SOLUTION FOR HOMEWORK 12, STAT 4351

Size: px
Start display at page:

Download "SOLUTION FOR HOMEWORK 12, STAT 4351"

Transcription

1 SOLUTION FOR HOMEWORK 2, STAT 435 Welcome to your 2th homework. It looks like this is the last one! As usual, try to find mistakes and get extra points! Now let us look at your problems.. Problem Here the joint pmf is f(x, x 2 ) := f X,X 2 (x, x 2 ) = (/36)x x 2 I(x, 2, 3})I(x 2, 2, 3}). (a) Note that y = x x 2, 2, 3, 4, 6, 9}. Then it is simpler to calculate the pmf of Y directly: f Y () = f(, ) = /36; f Y (2) = f(, 2) + f(2, ) = /9; f Y (3) = f(, 3) + f(3, ) = /6; f Y (4) = f(2, 2) = /9; f Y (6) = f(2, 3) + f(3, 2) = /3; f Y (9) = f(3, 3) = /4. Please check that the sum is. (b) For Y = X /X 2 we get the support y /3, /2, 2/3,, 3/2, 2, 3}. Then again it is simpler to calculate the pmf of Y directly: f Y (/3) = f(, 3) = 3/36; f Y (/2) = f(, 2) = 2/36; f Y (2/3) = f(2, 3) = 6/36; f Y () = f(, ) + f(2, 2) + f(3, 3) = ( )/36; f Y (3/2) = f(3, 2) = 6/36; Please check that the sum is. f Y (2) = f(2, ) = 2/36; f Y (3) = f(3, ) = 3/ Problem Note that the solution follows directly from definitions of the negative binomial and geometric distributions, but in any case we will check this via the mgf s method; below I one more time do this. Let X be geometric with the probability of S denoted as θ, then its moment generating function (I repeat its calculation we also had it in one of the previous HWs) M X (t) = Ee Xt } = θ( θ) x e xt = θ( θ) [( θ)e t ] x. x= x= In the right-hand side we have a geometric sum which converge for all sufficiently small t, and we know how to calculate it, so I continue and get M X (t) = θ θ On the other hand, if Y NegBinom(θ, k) then M Y (t) = ( θ)e t ( θ)e t = θe t ( θ)e t. (x )! (x k)!(k )! θk ( θ) x k e xt

2 = (x )! (x k)!(k )! [θ/( θ)]k [( θ)e t ] x. Now I would like to use the fact that a pmf of a negative binomial RV with the probability of success q = ( θ)e t is summed to (note that q is a valid probability of S for a sufficiently small t). We continue: M Y (t) = [θ/( θ)] k q k ( q) k (x )! (x k)!(k )! qk ( q) x k = [θ/( θ)] k ( θ) k e kt ( ( θ)e t ) k = θ k e kt ( ( θ)e t ) k. Now we can conclude that for k = 2 the mgf M Y (t) is indeed equal to M X +X 2 (t) = M X (t)m X2 (t). In other words, the sum of two independent geometric RVs has the negative binomial distribution with the stop at the second success (of course, the probability of S in each underlying Bernoulli trial should be the same). 3. Problem Let X and Y be independent standard normal. Then for Z = X + Y we have X = Z Y and then using one of our methods we get Now note that Using this we continue: Then f Z,Y (z, y) = (z y)/ z f X,X 2 (z y, y) = (2π) e [(z y)2 +y 2 ]/2. (z y) 2 + y 2 = 2y 2 2zy + z 2 = [2y 2 2zy + z 2 /2] z 2 /2 + z 2 f Z (z) = e z2 /4 (2π) /2 = (2 /2 y z/2 /2 ) 2 + z 2 /2 = 2(y z/2) 2 + z 2 /2. f Z,Y (z, y) = (2π) e (y z/2)2 e z2 /4. (/2) /2 (2π(/2)) /2e (y z/2)2 /[2(/2)] dy = [(2π)2] /2 e z2 /[(2)(2)]. This implies that Z Norm(, 2) with zero-mean and variance equal to 2. Please check that the mean and variance are reasonable. 4. Problem 7.3. Let f X,Y (x, y) = 2xy( y)i( < x < )I( < y < ). Set Z = XY 2 and note that Z (, ). Then we can write two equivalent systems (direct and inverse relations): Z = XY 2 X = Z/U 2 U = Y Y = U Note that if z (, ) then z < u <. Now we are calculating Jacobian: x/ z y/ z x/ u y/ u = /u 2 2z/u 3 = u 2. 2

