CSCI8980 Algorithmic Techniques for Big Data September 12, Lecture 2

Size: px
Start display at page:

Download "CSCI8980 Algorithmic Techniques for Big Data September 12, Lecture 2"

Transcription

1 CSCI8980 Algorithmic Techniques for Big Data September, 03 Dr. Barna Saha Lecture Scribe: Matt Nohelty Overview We continue our discussion on data streaming models where streams of elements are coming in and main memory space is not sufficient to hold all the data. We begin by discussing the Chernoff Bound and demonstrating it s proof. We then look at the Universal Hash Family and discuss pairwise, k-wise, and fully independent hash functions. Next, we dive deeper into algorithms used to count distinct items in a stream and discuss two algorithms and analyze them. Chernoff Bound The Chernoff Bound is commonly used to show randomization algorithms produce results of acceptable quality or to determine the number of runs needed to acheive a result of a certain probability. Many data streaming algorithms have components of randomization so the Chernoff Bound is frequently used with these algorithms. The Chernoff Bound produces tighter bounds than the Markov Inequality or Chebyshev Inequality but it requires assumptions that those two do not. The Chernoff Bound requires it s input to be independent Bernoulli random variables which the other two inequalities do not. Theorem (The Chernoff Bound). Let X, X...X n be n independent Bernoulli random variables with Pr(X i ) p i. Let X X i. Hence, [ ] E[X] E Xi E [X i ] Pr(X i ) p i µ(say). Then the Chernoff Bound says for any ɛ > 0 Pr(X > ( + ɛ)µ) Pr(X < ( ɛ)µ) ( e ɛ ( + ɛ) ɛ ( e ɛ ( ɛ) ɛ ) µ and ) µ When 0 < ɛ < the above expression can be further simplified to Pr(X > ( + ɛ)µ) e µɛ 3 and Pr(X < ( ɛ)µ) e µɛ Hence Pr( X µ > ɛµ) e µɛ 3

2 Proof of the Chernoff Upper Bound The upper bound of the Chernoff Bound states: Pr(X > ( + ɛ)µ) e µɛ 3 Proof. P r(e tx e t(+ɛ)µ ) for any t > 0 P r(e tx e t(+ɛ)µ ) E[e tx ] by Markov Inequality et(+ɛ)µ Expand x in the numerator: E[e tx ] E[e t xi ] E[e tx e tx...e txn ] all are independent by base assumption in Chernoff Bound n E[e tx i ] i n [p i e t + ( p i )] i n [ + p i (e t )] i n [e p i (e t )] because e x > + x i e n i p i(e t ) e (et )µ Using the simplified numerator in the Chernoff Bound yields E[eet ] e t(+ɛ)µ Differentiating to find t where the above is minimized results in t ln( + ɛ) Returning to the upper bound with t. Expand x in the numerator: P r(x ( + ɛ)µ) e(e(ln(+ɛ) )µ e +ɛ)ln(+ɛ)µ ) µ ( e ɛ ( + ɛ) (+ɛ) e µ[(+ɛ)ln(+ɛ) ɛ] [ ] ] e µ (+ɛ) [ɛ ɛ + ɛ ɛ e µ [ ɛ ] ɛ [ e µ ɛ ɛ3 6 e µ ɛ ( ɛ ) ] e µ ɛ 3 which is the upper bound of the Chernoff Bound

3 The proof of the lower bound of the Chernoff Bound can be found using similar logic as the proof of the upper bound. Universal Hash Family The Univeral Hash Family is a family of hash functions H {h h : [N] [M]} is called a pairwise independent family of hash functions if for all i j [N] and any k, l [M] P r h H [h(i) k h(j) l] is a strongly universal hash family () M A hash function is pairwise independent if property holds. This definition can be extend to form k-wise hash functions as well. K-wise hash functions are important because they allow for efficient construction of hash families. Fully independent hash functions generally require large space requirements. Hash functions are uniform over [M] P r h H [h(i) k] M () P r h H [h(i) h(j)] M is a weakly universal hash family (3) To Construct a pairwise independent hash family: Let p be a prime. For any a, b Z p {0,,,...p }, define h a,b : Z p Z p by h a,b (x) ax + bmodp. The resulting collection of functions H {h a,b a, b Z p } is a pairwise independent hash family. 3 Counting Distinct Items Given a stream of data a, find the total number of distinct items in the stream. For the purpose of this discussion, we assume the stream to too large to be stored in main memory. a a a...a m a i (j, µ) where j [, n] and µ m represents the number of elements in the stream n represents the maximum number of distinct elements that could be in the stream. The goal is to find the actual number of distinct elements, DE. However, because we cannot store a in main memory, we must approximate DE. This approximation will be denoted DE. We want to find DE such that the following constraint holds with probablilty ( δ). 3

