# 1. Review of Circuit Theory Concepts

Size: px
Start display at page:

Download "1. Review of Circuit Theory Concepts"

Transcription

1 1. Review of Circuit Theory Concepts Lecture notes: Section 1 ECE 65, Winter 2013, F. Najmabadi

2 Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations circuit is made of a bunch of elements connected with ideal (i.e., no resistance) wires. Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations by assuming o Speed of light is infinite (or dimension of the circuit is much smaller than wave-length of voltage/current waveforms). o Electric and magnetic fields are confined within each element: 1) Internal of an element manifests itself as an iv characteristic eq. 2) Elements communicates with each other only through the wires! Since the rest of the circuit only sees the iv characteristics of an element, different physical elements with similar iv characteristics are identical! F. Najmabadi, ECE 65, Winter2013, Intro (2/15)

3 Linear circuits have many desirable properties linear circuit element has a linear iv characteristic equation, v + B i + C = 0 (either in time or frequency domain) If all elements in a circuit are linear, the circuit would be linear and has many desirable properties (e.g., proportionality and superposition) which are essential for many functional circuits. Circuit theory has symbols for ideal linear elements: o Five two-terminal elements : resistors, capacitors, inductors, independent voltage and independent current sources o Four four-terminal elements : controlled voltage and current sources. It is essential to remember that the above ideal elements are NOT representative of physical devices. Rather they are representative of elements with a certain iv characteristic equation. F. Najmabadi, ECE 65, Winter2013, Intro (3/15)

4 Practical elements are only approximated by ideal circuit theory elements Real resistor i i v v s the current increases, resistor heats up and its resistance increases t high enough current, the resistor burns up Lab resistor can be approximated as an ideal circuit theory resistor for a range of current or voltage (identified by its rated maximum power) F. Najmabadi, ECE 65, Winter2013, Intro (4/15)

5 Ideal circuit theory elements are NOT representatives of physical devices! Is a symbol for Is NOT representative of this F. Najmabadi, ECE 65, Winter2013, Intro (5/15)

6 Ideal circuit theory elements are representative of elements with a certain iv characteristic equation. Can be approximated with this Can be approximated with this (for small signals) In fact, in integrated circuit we usually configure transistors to act as resistors (to save space among other benefits). F. Najmabadi, ECE 65, Winter2013, Intro (6/15)

7 Currents and voltages are circuit variables Equations governing the circuits are: o Internal of each element: iv characteristic equation of each element: v = f(i) o How the elements are connected: KCL: (conservation of charge), and KVL: (topology) circuit with N two-terminal element has 2N variables and need 2N equations: o N o N iv characteristic equation KCL/KVL Node-voltage (or mesh current) method reduces the number of equations to be solved by automatically satisfying all KVLs (or KCLs). o Use node-voltage methods unless circuit is very simple! F. Najmabadi, ECE 65, Winter2013, Intro (7/15)

8 We will analyze many functional circuits Two-terminal Networks Two-port Networks Function is defined by the iv equation Function is defined by the transfer function (e.g., v o in terms of v i ) If the network only contains linear elements, its function can be characterized by several parameters (or numbers) instead of an algebraic function F. Najmabadi, ECE 65, Winter2013, Intro (8/15)

9 linear two-terminal network can be represented by its Thevenin Equivalent Thevenin Theorem: If all elements inside a two-terminal network are linear, the iv equation of the two-terminal network would be linear: v + B i + C = 0 o linear two-terminal network can be modeled with two ideal circuit theory elements (v T = C/, R T = B/) v = v T R T i o If the two-terminal network does NOT contain an independent source, v T = 0 and it reduces to a resistor. o See Lecture note for examples of computing/measuring Thevenin equivalent circuit F. Najmabadi, ECE 65, Winter2013, Intro (9/15)

10 Functional circuit contains several twoterminal and two-port networks We divide the circuit into building blocks to simplify analysis and design Two-terminal network containing an independent source Two-terminal network containing NO independent source F. Najmabadi, ECE 65, Winter2013, Intro (10/15)

11 Source only sees a load resistor two-terminal network containing NO independent source We only need to analyze the response of a source ONCE with R L as a parameter. For a linear source, we only find the Thevenin parameters of the source. F. Najmabadi, ECE 65, Winter2013, Intro (11/15)

12 Two-port network two-terminal network containing N independent source two-terminal network containing NO independent source F. Najmabadi, ECE 65, Winter2013, Intro (12/15) Transfer function of a two-port network can be found by solving the above circuit once.