3 Then f Z,U (z, u) = u 2 f X,X 2 (z/u 2, u) = u 2 [2(z/u 2 )u( u)]i(z (, ), z < u < ). Further, we calculate the marginal density f Z (z) = f Z,U (z, u)du = (2)z u 3 ( u)du z = (2)z[( /2)( z)+( z /2 )] = (2)z[/2+(/2)z z /2 ] = (6z+6 2z /2 )I(z (, )). Is it integrable to? 5. Problem Here the joint pdf is f X,X 2 (x, x 2 ) = 4x x 2 I( < x <, < x 2 < ). Then for the considered transformation we have Y = X 2 Y 2 = X X 2 X = Y /2 X 2 = Y 2 /Y /2 with y (, ) and y 2 (, y /2 ). The corresponding Jacobian is This yields x / y x 2 / y x / y 2 x 2 / y 2 = /(2y /2 ) y 2 /(2y 3/2 ) /y /2 = /(2y ). f Y,Y 2 (y, y 2 ) = (/2y )4y /2 y 2 y /2 I(y (, ))I(y 2 (, y /2 )) Let us check this answer: = (2y 2 /y )I(y (, ))I(y 2 (, y /2 ). [ y /2 f Y,Y 2 (y, y 2 )dy 2 ]dy = (2/y ) y /2 y 2 dy 2 ]dy It looks OK. 6. Problem Here = (2/y )(y /2)dy =. f X,Y (x, y) = 24xyI( < x <, < y <, x + y < ). For the studied transformation Z = X + Y W = X 3 X = W Y = Z W

4 with w (, ) and w < z <. Corresponding Jacobian is x/ z y/ z x/ w y/ w = =. Then we use our rule to find Let us check the answer: f Z,W (z, w) = f X,Y (w, z w)i(w (, ), z (w, )) 24w[ w = 24w(z w)i(w (, ), z (w, )). (z w)dz]dw = 24 w[(/2)( w 2 ) w( w)]dw = 24 [w(/2 + (/2)w 2 w]dw = 24[(/4) + (/8) (/3)] = 24( )/24 =. The answer looks OK. 7. Problem 7.4. If X Binom(θ, n) then its mgf is M X (t) = [ + θ(e t )] n. Then for two independent X Binom(θ, n ) and X Binom(θ, n 2 ) we have which is the mgf of Binom(θ, n + n 2 ). M X +X 2 (t) = M X (t)m X2 (t) = ( + θ(e t )) n +n 2 8. Problem Let X Gamma(α, β). Then M X (t) = ( βt) α. Suppose that X,...,X n are iid Gamma RV with parameters (α, β). Then M X +X X n (t) = ( βt) αn. This yields that the sum of n iid Gamma RVs has Gamma distribution with parameters (nα, β). 8. Problem 7.6. Here X Poisson(λ = 3.3) and X is the number of complaints per day. Then: (a)p(x = 2) = e λ λ 2 /2!. (b) Here the RV of interest is Y = X + X 2 with X and X 2 being the number of complaints during the first and second days. Then we know that X + X 2 Poisson(2λ). You may quickly check the latter via Using this fact we get M X (t) = e λ(et ), M X +X 2 (t) = M X (t)m X2 (t) = e 2λ(et ). (c) Here X + X 2 + X 3 Poisson(3λ), so P(X + X 2 = 5) = e 2λ (2λ) 5 /5!. P(X + X 2 + X 3 2) = 4 k=2 e 3λ (3λ) k. k!

5 9. Problem 7.63(a). It is known that if X i Expon(θ) then Y k = k i= X i Gamma(α = k, β = ); see p.257, Ex.7.6. (It is easy to check this via the mgf approach.) Then where Y 2 Gamma(α = 2, β = θ = 5). Then P(X + X 2 < 8) = P(Y 2 < 8) P(Y 2 < 8) = 8 xe x/5 dx Γ(2)5 2 8 = (/5 2 )[ 5xe x/ e x/5 dx] = (/25)[ 4e 8/ e 8/5 ] = (/25)[25 65e 8/5 ] = (65/25)e 8/5.. Problem Let X Normal(µ, σ 2 ). Then Y = e X has support (, ) and X = ln(y ) is the inverse function. Then we apply our rule and get for the transformation at hand: f Y (y) = dx(y)/dy f X (ln(y)) = y (2πσ 2 ) /2 e (ln(y) µ)2 /2σ 2 I(y > ). This is the famous log-normal density which plays an important role in many branches of statistics, in particular in regression. 5

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

SOLUTION FOR HOMEWORK 4, STAT 4352

SOLUTION FOR HOMEWORK 4, STAT 4352 SOLUTION FOR HOMEWORK 4, STAT 4352 Welcome to your fourth homework. Here we begin the study of confidence intervals, Errors, etc. Recall that X n := (X 1,...,X n ) denotes the vector of n observations.

