei Zhu 1, Qinghua Hu 1, Changqing Zhang 1, Wangmeng

More information

Online Manifold Regularization: A New Learning Setting and Empirical Study

Online Manifold Regularization: A New Learning Setting and Empirical Study Online Manifold Regularization: A New Learning Setting and Empirical Study Andrew B. Goldberg 1, Ming Li 2, Xiaojin Zhu 1 1 Computer Sciences, University of Wisconsin Madison, USA. {goldberg,jerryzhu}@cs.wisc.edu

More information

Learning with Consistency between Inductive Functions and Kernels

Learning with Consistency between Inductive Functions and Kernels Learning with Consistency between Inductive Functions and Kernels Haixuan Yang Irwin King Michael R. Lyu Department of Computer Science & Engineering The Chinese University of Hong Kong Shatin, N.T., Hong

More information

Graph Quality Judgement: A Large Margin Expedition

Graph Quality Judgement: A Large Margin Expedition Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) Graph Quality Judgement: A Large Margin Expedition Yu-Feng Li Shao-Bo Wang Zhi-Hua Zhou National Key

More information

Semi-Supervised Learning of Speech Sounds

Semi-Supervised Learning of Speech Sounds Aren Jansen Partha Niyogi Department of Computer Science Interspeech 2007 Objectives 1 Present a manifold learning algorithm based on locality preserving projections for semi-supervised phone classification

More information

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13 CSE 291. Assignment 3 Out: Wed May 23 Due: Wed Jun 13 3.1 Spectral clustering versus k-means Download the rings data set for this problem from the course web site. The data is stored in MATLAB format as

More information

Manifold Coarse Graining for Online Semi-supervised Learning

Manifold Coarse Graining for Online Semi-supervised Learning for Online Semi-supervised Learning Mehrdad Farajtabar, Amirreza Shaban, Hamid R. Rabiee, Mohammad H. Rohban Digital Media Lab, Department of Computer Engineering, Sharif University of Technology, Tehran,

More information

Semi-Supervised Learning

Semi-Supervised Learning Semi-Supervised Learning getting more for less in natural language processing and beyond Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning many human

More information

Improving Semi-Supervised Target Alignment via Label-Aware Base Kernels

Improving Semi-Supervised Target Alignment via Label-Aware Base Kernels Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Improving Semi-Supervised Target Alignment via Label-Aware Base Kernels Qiaojun Wang, Kai Zhang 2, Guofei Jiang 2, and Ivan Marsic

More information

Improved Local Coordinate Coding using Local Tangents

Improved Local Coordinate Coding using Local Tangents Improved Local Coordinate Coding using Local Tangents Kai Yu NEC Laboratories America, 10081 N. Wolfe Road, Cupertino, CA 95129 Tong Zhang Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854

More information

Multi-View Point Cloud Kernels for Semi-Supervised Learning

Multi-View Point Cloud Kernels for Semi-Supervised Learning Multi-View Point Cloud Kernels for Semi-Supervised Learning David S. Rosenberg, Vikas Sindhwani, Peter L. Bartlett, Partha Niyogi May 29, 2009 Scope In semi-supervised learning (SSL), we learn a predictive

More information

How to learn from very few examples?

How to learn from very few examples? How to learn from very few examples? Dengyong Zhou Department of Empirical Inference Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany Outline Introduction Part A

More information

Spectral Methods for Semi-supervised Manifold Learning

Spectral Methods for Semi-supervised Manifold Learning Spectral Methods for Semi-supervised Manifold Learning Zhenyue Zhang Department of Mathematics, Zhejiang University Hangzhou 7, China zyzhang@zju.edu.cn Hongyuan Zha and Min Zhang College of Computing,

More information

Back to the future: Radial Basis Function networks revisited

Back to the future: Radial Basis Function networks revisited Back to the future: Radial Basis Function networks revisited Qichao Que, Mikhail Belkin Department of Computer Science and Engineering Ohio State University Columbus, OH 4310 que, mbelkin@cse.ohio-state.edu

More information

Semi-supervised Dictionary Learning Based on Hilbert-Schmidt Independence Criterion