13 ccuracy Mathematical precision is neither possible nor required in practical systems!

14 ccuracy (or tolerance) in practical systems Measurement ccuracy: o Measuring instruments have a finite accuracy. o When a scope with an 2% read a voltage of V, it means that the real voltage is in the range of ± (or between and V). Component ccuracy: o Components are manufactured with a finite accuracy (tolerance). o 1k resistor with 5% accuracy has a resistance between and 1.050k. Modeling ccuracy o We approximate practical circuit elements with ideal circuit theory elements. (we will see this throughout the course for non-linear elements) nalysis ccuracy: o We make approximation in the analysis by ignoring terms. (next Slide) F. Najmabadi, ECE 65, Winter2013, Intro (14/15)

15 How accuracy affect analysis: F. Najmabadi, ECE 65, Winter2013, Intro (15/15) When a number has,, has a relative accuracy of ε, it means that its value is between (1 ε) and (1 + ε). lternatively, we are saying that all numbers in that range are approximately equal to each other. When we assume a <<, we mean: ) (1 ) 1 ( ε ε + B B ) (1 ) (1 a a a a ε ε ε ε ε ε a a ε <<

### Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

### Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits

More information

### Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

### Lecture #3. Review: Power

Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

### Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

### POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

### Chapter 5. Department of Mechanical Engineering

Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

### Thevenin equivalent circuits

Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The

More information

### ECE 1311: Electric Circuits. Chapter 2: Basic laws

ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's

More information

### Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

### EE292: Fundamentals of ECE

EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 4 120906 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Voltage Divider Current Divider Node-Voltage Analysis 3 Network Analysis

More information

### EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit

More information

### UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

### Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

Electric Circuits II Sinusoidal Steady State Analysis Dr. Firas Obeidat 1 Table of Contents 1 2 3 4 5 Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin and Norton Equivalent

More information

### Tutorial #4: Bias Point Analysis in Multisim

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

More information

### Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

### R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai

Chapter 07 Series-Parallel Circuits The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit

More information

### BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Alternating Current Circuits : Basic Law Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Alternating

More information

### Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

### E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow M. Horowitz, J. Plummer, R. Howe 1 Reading For Topics In These Slides Chapter 1 in the course reader OR A&L 1.6-1.7 -

More information

### MAE140 - Linear Circuits - Winter 09 Midterm, February 5

Instructions MAE40 - Linear ircuits - Winter 09 Midterm, February 5 (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

### Electrical Circuits I

Electrical Circuits I This lecture discusses the mathematical modeling of simple electrical linear circuits. When modeling a circuit, one ends up with a set of implicitly formulated algebraic and differential

More information

### Electric Circuit Theory

Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

### Thevenin Norton Equivalencies - GATE Study Material in PDF

Thevenin Norton Equivalencies - GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing

More information

### One-Port Networks. One-Port. Network

TwoPort s Definitions Impedance Parameters dmittance Parameters Hybrid Parameters Transmission Parameters Cascaded TwoPort s Examples pplications OnePort s v i' 1 OnePort pair of terminals at which a signal

More information

### E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits M. Horowitz, J. Plummer, R. Howe 1 Understanding the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave in

More information

### Lecture # 2 Basic Circuit Laws

CPEN 206 Linear Circuits Lecture # 2 Basic Circuit Laws Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026907363 February 5, 206 Course TA David S. Tamakloe CPEN 206 Lecture 2 205_206 What is Electrical

More information

### 1.7 Delta-Star Transformation

S Electronic ircuits D ircuits 8.7 Delta-Star Transformation Fig..(a) shows three resistors R, R and R connected in a closed delta to three terminals, and, their numerical subscripts,, and, being opposite

