# Recitation 11: Time delays

Size: px
Start display at page:

Transcription

1 Recitation : Time delays Emilio Frazzoli Laboratory for Information and Decision Systems Massachusetts Institute of Technology November, 00. Introduction and motivation. Delays are incurred when the controller is implemented on a computer, which needs some time to compute the appropriate control input, given a certain error. More in general, the evaluation of sensory information aimed at deciding the best course of action, will require a finite computation time.. In some systems, delays may also be part of the physical plant. For example, on an airplane, the effect of lift variation at the main wing are felt on the tail when the vortices shed by the wing reach the tail plane. A rather extreme example is remote tele-operation: communication with a deep-space spacecraft or planetary rover may require several minutes. The frequency response of a time delay A time delay is an operator that transforms an input signal t u(t) into a delayed output signal t y(t), with y(t) = u(t T ), where T 0 is the amount of the delay. Clearly, this is a linear operator: you can check easily that the delayed version of a linear combination of signals is equal to the linear combination of the delayed signals. Let us indicate this operator with Delay T. In order to compute the transfer function of this linear operator, let us compute the Laplace transform of the output as a function of the Laplace transform of the input. We get Y (s) = L [y(t)] = y(t)e st dt = u(t T )e st dt = u(τ )e sτ st dτ = e st U(s), 0 0 0

2 from which we conclude that Delay T (s) = e st. What is the frequency response of the time delay? We need to study the function Delay T (j) = e jt. Recall that the polar representation of a complex number z C is z = z e j (z), from which we deduce immediately that ( ) e jt =, e jt = T. This is not unexpected, since the time-delayed version of a sinusoid of unit amplitude and zero phase u(t) = sin(t) is another sinusoid, y = sin((t T )), with unit magnitude and a phase delayed by T. (The peak of the input is reached at times t p = π/() + πn, where the phase of the input is equal to π/; at those times, the phase of the output is π/ T.) See Figure. 0.5 y(t) Figure : Time-delayed sinusoid. The blue line represents the signal y(t) = sin(π/0t) (for t 0); the red line is the same signal delayed by.5 time units, i.e., Delay.5 [y]. Since = π/0 rad/s, and T =.5s, T = π/: the phase of the time-delayed signal is lagging that of the original signal by exactly π/ radians, or 90 degrees. On the complex plane, the polar plot of e jt corresponds to a circle of unit radius. The Bode magnitude plot is a straight horizontal line at, or 0 db. The Bode phase plot would be a straight line with a negative slope T, if we were to plot the phase of the frequency response on a linear scale for the frequency. However, since in the Bode plot the frequency axis is logarithmic, the Bode phase plot of a time delay is in fact an exponential (Delay T (s)) = T 0 log 0 [rad]. To further complicate things, the phase is usually wrapped to ( π, 0] in Bode plots, so the Bode phase plot of a time delay is usually portrayed as in Figure. t

3 Im [ e j] e j ( e j) Re [ e j] Figure : Polar and Bode plots of a unit time delay, e j. 3 Effects of time delays on closed-loop stability Next, we are going to consider the effects that time delays have on closed-loop stability, and discuss methods to take such effects into account when designing feedback control systems. Let us consider a system with loop transfer function L(s) = C(s)P (s), and include a time delay of T seconds (this can be either in the controller, or in the plant). We would get a new loop transfer function L (s) = e st L(s). The frequency response of the system with the time delay is obtained from the ideal frequency response with no time delay, by shifting the phase back by T. In other words, L (j) = L(j), L (j) = L(j) T, > 0. The effects of such a phase lag are better appreciated with an example. Let us consider a simple plant, P (s) =, s + with a proportional controller C(s) = k. Hence, the ideal loop transfer function is k L(s) =. s + A quick check with the root locus or the Nyquist plot will show that the feedback system would be stable for all k > 0 (in fact, for all k > ). What is the effect of time delay? Consider now the loop transfer function k L (s) = e st. s + 3