Semi-supervised Dictionary Learning Based on Hilbert-Schmidt Independence Criterion Semi-supervised ictionary Learning Based on Hilbert-Schmidt Independence Criterion Mehrdad J. Gangeh 1, Safaa M.A. Bedawi 2, Ali Ghodsi 3, and Fakhri Karray 2 1 epartments of Medical Biophysics, and Radiation

More information

Spectral Bandits for Smooth Graph Functions with Applications in Recommender Systems

Spectral Bandits for Smooth Graph Functions with Applications in Recommender Systems Spectral Bandits for Smooth Graph Functions with Applications in Recommender Systems Tomáš Kocák SequeL team INRIA Lille France Michal Valko SequeL team INRIA Lille France Rémi Munos SequeL team, INRIA

More information

Semi-Supervised Learning through Principal Directions Estimation

Semi-Supervised Learning through Principal Directions Estimation Semi-Supervised Learning through Principal Directions Estimation Olivier Chapelle, Bernhard Schölkopf, Jason Weston Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany {first.last}@tuebingen.mpg.de

More information

IFT LAPLACIAN APPLICATIONS. Mikhail Bessmeltsev

IFT LAPLACIAN APPLICATIONS.   Mikhail Bessmeltsev IFT 6112 09 LAPLACIAN APPLICATIONS http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/ Mikhail Bessmeltsev Rough Intuition http://pngimg.com/upload/hammer_png3886.png You can learn a lot about

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Deterministic Component Analysis Goal (Lecture): To present standard and modern Component Analysis (CA) techniques such as Principal

More information

Semi-Supervised Learning with Graphs. Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University

Semi-Supervised Learning with Graphs. Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University Semi-Supervised Learning with Graphs Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning classification classifiers need labeled data to train labeled data

More information

Justin Solomon MIT, Spring 2017

Justin Solomon MIT, Spring 2017 Justin Solomon MIT, Spring 2017 http://pngimg.com/upload/hammer_png3886.png You can learn a lot about a shape by hitting it (lightly) with a hammer! What can you learn about its shape from vibration frequencies

More information

Fast Nonnegative Matrix Factorization with Rank-one ADMM

Fast Nonnegative Matrix Factorization with Rank-one ADMM Fast Nonnegative Matrix Factorization with Rank-one Dongjin Song, David A. Meyer, Martin Renqiang Min, Department of ECE, UCSD, La Jolla, CA, 9093-0409 dosong@ucsd.edu Department of Mathematics, UCSD,

More information

A Local Non-Negative Pursuit Method for Intrinsic Manifold Structure Preservation

A Local Non-Negative Pursuit Method for Intrinsic Manifold Structure Preservation Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence A Local Non-Negative Pursuit Method for Intrinsic Manifold Structure Preservation Dongdong Chen and Jian Cheng Lv and Zhang Yi

More information

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS Akshay Gadde and Antonio Ortega Department of Electrical Engineering University of Southern California, Los Angeles Email: agadde@usc.edu,

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko INRIA Lille - Nord Europe, France Partially based on material by: Mikhail Belkin, Jerry Zhu, Olivier Chapelle, Branislav Kveton February 10, 2015 MVA 2014/2015 Previous

More information

Multi-view Laplacian Support Vector Machines

Multi-view Laplacian Support Vector Machines Multi-view Laplacian Support Vector Machines Shiliang Sun Department of Computer Science and Technology, East China Normal University, Shanghai 200241, China slsun@cs.ecnu.edu.cn Abstract. We propose a

More information

Graph-Laplacian PCA: Closed-form Solution and Robustness

Graph-Laplacian PCA: Closed-form Solution and Robustness 2013 IEEE Conference on Computer Vision and Pattern Recognition Graph-Laplacian PCA: Closed-form Solution and Robustness Bo Jiang a, Chris Ding b,a, Bin Luo a, Jin Tang a a School of Computer Science and

More information

Large Scale Semi-supervised Linear SVMs. University of Chicago

Large Scale Semi-supervised Linear SVMs. University of Chicago Large Scale Semi-supervised Linear SVMs Vikas Sindhwani and Sathiya Keerthi University of Chicago SIGIR 2006 Semi-supervised Learning (SSL) Motivation Setting Categorize x-billion documents into commercial/non-commercial.