More information

Statistics for scientists and engineers

Statistics for scientists and engineers Statistics for scientists and engineers February 0, 006 Contents Introduction. Motivation - why study statistics?................................... Examples..................................................3

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 16 June 24th, 2009 Review Sum of Independent Normal Random Variables Sum of Independent Poisson Random Variables Sum of Independent Binomial Random Variables Conditional

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

STAT 430/510: Lecture 15

STAT 430/510: Lecture 15 STAT 430/510: Lecture 15 James Piette June 23, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.4... Conditional Distribution: Discrete Def: The conditional

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

SOLUTION FOR HOMEWORK 11, ACTS 4306

SOLUTION FOR HOMEWORK 11, ACTS 4306 SOLUTION FOR HOMEWORK, ACTS 36 Welcome to your th homework. This is a collection of transformation, Central Limit Theorem (CLT), and other topics.. Solution: By definition of Z, Var(Z) = Var(3X Y.5). We

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

Probability- the good parts version. I. Random variables and their distributions; continuous random variables.

Probability- the good parts version. I. Random variables and their distributions; continuous random variables. Probability- the good arts version I. Random variables and their distributions; continuous random variables. A random variable (r.v) X is continuous if its distribution is given by a robability density

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

STAT 3610: Review of Probability Distributions

STAT 3610: Review of Probability Distributions STAT 3610: Review of Probability Distributions Mark Carpenter Professor of Statistics Department of Mathematics and Statistics August 25, 2015 Support of a Random Variable Definition The support of a random

More information

Summary. Ancillary Statistics What is an ancillary statistic for θ? .2 Can an ancillary statistic be a sufficient statistic?

Summary. Ancillary Statistics What is an ancillary statistic for θ? .2 Can an ancillary statistic be a sufficient statistic? Biostatistics 62 - Statistical Inference Lecture 5 Hyun Min Kang 1 What is an ancillary statistic for θ? 2 Can an ancillary statistic be a sufficient statistic? 3 What are the location parameter and the

More information

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40 Assignment 4 Fall 07. Exercise 3.. on Page 46: If the mgf of a rom variable X is ( 3 + 3 et) 5, find P(X or 3). Since the M(t) of X is ( 3 + 3 et) 5, X has a binomial distribution with n 5, p 3. The probability

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Stat 100a, Introduction to Probability.

Stat 100a, Introduction to Probability. Stat 100a, Introduction to Probability. Outline for the day: 1. Geometric random variables. 2. Negative binomial random variables. 3. Moment generating functions. 4. Poisson random variables. 5. Continuous

More information

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n JOINT DENSITIES - RANDOM VECTORS - REVIEW Joint densities describe probability distributions of a random vector X: an n-dimensional vector of random variables, ie, X = (X 1,, X n ), where all X is are

More information

[Chapter 6. Functions of Random Variables]

[Chapter 6. Functions of Random Variables] [Chapter 6. Functions of Random Variables] 6.1 Introduction 6.2 Finding the probability distribution of a function of random variables 6.3 The method of distribution functions 6.5 The method of Moment-generating

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

Will Murray s Probability, XXXII. Moment-Generating Functions 1. We want to study functions of them:

Will Murray s Probability, XXXII. Moment-Generating Functions 1. We want to study functions of them: Will Murray s Probability, XXXII. Moment-Generating Functions XXXII. Moment-Generating Functions Premise We have several random variables, Y, Y, etc. We want to study functions of them: U (Y,..., Y n ).