More information

Network Topology-2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current

More information

### ELECTRICAL THEORY. Ideal Basic Circuit Element

ELECTRICAL THEORY PROF. SIRIPONG POTISUK ELEC 106 Ideal Basic Circuit Element Has only two terminals which are points of connection to other circuit components Can be described mathematically in terms

More information

### MAE140 - Linear Circuits - Fall 14 Midterm, November 6

MAE140 - Linear Circuits - Fall 14 Midterm, November 6 Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

### Chapter 1W Basic Electromagnetic Concepts

Chapter 1W Basic Electromagnetic Concepts 1W Basic Electromagnetic Concepts 1W.1 Examples and Problems on Electric Circuits 1W.2 Examples on Magnetic Concepts This chapter includes additional examples

More information

### ECE2262 Electric Circuits

ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence

More information

### ENGR 2405 Class No Electric Circuits I

ENGR 2405 Class No. 48056 Electric Circuits I Dr. R. Williams Ph.D. rube.williams@hccs.edu Electric Circuit An electric circuit is an interconnec9on of electrical elements Charge Charge is an electrical

More information

### RC, RL, and LCR Circuits

RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They

More information

### Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

### Designing Information Devices and Systems I Spring 2015 Note 11

EECS 16A Designing Information Devices and Systems I Spring 2015 Note 11 Lecture notes by Edward Wang (02/26/2015). Resistors Review Ohm s law: V = IR Water pipe circuit analogy: Figure 1: Water analogy

More information

### ECE2262 Electric Circuit

ECE2262 Electric Circuit Chapter 7: FIRST AND SECOND-ORDER RL AND RC CIRCUITS Response to First-Order RL and RC Circuits Response to Second-Order RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady

More information

### In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,

More information

### Electric Circuits I. Midterm #1

The University of Toledo Section number s5ms_elci7.fm - Electric Circuits I Midterm # Problems Points. 3 2. 7 3. 5 Total 5 Was the exam fair? yes no The University of Toledo Section number s5ms_elci7.fm

More information

### Discussion Question 6A

Discussion Question 6 P212, Week 6 Two Methods for Circuit nalysis Method 1: Progressive collapsing of circuit elements In last week s discussion, we learned how to analyse circuits involving batteries

More information

### Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

### Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

### As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

### Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Apply previously learn circuit techniques to sinusoidal steady-state analysis. Learn how to apply nodal and mesh analysis in the frequency

More information

### Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1

Electric Current Definition: rate of positive charge flow Symbol: i Units: Coulombs per second Amperes (A) i = dq/dt where q = charge (in Coulombs), t = time (in seconds) Note: Current has polarity. EECS

More information

### EE292: Fundamentals of ECE

EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 14 121011 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Steady-State Analysis RC Circuits RL Circuits 3 DC Steady-State

More information

### Review of Circuit Analysis

Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current

More information

### Circuits with Capacitor and Inductor

Circuits with Capacitor and Inductor We have discussed so far circuits only with resistors. While analyzing it, we came across with the set of algebraic equations. Hereafter we will analyze circuits with

More information

### Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

### ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory

More information

### ECE2262 Electric Circuits. Chapter 5: Circuit Theorems

ECE2262 Electric Circuits Chapter 5: Circuit Theorems 1 Equivalence Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 2 5. 1 Equivalence

More information

### Lecture Notes on DC Network Theory

Federal University, Ndufu-Alike, Ikwo Department of Electrical/Electronics and Computer Engineering (ECE) Faculty of Engineering and Technology Lecture Notes on DC Network Theory Harmattan Semester by

More information

### LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1)

CIRCUITS by Ulaby & Maharbiz LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1) 07/18/2013 ECE225 CIRCUIT ANALYSIS All rights reserved. Do not copy or distribute. 2013 National Technology and Science Press

More information

### Basics of Network Theory (Part-I)

Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

### Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 5: Electrical and Electromagnetic System Components The objective of this

More information

### Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Midterm 2. Exam location: 145 Dwinelle, last SID# 2

EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Midterm 2 Exam location: 145 Dwinelle, last SID# 2 PRINT your student ID: PRINT AND SIGN your name:,