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning

On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning Journal of Machine Learning Research 8 (2007) 489-57 Submitted 7/06; Revised 3/07; Published 7/07 On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning Rie Johnson IBM T.J.

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Introduction and Data Representation Mikhail Belkin & Partha Niyogi Department of Electrical Engieering University of Minnesota Mar 21, 2017 1/22 Outline Introduction 1 Introduction 2 3 4 Connections to

More information

of semi-supervised Gaussian process classifiers.

of semi-supervised Gaussian process classifiers. Semi-supervised Gaussian Process Classifiers Vikas Sindhwani Department of Computer Science University of Chicago Chicago, IL 665, USA vikass@cs.uchicago.edu Wei Chu CCLS Columbia University New York,

More information

SEMI-SUPERVISED classification, which estimates a decision

SEMI-SUPERVISED classification, which estimates a decision IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS Semi-Supervised Support Vector Machines with Tangent Space Intrinsic Manifold Regularization Shiliang Sun and Xijiong Xie Abstract Semi-supervised

More information

Semi-Supervised Learning with Graphs

Semi-Supervised Learning with Graphs Semi-Supervised Learning with Graphs Xiaojin (Jerry) Zhu LTI SCS CMU Thesis Committee John Lafferty (co-chair) Ronald Rosenfeld (co-chair) Zoubin Ghahramani Tommi Jaakkola 1 Semi-supervised Learning classifiers

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

An RKHS for Multi-View Learning and Manifold Co-Regularization

An RKHS for Multi-View Learning and Manifold Co-Regularization Vikas Sindhwani vsindhw@us.ibm.com Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA David S. Rosenberg drosen@stat.berkeley.edu Department of Statistics, University

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

Multi-Label Learning with Weak Label

Multi-Label Learning with Weak Label Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Multi-Label Learning with Weak Label Yu-Yin Sun Yin Zhang Zhi-Hua Zhou National Key Laboratory for Novel Software Technology

More information

Self-Tuning Semantic Image Segmentation

Self-Tuning Semantic Image Segmentation Self-Tuning Semantic Image Segmentation Sergey Milyaev 1,2, Olga Barinova 2 1 Voronezh State University sergey.milyaev@gmail.com 2 Lomonosov Moscow State University obarinova@graphics.cs.msu.su Abstract.

More information

Multiscale Wavelets on Trees, Graphs and High Dimensional Data

Multiscale Wavelets on Trees, Graphs and High Dimensional Data Multiscale Wavelets on Trees, Graphs and High Dimensional Data ICML 2010, Haifa Matan Gavish (Weizmann/Stanford) Boaz Nadler (Weizmann) Ronald Coifman (Yale) Boaz Nadler Ronald Coifman Motto... the relationships

More information

Parameter Free Large Margin Nearest Neighbor for Distance Metric Learning

Parameter Free Large Margin Nearest Neighbor for Distance Metric Learning Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) Parameter Free Large Margin Nearest Neighbor for Distance Metric Learning Kun Song, Feiping Nie, Junwei Han, Xuelong

More information

1 Graph Kernels by Spectral Transforms

1 Graph Kernels by Spectral Transforms Graph Kernels by Spectral Transforms Xiaojin Zhu Jaz Kandola John Lafferty Zoubin Ghahramani Many graph-based semi-supervised learning methods can be viewed as imposing smoothness conditions on the target

More information

Semi-Supervised Dictionary Learning via Structural Sparse Preserving

Semi-Supervised Dictionary Learning via Structural Sparse Preserving Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-6) Semi-Supervised Dictionary Learning via Structural Sparse Preserving Di Wang, Xiaoqin Zhang, Mingyu Fan and Xiuzi Ye College

More information

Efficient Iterative Semi-Supervised Classification on Manifold

Efficient Iterative Semi-Supervised Classification on Manifold Efficient Iterative Semi-Supervised Classification on Manifold Mehrdad Farajtabar, Hamid R. Rabiee, Amirreza Shaban, Ali Soltani-Farani Digital Media Lab, AICTC Research Center, Department of Computer