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

1 Probability Model. 1.1 Types of models to be discussed in the course

1 Probability Model. 1.1 Types of models to be discussed in the course Sufficiency January 11, 2016 Debdeep Pati 1 Probability Model Model: A family of distributions {P θ : θ Θ}. P θ (B) is the probability of the event B when the parameter takes the value θ. P θ is described

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Multivariate distributions

Multivariate distributions CHAPTER Multivariate distributions.. Introduction We want to discuss collections of random variables (X, X,..., X n ), which are known as random vectors. In the discrete case, we can define the density

More information

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2 APPM/MATH 4/5520 Solutions to Exam I Review Problems. (a) f X (x ) f X,X 2 (x,x 2 )dx 2 x 2e x x 2 dx 2 2e 2x x was below x 2, but when marginalizing out x 2, we ran it over all values from 0 to and so

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

4 Moment generating functions

4 Moment generating functions 4 Moment generating functions Moment generating functions (mgf) are a very powerful computational tool. They make certain computations much shorter. However, they are only a computational tool. The mgf

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise.

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise. 54 We are given the marginal pdfs of Y and Y You should note that Y gamma(4, Y exponential( E(Y = 4, V (Y = 4, E(Y =, and V (Y = 4 (a With U = Y Y, we have E(U = E(Y Y = E(Y E(Y = 4 = (b Because Y and

More information

i=1 k i=1 g i (Y )] = k

i=1 k i=1 g i (Y )] = k Math 483 EXAM 2 covers 2.4, 2.5, 2.7, 2.8, 3.1, 3.2, 3.3, 3.4, 3.8, 3.9, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.9, 5.1, 5.2, and 5.3. The exam is on Thursday, Oct. 13. You are allowed THREE SHEETS OF NOTES and

More information

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner.

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. GROUND RULES: This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. This exam is closed book and closed notes. Show

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2 IEOR 316: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 2 More Probability Review: In the Ross textbook, Introduction to Probability Models, read

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/ STA263/25//24 Tutorial letter 25// /24 Distribution Theor ry II STA263 Semester Department of Statistics CONTENTS: Examination preparation tutorial letterr Solutions to Assignment 6 2 Dear Student, This

More information

MA6451 PROBABILITY AND RANDOM PROCESSES

MA6451 PROBABILITY AND RANDOM PROCESSES MA6451 PROBABILITY AND RANDOM PROCESSES UNIT I RANDOM VARIABLES 1.1 Discrete and continuous random variables 1. Show that the function is a probability density function of a random variable X. (Apr/May

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

1 Probability Model. 1.1 Types of models to be discussed in the course

1 Probability Model. 1.1 Types of models to be discussed in the course Sufficiency January 18, 016 Debdeep Pati 1 Probability Model Model: A family of distributions P θ : θ Θ}. P θ (B) is the probability of the event B when the parameter takes the value θ. P θ is described

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

1.6 Families of Distributions

1.6 Families of Distributions Your text 1.6. FAMILIES OF DISTRIBUTIONS 15 F(x) 0.20 1.0 0.15 0.8 0.6 Density 0.10 cdf 0.4 0.05 0.2 0.00 a b c 0.0 x Figure 1.1: N(4.5, 2) Distribution Function and Cumulative Distribution Function for

More information

Final Exam # 3. Sta 230: Probability. December 16, 2012

Final Exam # 3. Sta 230: Probability. December 16, 2012 Final Exam # 3 Sta 230: Probability December 16, 2012 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use the extra sheets

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Problem Y is an exponential random variable with parameter λ = 0.2. Given the event A = {Y < 2},

Problem Y is an exponential random variable with parameter λ = 0.2. Given the event A = {Y < 2}, ECE32 Spring 25 HW Solutions April 6, 25 Solutions to HW Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics where

More information

Review for the previous lecture

Review for the previous lecture Lecture 1 and 13 on BST 631: Statistical Theory I Kui Zhang, 09/8/006 Review for the previous lecture Definition: Several discrete distributions, including discrete uniform, hypergeometric, Bernoulli,

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

Master s Written Examination - Solution

Master s Written Examination - Solution Master s Written Examination - Solution Spring 204 Problem Stat 40 Suppose X and X 2 have the joint pdf f X,X 2 (x, x 2 ) = 2e (x +x 2 ), 0 < x < x 2

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

STAT 430/510: Lecture 16

STAT 430/510: Lecture 16 STAT 430/510: Lecture 16 James Piette June 24, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.7 and will begin Ch. 7. Joint Distribution of Functions