4 The polar plot of L is obtained from the polar plot of L by smearing it: in practice all points L(j) must be rotated clockwise about the origin by an angle T. In other words, the magnitude of such rotation is larger at higher frequencies. In practice, the polar plot of a system with a time delay always looks like a logarithmic spiral close to the origin. See Figure 3. Im[L(j)] L(j) Arg[L(j)] Re[L(j)] Figure 3: Polar and Bode plots of a simple lag, with and without a unit time delay. It is easy to recognize that while the polar plot of L never crosses the negative real axis, the polar plot of L crosses it an infinite number of times. In particular, the first crossing occurs when ( ) k T = 80, j + i.e., when tan + T = 80. The location of this point determines the gain margin, which will be finite for all T > 0 (it was infinite in the ideal case T = 0). For example, in the unit delay case shown in the figures, in which T = seconds, you can verify that the intersection occurs when.03 at the point ( 0.44k, 0) on the complex plane. Clearly, if the gain k were to be greater or equal to /0.044 =.6, the Nyquist plot will encircle the (, 0) point, and the closed-loop system would be unstable. Bode plot You can carry out a similar analysis on the Bode plot. First, notice that the magnitude plot of L is exactly the same as the magnitude plot of L. The phase plot is obtained by adding the phase plot of L to the phase plot of the time delay. This lets you determine very easily the effect of a time delay on the phase margin. In fact, the following relationship holds: φ m,t = φ 0 c T, () 4

5 where φ m,t and φ m,0 are the phase margins with and without the time delay, respectively, and c is the crossover frequency (which does not depend on the time delay). The above equation summarizes the main effect of a time delay, that is a reduction of the phase margin. Moreover, the phase margin reduction increases as the crossover frequency increases. If we consider again the example we considered for the Nyquist plot, with the same time delay, you will notice that, while the phase of L never drops below 80 degrees, the phase of L does, for >.03 rad/s. This means that in this case the gain k cannot be increased beyond the point at which crossover occurs at c =.03 rad/s, and we recover the condition k <.6 for closed-loop stability. A design procedure: Equation () suggests a procedure to design a feedback control system in the presence of time delay, as follows:. Design a feedback control system ignoring the time delay.. Check the effective phase margin, using (). If the effective phase margin is too small (or negative, indicating closed-loop instability), redesign the controller according to one or both of these criteria: Increase the phase at crossover, e.g., using a phase lead controller. Decrease the crossover frequency, e.g., reducing the gain, or possibly a phase lag controller (to maintain command-following performance). 3. Iterate until a satisfactory controller is found. 4 Time delays and the root locus method So far, we haven t talked about the root locus method in conjunction with time delays. The reason is simple: in order to apply the root locus method, the loop transfer function must be rational, i.e., the ratio of two polynomials in s. This is not the case when a time delay is present since the term e st is not a rational function. In order to use the root locus method in this case, it is required to approximate the time delay with a rational transfer function. A first choice would be a Taylor series expansion, which will take the form e st = st + (st ) 6 (st ) 3... Let s truncate this series and maintain only the terms up to the second order in (st ), i.e., let us write e st st + (st ). Notice that this is a non-proper transfer function with two non-minimum phase zeros. This would be a good approximation for st <<. However, the magnitude of the frequency 5