More information

Manifold Regularization

Manifold Regularization 9.520: Statistical Learning Theory and Applications arch 3rd, 200 anifold Regularization Lecturer: Lorenzo Rosasco Scribe: Hooyoung Chung Introduction In this lecture we introduce a class of learning algorithms,

More information

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Shunsuke Horii Waseda University s.horii@aoni.waseda.jp Abstract In this paper, we present a hierarchical model which

More information

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

One-class Label Propagation Using Local Cone Based Similarity

One-class Label Propagation Using Local Cone Based Similarity One-class Label Propagation Using Local Based Similarity Takumi Kobayashi and Nobuyuki Otsu Abstract In this paper, we propose a novel method of label propagation for one-class learning. For binary (positive/negative)

More information

Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically

Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically Yuan Fang Kevin Chen-Chuan Chang Hady W. Lauw University of Illinois at Urbana-Champaign, USA Advanced Digital Sciences

More information

Discrete vs. Continuous: Two Sides of Machine Learning

Discrete vs. Continuous: Two Sides of Machine Learning Discrete vs. Continuous: Two Sides of Machine Learning Dengyong Zhou Department of Empirical Inference Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany Oct. 18,

More information

Brief Introduction to Machine Learning

Brief Introduction to Machine Learning Brief Introduction to Machine Learning Yuh-Jye Lee Lab of Data Science and Machine Intelligence Dept. of Applied Math. at NCTU August 29, 2016 1 / 49 1 Introduction 2 Binary Classification 3 Support Vector

More information

Teaching Semi-Supervised Classifier via Generalized Distillation

Teaching Semi-Supervised Classifier via Generalized Distillation Teaching Semi-Supervised Classifier via Generalized Distillation Chen Gong,2, Xiaojun Chang 3, Meng Fang 4, Jian Yang,2 School of Computer Science and Engineering, Nanjing University of Science and Technology

More information

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Yi Zhang Machine Learning Department Carnegie Mellon University yizhang1@cs.cmu.edu Jeff Schneider The Robotics Institute

More information

Diffusion on a Tensor Product Graph for Semi-Supervised Learning and Interactive Image Segmentation

Diffusion on a Tensor Product Graph for Semi-Supervised Learning and Interactive Image Segmentation Diffusion on a Tensor Product Graph for Semi-Supervised Learning and Interactive Image Segmentation Xingwei Yang Department of Computer and Information Sciences Temple University Philadelphia, PA 19122,

More information

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views A Randomized Approach for Crowdsourcing in the Presence of Multiple Views Presenter: Yao Zhou joint work with: Jingrui He - 1 - Roadmap Motivation Proposed framework: M2VW Experimental results Conclusion

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

SINGLE-TASK AND MULTITASK SPARSE GAUSSIAN PROCESSES

SINGLE-TASK AND MULTITASK SPARSE GAUSSIAN PROCESSES SINGLE-TASK AND MULTITASK SPARSE GAUSSIAN PROCESSES JIANG ZHU, SHILIANG SUN Department of Computer Science and Technology, East China Normal University 500 Dongchuan Road, Shanghai 20024, P. R. China E-MAIL:

More information

Cluster Kernels for Semi-Supervised Learning

Cluster Kernels for Semi-Supervised Learning Cluster Kernels for Semi-Supervised Learning Olivier Chapelle, Jason Weston, Bernhard Scholkopf Max Planck Institute for Biological Cybernetics, 72076 Tiibingen, Germany {first. last} @tuebingen.mpg.de

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces Notes on the framework of Ando and Zhang (2005 Karl Stratos 1 Beyond learning good functions: learning good spaces 1.1 A single binary classification problem Let X denote the problem domain. Suppose we

More information

A BAYESIAN APPROACH FOR EXTREME LEARNING MACHINE-BASED SUBSPACE LEARNING. Alexandros Iosifidis and Moncef Gabbouj

A BAYESIAN APPROACH FOR EXTREME LEARNING MACHINE-BASED SUBSPACE LEARNING. Alexandros Iosifidis and Moncef Gabbouj A BAYESIAN APPROACH FOR EXTREME LEARNING MACHINE-BASED SUBSPACE LEARNING Alexandros Iosifidis and Moncef Gabbouj Department of Signal Processing, Tampere University of Technology, Finland {alexandros.iosifidis,moncef.gabbouj}@tut.fi