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

MATH : EXAM 2 INFO/LOGISTICS/ADVICE

MATH : EXAM 2 INFO/LOGISTICS/ADVICE MATH 3342-004: EXAM 2 INFO/LOGISTICS/ADVICE INFO: WHEN: Friday (03/11) at 10:00am DURATION: 50 mins PROBLEM COUNT: Appropriate for a 50-min exam BONUS COUNT: At least one TOPICS CANDIDATE FOR THE EXAM:

More information

Generating Random Variates 2 (Chapter 8, Law)

Generating Random Variates 2 (Chapter 8, Law) B. Maddah ENMG 6 Simulation /5/08 Generating Random Variates (Chapter 8, Law) Generating random variates from U(a, b) Recall that a random X which is uniformly distributed on interval [a, b], X ~ U(a,

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

ACM 116: Lectures 3 4

ACM 116: Lectures 3 4 1 ACM 116: Lectures 3 4 Joint distributions The multivariate normal distribution Conditional distributions Independent random variables Conditional distributions and Monte Carlo: Rejection sampling Variance

More information

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3.

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3. Mathematical Statistics: Homewor problems General guideline. While woring outside the classroom, use any help you want, including people, computer algebra systems, Internet, and solution manuals, but mae

More information

Measure-theoretic probability

Measure-theoretic probability Measure-theoretic probability Koltay L. VEGTMAM144B November 28, 2012 (VEGTMAM144B) Measure-theoretic probability November 28, 2012 1 / 27 The probability space De nition The (Ω, A, P) measure space is

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

EXAM # 3 PLEASE SHOW ALL WORK!

EXAM # 3 PLEASE SHOW ALL WORK! Stat 311, Summer 2018 Name EXAM # 3 PLEASE SHOW ALL WORK! Problem Points Grade 1 30 2 20 3 20 4 30 Total 100 1. A socioeconomic study analyzes two discrete random variables in a certain population of households

More information

HW4 : Bivariate Distributions (1) Solutions

HW4 : Bivariate Distributions (1) Solutions STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 7 Néhémy Lim HW4 : Bivariate Distributions () Solutions Problem. The joint probability mass function of X and Y is given by the following table : X Y

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015 Review : STAT 36 Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics August 25, 25 Support of a Random Variable The support of a random variable, which is usually denoted

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

More on Distribution Function

More on Distribution Function More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function F X. Theorem: Let X be any random variable, with cumulative distribution

More information

MATH2715: Statistical Methods

MATH2715: Statistical Methods MATH2715: Statistical Methods Exercises IV (based on lectures 7-8, work week 5, hand in lecture Mon 30 Oct) ALL questions count towards the continuous assessment for this module. Q1. If a random variable

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

Random vectors X 1 X 2. Recall that a random vector X = is made up of, say, k. X k. random variables.

Random vectors X 1 X 2. Recall that a random vector X = is made up of, say, k. X k. random variables. Random vectors Recall that a random vector X = X X 2 is made up of, say, k random variables X k A random vector has a joint distribution, eg a density f(x), that gives probabilities P(X A) = f(x)dx Just

More information

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance.

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. Chapter 2 Random Variable CLO2 Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. 1 1. Introduction In Chapter 1, we introduced the concept

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Probability Theory. Patrick Lam

Probability Theory. Patrick Lam Probability Theory Patrick Lam Outline Probability Random Variables Simulation Important Distributions Discrete Distributions Continuous Distributions Most Basic Definition of Probability: number of successes

More information

MATH Notebook 4 Fall 2018/2019

MATH Notebook 4 Fall 2018/2019 MATH442601 2 Notebook 4 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 4 MATH442601 2 Notebook 4 3 4.1 Expected Value of a Random Variable............................

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

Partial Solutions for h4/2014s: Sampling Distributions

Partial Solutions for h4/2014s: Sampling Distributions 27 Partial Solutions for h4/24s: Sampling Distributions ( Let X and X 2 be two independent random variables, each with the same probability distribution given as follows. f(x 2 e x/2, x (a Compute the

More information

ECE302 Exam 2 Version A April 21, You must show ALL of your work for full credit. Please leave fractions as fractions, but simplify them, etc.

ECE302 Exam 2 Version A April 21, You must show ALL of your work for full credit. Please leave fractions as fractions, but simplify them, etc. ECE32 Exam 2 Version A April 21, 214 1 Name: Solution Score: /1 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully. Please check your answers

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Five Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Five Notes Spring 2011 1 / 37 Outline 1

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information