6 response diverges for whereas we know that the magnitude of e jomegat is always equal to one. A better approximation can be obtained by using what is called a Padè approximant. What we will do is approximate the exponential representing the time delay with a ratio of two polynomials. For simplicity, let us limit ourselves to the ratio of first-order polynomials in s, i.e., let us write e st s + p k. s + q In order to figure out the right values of the coefficients k, p, and q, let us ensure that the Padè approximation matches the relevant terms in the Taylor series expansion. In other words, let us impose that s + p k s + q = st + (st ) 6 (st ) 3..., at least up to the terms that we can match using our three free parameters. We get ks + kp = s + q s T qst + s 3 T + q(st ) We can t do anything about the cubic term and higher, but we can ensure that all the terms of order up to and including match, by imposing the following choices: Solving for k, p, and q, we get and finally Order 0 : kp = q, Order : k = qt, Order : 0 = T + qt. q =, T k =, p =, T e st /T s. /T + s Such an approximation has the advantage that the magnitude of its frequency response is always equal to one. Using the Padè approximation, we can represent a time delay on the root locus as a pole and zero, respectively at ±/T. Notice the presence of a non-minimum-phase zero. This approximation method is useful since it allows us to use the root locus method for control design, and gain the insight provided by it. In particular, notice the fact that we can immediately conclude that we cannnot increase the gain arbitrarily, since eventually the closed-loop pole will converge to the non-minimum phase zero for large gains. 6

7 Considering again the example introduced in the previous sections, the root locus sketch will look like Figure 4. The root locus analysis will tell us that the closed-loop system will remain stable as long as k < 3. This is not correct, but only gives us a rough estimate of the gain margin. A better approximation may be achieved using a higher-order Padè approximation. Im(s) Re(s) Figure 4: Root locus sketch for a simple lag, with a unit time delay modeled using a firstorder Padè approximant. Summarizing, the Padè approximation allows the use of the root locus method to study the closed-loop stability of a system in the presence of a time delay. However, the results may not be accurate, and it is recommended that the root-locus method be used only as a backof-the-envelope tool providing some additional insight in the control design process. Note: The only tool that would always provide you with correct answers in all cases when a time delay is present (including, e.g., unstable open-loop poles and non-minimum phase zeros) is the Nyquist plot. 7

### x(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =!

1 Time-Delay Systems 1.1 Introduction Recitation Notes: Time Delays and Nyquist Plots Review In control systems a challenging area is operating in the presence of delays. Delays can be attributed to acquiring

### 16.30/31, Fall 2010 Recitation # 2

16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R + - E G c (s) G(s) C Figure 1: The standard block diagram

### Control Systems I. Lecture 9: The Nyquist condition

Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute

### Exercise 1 (A Non-minimum Phase System)

Prof. Dr. E. Frazzoli 5-59- Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Non-minimum Phase System) To increase the rise time of the system, we

### Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

### Exercise 1 (A Non-minimum Phase System)

Prof. Dr. E. Frazzoli 5-59- Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Non-minimum Phase System) To decrease the rise time of the system,

### Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods

### Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year

Linear Control Systems Lecture #3 - Frequency Domain Analysis Guillaume Drion Academic year 2018-2019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closed-loop system

### Classify a transfer function to see which order or ramp it can follow and with which expected error.

Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

### Digital Control Systems

Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist

### Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using

### H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )

.7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a

### 2.004 Dynamics and Control II Spring 2008

MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology

### Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Robust

### Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017

### Stability of Feedback Control Systems: Absolute and Relative

Stability of Feedback Control Systems: Absolute and Relative Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University Stability: Absolute and Relative

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the

### Control Systems I. Lecture 9: The Nyquist condition

Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control

### Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

### Compensation 8. f4 that separate these regions of stability and instability. The characteristic S 0 L U T I 0 N S

S 0 L U T I 0 N S Compensation 8 Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. As suggested in Lecture 8, to perform a Nyquist analysis, we

### r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers

### MEM 355 Performance Enhancement of Dynamical Systems

MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer

### Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems

Spectral Properties of Linear- Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018! Stability margins of single-input/singleoutput (SISO) systems! Characterizations

### Stabilizing the dual inverted pendulum

Stabilizing the dual inverted pendulum Taylor W. Barton Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: tbarton@mit.edu) Abstract: A classical control approach to stabilizing a

### Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

### Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

### Process Control & Instrumentation (CH 3040)

First-order systems Process Control & Instrumentation (CH 3040) Arun K. Tangirala Department of Chemical Engineering, IIT Madras January - April 010 Lectures: Mon, Tue, Wed, Fri Extra class: Thu A first-order

### ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

### This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted.

6.003 Homework #14 This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted. Problems 1. Neural signals The following figure illustrates

### Analysis of SISO Control Loops

Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

### Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

### Control Systems. Frequency Method Nyquist Analysis.

Frequency Method Nyquist Analysis chibum@seoultech.ac.kr Outline Polar plots Nyquist plots Factors of polar plots PolarNyquist Plots Polar plot: he locus of the magnitude of ω vs. the phase of ω on polar

### Homework 7 - Solutions

Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

### Intro to Frequency Domain Design

Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions

### Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk

### Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

### STABILITY OF CLOSED-LOOP CONTOL SYSTEMS

CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 10-1 Road Map of the Lecture X Stability of closed-loop control

### Frequency Response Techniques

4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10

### MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems Introduction to Describing Functions Hanz Richter Mechanical Engineering Department Cleveland State University Introduction Frequency domain methods

Control Systems Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017 Analog vs. digital systems Continuous- and Discretetime Dynamic Models Frequency Response Transfer Functions

### MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,

### Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain)

1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Linear systems (frequency domain) 2 Motivations Consider an LTI system Thanks to the Lagrange s formula we can compute the motion of

### Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

### MAE 143B - Homework 9

MAE 143B - Homework 9 7.1 a) We have stable first-order poles at p 1 = 1 and p 2 = 1. For small values of ω, we recover the DC gain K = lim ω G(jω) = 1 1 = 2dB. Having this finite limit, our straight-line

### ECE 486 Control Systems

ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following

### 1(b) Compensation Example S 0 L U T I 0 N S

S 0 L U T I 0 N S Compensation Example I 1U Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. (a) The solution of this problem is outlined in

### Massachusetts Institute of Technology

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 2010 ANSWER BOOKLET

### Exam. 135 minutes + 15 minutes reading time

Exam January 23, 27 Control Systems I (5-59-L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages

### 6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson

Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closed-loop behavior what we want it to be. To review: - G c (s) G(s) H(s) you are here! plant For

### EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 5-8 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3

### Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and

### Topic # Feedback Control Systems

Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19

### 6.003 (Fall 2011) Quiz #3 November 16, 2011

6.003 (Fall 2011) Quiz #3 November 16, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 3 1 pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

### Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions

Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus

### 6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control Lecture 17: Robust Stability Readings: DDV, Chapters 19, 20 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology April 6, 2011 E. Frazzoli

### CONTROL SYSTEM STABILITY. CHARACTERISTIC EQUATION: The overall transfer function for a. where A B X Y are polynomials. Substitution into the TF gives:

CONTROL SYSTEM STABILITY CHARACTERISTIC EQUATION: The overall transfer function for a feedback control system is: TF = G / [1+GH]. The G and H functions can be put into the form: G(S) = A(S) / B(S) H(S)

### Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

### Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Guzzella 9.1-3, Emilio Frazzoli

Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Guzzella 9.1-3, 13.3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 3, 2017 E. Frazzoli (ETH)

### 2.004 Dynamics and Control II Spring 2008

MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8 I * * Massachusetts

### Robust Control 3 The Closed Loop

Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time

### Dr. Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

### Nyquist Plots / Nyquist Stability Criterion

Nyquist Plots / Nyquist Stability Criterion Given Nyquist plot is a polar plot for vs using the Nyquist contour (K=1 is assumed) Applying the Nyquist criterion to the Nyquist plot we can determine the

### 6.302 Feedback Systems Recitation 27: Final Recitation and Review Prof. Joel L. Dawson

6.302 Feedbac Systems We re going to spend some time in this recitation revisiting some of the very early examples of recitation #1. To aid us in this review, the final class exercise involves exploring

### K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify

### STABILITY ANALYSIS TECHNIQUES

ECE4540/5540: Digital Control Systems 4 1 STABILITY ANALYSIS TECHNIQUES 41: Bilinear transformation Three main aspects to control-system design: 1 Stability, 2 Steady-state response, 3 Transient response