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Large Scale Semi-supervised Linear SVM with Stochastic Gradient Descent

Large Scale Semi-supervised Linear SVM with Stochastic Gradient Descent Journal of Computational Information Systems 9: 15 (2013) 6251 6258 Available at http://www.jofcis.com Large Scale Semi-supervised Linear SVM with Stochastic Gradient Descent Xin ZHOU, Conghui ZHU, Sheng

More information

When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification When Dictionary Learning Meets Classification Bufford, Teresa 1 Chen, Yuxin 2 Horning, Mitchell 3 Shee, Liberty 1 Mentor: Professor Yohann Tendero 1 UCLA 2 Dalhousie University 3 Harvey Mudd College August

More information

Node similarity and classification

Node similarity and classification Node similarity and classification Davide Mottin, Anton Tsitsulin HassoPlattner Institute Graph Mining course Winter Semester 2017 Acknowledgements Some part of this lecture is taken from: http://web.eecs.umich.edu/~dkoutra/tut/icdm14.html

More information

Probabilistic and Logistic Circuits: A New Synthesis of Logic and Machine Learning

Probabilistic and Logistic Circuits: A New Synthesis of Logic and Machine Learning Probabilistic and Logistic Circuits: A New Synthesis of Logic and Machine Learning Guy Van den Broeck KULeuven Symposium Dec 12, 2018 Outline Learning Adding knowledge to deep learning Logistic circuits

More information

Linear Discriminant Analysis Using Rotational Invariant L 1 Norm

Linear Discriminant Analysis Using Rotational Invariant L 1 Norm Linear Discriminant Analysis Using Rotational Invariant L 1 Norm Xi Li 1a, Weiming Hu 2a, Hanzi Wang 3b, Zhongfei Zhang 4c a National Laboratory of Pattern Recognition, CASIA, Beijing, China b University

More information

Nonlinear Learning using Local Coordinate Coding

Nonlinear Learning using Local Coordinate Coding Nonlinear Learning using Local Coordinate Coding Kai Yu NEC Laboratories America kyu@sv.nec-labs.com Tong Zhang Rutgers University tzhang@stat.rutgers.edu Yihong Gong NEC Laboratories America ygong@sv.nec-labs.com

More information

Entropic Graph Regularization in Non-Parametric Semi-Supervised Classification

Entropic Graph Regularization in Non-Parametric Semi-Supervised Classification Entropic Graph Regularization in Non-Parametric Semi-Supervised Classification Amarnag Subramanya & Jeff Bilmes Department of Electrical Engineering, University of Washington, Seattle. {asubram,bilmes}@ee.washington.edu

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

CE213 Artificial Intelligence Lecture 14

CE213 Artificial Intelligence Lecture 14 CE213 Artificial Intelligence Lecture 14 Neural Networks: Part 2 Learning Rules -Hebb Rule - Perceptron Rule -Delta Rule Neural Networks Using Linear Units [ Difficulty warning: equations! ] 1 Learning

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW1 due next lecture Project details are available decide on the group and topic by Thursday Last time Generative vs. Discriminative

More information

Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions

Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions Xiaojin hu HUXJ@CSCMUEDU oubin Ghahramani OUBIN@GASBUCLACU John Lafferty LAFFER@CSCMUEDU School of Computer Science, Carnegie Mellon

More information

A Scalable Kernel-Based Algorithm for Semi-Supervised Metric Learning

A Scalable Kernel-Based Algorithm for Semi-Supervised Metric Learning A Scalable Kernel-Based Algorithm for Semi-Supervised Metric Learning Dit-Yan Yeung, Hong Chang, Guang Dai Department of Computer Science and Engineering Hong Kong University of Science and Technology

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Statistical Translation, Heat Kernels, and Expected Distances

Statistical Translation, Heat Kernels, and Expected Distances Statistical Translation, Heat Kernels, and Expected Distances Joshua Dillon School of Elec. and Computer Engineering jvdillon@ecn.purdue.edu Guy Lebanon Department of Statistics, and School of Elec. and

More information