More information

### M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]

M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance

More information

### Preamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work,

Preamble Circuit Analysis II Physics, 8 th Edition Custom Edition Cutnell & Johnson When circuits get really complex methods learned so far will still work, but they can take a long time to do. A particularly

More information

### 4/27 Friday. I have all the old homework if you need to collect them.

4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 7-9pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator

More information

### Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second edition,

More information

### Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

### Introduction to Electric Circuit Analysis

EE110300 Practice of Electrical and Computer Engineering Lecture 2 and Lecture 4.1 Introduction to Electric Circuit Analysis Prof. Klaus Yung-Jane Hsu 2003/2/20 What Is An Electric Circuit? Electrical

More information

### ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

### ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5

ENGG 225 David Ng Winter 2017 Contents 1 January 9, 2017 5 1.1 Circuits, Currents, and Voltages.................... 5 2 January 11, 2017 6 2.1 Ideal Basic Circuit Elements....................... 6 3 January

More information

### ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

FE Review 1 ELECTRONICS E # 1 FUNDAMENTALS Electric Charge 2 In an electric circuit it there is a conservation of charge. The net electric charge is constant. There are positive and negative charges. Like

More information

### Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 304 Basic Electrical Engineering Lab INSTRUCTOR

More information

### ANNOUNCEMENT ANNOUNCEMENT

ANNOUNCEMENT Exam : Tuesday September 25, 208, 8 PM - 0 PM Location: Elliott Hall of Music (see seating chart) Covers all readings, lectures, homework from Chapters 2 through 23 Multiple choice (5-8 questions)

More information

### EE40 KVL KCL. Prof. Nathan Cheung 09/01/2009. Reading: Hambley Chapter 1

EE40 KVL KCL Prof. Nathan Cheung 09/01/2009 Reading: Hambley Chapter 1 Slide 1 Terminology: Nodes and Branches Node: A point where two or more circuit elements are connected Branch: A path that connects

More information

### COOKBOOK KVL AND KCL A COMPLETE GUIDE

1250 COOKBOOK KVL AND KCL A COMPLETE GUIDE Example circuit: 1) Label all source and component values with a voltage drop measurement (+,- ) and a current flow measurement (arrow): By the passive sign convention,

More information

### DC Circuits Analysis

Western Technical College 10660117 DC Circuits Analysis Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 2.00 Total Hours 54.00 This course provides

More information

### Basic Electrical Circuits Analysis ECE 221

Basic Electrical Circuits Analysis ECE 221 PhD. Khodr Saaifan http://trsys.faculty.jacobs-university.de k.saaifan@jacobs-university.de 1 2 Reference: Electric Circuits, 8th Edition James W. Nilsson, and

More information

### Lecture 10: 09//25/03 A.R. Neureuther Version Date 09/14/03 EECS 42 Introduction to Digital Electronics Andrew R. Neureuther

EECS 42 Intro. Digital Electronics Fall 23 Lecture : 9//25/3.R. Neureuther Version Date 9/4/3 EECS 42 Introduction to Digital Electronics ndrew R. Neureuther Lecture # Prof. King: asic Digital locks 2

More information

### Basic Laws. Bởi: Sy Hien Dinh

Basic Laws Bởi: Sy Hien Dinh INTRODUCTION Chapter 1 introduced basic concepts such as current, voltage, and power in an electric circuit. To actually determine the values of this variable in a given circuit

More information

### SOME USEFUL NETWORK THEOREMS

APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

### DC STEADY STATE CIRCUIT ANALYSIS

DC STEADY STATE CIRCUIT ANALYSIS 1. Introduction The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm s law. For a passive branch the current is: I=

More information

### EECE251 Circuit Analysis I Lecture Integrated Program Set 3: Circuit Theorems

EECE251 Circuit Analysis I Lecture Integrated Program Set 3: Circuit Theorems Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Linearity

More information

### Lab 9/14/2012. Lab Power / Energy Series / Parallel Small Signal Applications. Outline. Power Supply

Outline Session 2: Analog Circuits Lab Power / Energy Series / Parallel Small Signal Applications Lab hits Power Supply, Oscilloscope, Breadboard, Multimeters Energy Power an Energy for, L, C Series /

More information

### Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.2: Circuits & Electronics Problem Set # Solution Exercise. The three resistors form a series connection.