### Robust fixed-order H Controller Design for Spectral Models by Convex Optimization

Robust fixed-order H Controller Design for Spectral Models by Convex Optimization Alireza Karimi, Gorka Galdos and Roland Longchamp Abstract A new approach for robust fixed-order H controller design by

### ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

### Topic # Feedback Control

Topic #4 16.31 Feedback Control Stability in the Frequency Domain Nyquist Stability Theorem Examples Appendix (details) This is the basis of future robustness tests. Fall 2007 16.31 4 2 Frequency Stability

### EE Experiment 11 The Laplace Transform and Control System Characteristics

EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

### Control System Design

ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability

### Classical Dual-Inverted-Pendulum Control

PRESENTED AT THE 23 IEEE CONFERENCE ON DECISION AND CONTROL 4399 Classical Dual-Inverted-Pendulum Control Kent H. Lundberg James K. Roberge Department of Electrical Engineering and Computer Science Massachusetts

### Table of Laplacetransform

Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

### Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust

### Root locus 5. tw4 = 450. Root Locus S5-1 S O L U T I O N S

Root Locus S5-1 S O L U T I O N S Root locus 5 Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. (a) Rule 2 is all that is required to find the

### Frequency domain analysis

Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

### Class 13 Frequency domain analysis

Class 13 Frequency domain analysis The frequency response is the output of the system in steady state when the input of the system is sinusoidal Methods of system analysis by the frequency response, as

### MEM 355 Performance Enhancement of Dynamical Systems

MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions

### Additional Closed-Loop Frequency Response Material (Second edition, Chapter 14)

Appendix J Additional Closed-Loop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. Closed-Loop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain

### Boise State University Department of Electrical Engineering ECE461 Control Systems. Control System Design in the Frequency Domain

Boise State University Department of Electrical Engineering ECE6 Control Systems Control System Design in the Frequency Domain Situation: Consider the following block diagram of a type- servomechanism:

### Let the plant and controller be described as:-

Summary of Fundamental Limitations in Feedback Design (LTI SISO Systems) From Chapter 6 of A FIRST GRADUATE COURSE IN FEEDBACK CONTROL By J. S. Freudenberg (Winter 2008) Prepared by: Hammad Munawar (Institute

### Solutions of Spring 2008 Final Exam

Solutions of Spring 008 Final Exam 1. (a) The isocline for slope 0 is the pair of straight lines y = ±x. The direction field along these lines is flat. The isocline for slope is the hyperbola on the left

### Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response- Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to

### Exam. 135 minutes, 15 minutes reading time

Exam August 15, 2017 Control Systems I (151-0591-00L) Prof Emilio Frazzoli Exam Exam Duration: 135 minutes, 15 minutes reading time Number of Problems: 44 Number of Points: 52 Permitted aids: Important:

### MAE 143B - Homework 9

MAE 43B - Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4

### 1 (20 pts) Nyquist Exercise

EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

### INTRODUCTION TO DIGITAL CONTROL

ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

### MAS107 Control Theory Exam Solutions 2008

MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

### CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 22: The Nyquist Criterion Overview In this Lecture, you will learn: Complex Analysis The Argument Principle The Contour

### ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.

### The Relation Between the 3-D Bode Diagram and the Root Locus. Insights into the connection between these classical methods. By Panagiotis Tsiotras

F E A T U R E The Relation Between the -D Bode Diagram and the Root Locus Insights into the connection between these classical methods Bode diagrams and root locus plots have been the cornerstone of control

### Simple Harmonic Motion Concept Questions

Simple Harmonic Motion Concept Questions Question 1 Which of the following functions x(t) has a second derivative which is proportional to the negative of the function d x! " x? dt 1 1. x( t ) = at. x(

### Lecture 17 Date:

Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A

### Compensator Design to Improve Transient Performance Using Root Locus

1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

### Introduction to Process Control

Introduction to Process Control For more visit :- www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit:- www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The