More information

### Chapter 18. Direct Current Circuits

Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating

More information

### Figure Circuit for Question 1. Figure Circuit for Question 2

Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

### Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS

Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS OBJECTIVES 1) To introduce the Source Transformation 2) To consider the concepts of Linearity and Superposition

More information

### Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

### Electrical Circuits I

Electrical Circuits I This lecture discusses the mathematical modeling of simple electrical linear circuits. When modeling a circuit, one ends up with a set of implicitly formulated algebraic and differential

More information

### The Steady Current Field

Electromagnetic Fields Lecture 5 The Steady Current Field What is current? Electric current: Flow of electric charge. Electric current in metals A solid conductive metal contains free electrons. When a

More information

### Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

### INTRODUCTION TO ELECTRONICS

INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways

More information

### EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages

More information

### Prepare for this experiment!

Notes on Experiment #8 Theorems of Linear Networks Prepare for this experiment! If you prepare, you can finish in 90 minutes. If you do not prepare, you will not finish even half of this experiment. So,

More information

### Problem info Geometry model Labelled Objects Results Nonlinear dependencies

Problem info Problem type: Transient Magnetics (integration time: 9.99999993922529E-09 s.) Geometry model class: Plane-Parallel Problem database file names: Problem: circuit.pbm Geometry: Circuit.mod Material

More information

### ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis Lesson 3 Chapter 2 Ohm s Law Network Topology: nodes, branches, and loops Daniel M. Litynski, Ph.D. http://homepages.wmich.edu/~dlitynsk/ esistance ESISTANCE = Physical property

More information

### E2.2 Analogue Electronics

E2.2 Analogue Electronics Instructor : Christos Papavassiliou Office, email : EE 915, c.papavas@imperial.ac.uk Lectures : Monday 2pm, room 408 (weeks 2-11) Thursday 3pm, room 509 (weeks 4-11) Problem,

More information

### Chapter 5. BJT AC Analysis

Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

### Physics 212. Lecture 9. Electric Current

Physics 212 Lecture 9 Electric Current Exam Here, Tuesday, June 26, 8 9:30 AM Will begin at 7:30 for those who must leave by 9. Office hours 1-7 PM, Rm 232 Loomis Bring your ID! Physics 212 Lecture 9,

More information

### Frequency Bands. ω the numeric value of G ( ω ) depends on the frequency ω of the basis

1/28/2011 Frequency Bands lecture 1/9 Frequency Bands The Eigen value G ( ω ) of a linear operator is of course dependent on frequency ω the numeric value of G ( ω ) depends on the frequency ω of the basis

More information

### ENGR 2405 Chapter 6. Capacitors And Inductors

ENGR 2405 Chapter 6 Capacitors And Inductors Overview This chapter will introduce two new linear circuit elements: The capacitor The inductor Unlike resistors, these elements do not dissipate energy They

More information

### Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

Name... Set... Don.... manner~ man makptb Winchester College Physics 3rd year Revision Test Electrical Circuits Common Time 2011 Mark multiple choice answers with a cross (X) using the box below. I A B

More information

### 15EE103L ELECTRIC CIRCUITS LAB RECORD

15EE103L ELECTRIC CIRCUITS LAB RECORD REGISTER NO: NAME OF THE STUDENT: SEMESTER: DEPARTMENT: INDEX SHEET S.No. Date of Experiment Name of the Experiment Date of submission Marks Staff Sign 1 Verification

More information

### Chapter 4 Circuit Theorems

Chapter 4 Circuit Theorems 1. Linearity and Proportionality. Source Transformation 3. Superposition Theorem 4. Thevenin s Theorem and Norton s Theorem 5. Maximum Power Transfer Theorem Mazita Sem 1 111

More information

### 09-Circuit Theorems Text: , 4.8. ECEGR 210 Electric Circuits I

09Circuit Theorems Text: 4.1 4.3, 4.8 ECEGR 210 Electric Circuits I Overview Introduction Linearity Superposition Maximum Power Transfer Dr. Louie 2 Introduction Nodal and mesh analysis can be tedious

More information