4 ( ɛ)de DE DE( + ɛ) for ɛ > 0 (4) 4 Algorithm - Count Distinct Items The following algorithm attempts to guess the actual value of DE by looping through exponentially growing values of t. For each guess, the algorithm calls EST IMAT E which returns YES if there are at least t distinct values, otherwise it returns NO. EST IMAT E returns the correct answer with probability ( δ) as we will see later. Following the for loop, we have a list of YES/NO values corresponding to each t. The algorithm returns the largest value of t which has a value YES. Algorithm COUNT DISTINCT ITEMS[a, ɛ, δ] ɛ ɛ/ for t, ( + ɛ ), ( + ɛ ),... ( + ɛ ) log n +ɛ do δ ɛ δ logn {Run in parallel} b t EST IMAT E(a, t, ɛ, δ ) {b t is a boolean variable YES/NO} end for return the smallest value of t such that b t YES and b t NO if no such t exists, return n Below is an example of the output produced by the for loop in Algorithm. This is the likely output produced in the case where ( + ɛ ) DE ( + ɛ ). t YES t ( + ɛ ) YES t ( + ɛ ) NO t ( + ɛ ) 3 NO... t n NO As the example illustrates, the resulting DE satisfies the constraint: ( ɛ)de DE DE(+ɛ) Proof. For each t, we get the correct result with probability δ ɛ δ logn and there are log +ɛ n different values for t. P r(error for any t) δ P r(error in at least one t) t P r(error for any t) log +ɛ nδ ɛ lognδ δ P r(no error in any t) < δ 4

5 5 Algorithm - ESTIMATE EST IMAT E randomly selects c ɛ log δ hash functions from a fully-independent hash family. The hash function h is of the form h : [...n] [...t]. We then compute the hash value for every value of in the stream for each hash function. If the hash function ever returns, use YES for this t, otherwise use NO. Finally, count the number of NO values and if it s greater than or equal to c log ɛ δ, return NO, otherwise return YES. EST IMAT E returns the correct answer with probabily ( δ) because there are c ɛ log δ hash functions used and the most common answer wins. This minimizes the impact of the randomization in the hash functions. Algorithm [ESTIMATE(a, t, ɛ, δ )] count 0 for t, c log ɛ δ do Select a hash function h i uniformly and randomly from a fully-independent hash family H {run in parallel} b i t NO repeat Consider the current element in the stream a, say a i (j, µ) if h i (j) then b i t YES, BREAK end if until a is exhasted if b i t NO then count count + end if end for if count e c ɛ return NO else return YES end if log δ then Proof. The goal is to return YES when DE > ( + ɛ)t and to return NO when DE < ( ɛ)t. Let h i be the i th run through the for loop. There are k runs where k c ɛ log δ P r(h i (j) ) t by definition of h P r(return NO for the i th run) P r(none of the distinct elements are mapped to by h i ) ( t )DE 5

6 Lemma. Consider the i th round of EST IMAT E(a, t, ɛ, δ ) for any i [ c ɛ log δ ] If DE > ( + ɛ)t and ɛ < then P r[b i t NO] e ɛ e P r(i th run returns NO) ( t )(+ɛ)t e (+ɛ) when t is large e ( ɛ + ɛ...) e ɛ e + ɛ e e ɛ e If DE < ( ɛ)t and ɛ < then P r[b i t NO] e + ɛ e P r(i th run returns NO) ( e )( ɛ)t e + ɛ e by the same logic as above Lemma 3. Demostrates the bounds of the error in Algorithm. If DE > ( + ɛ )t then P r[b t NO] δ If DE < ( ɛ )t then P r[b t Y ES] δ P r(algorithm returns NO) P r(x > k e ) because we return NO if more than k e e ɛ ck runs return NO Define a random variable x i if algorithm returns NO, otherwise x i 0. x E[x] xi E[x] P r(xi ) P r(i th run returns NO) k( e + ɛ ) by Lemma e 6

7 Re-write P r(x > k e ) in the form of the Chernoff Bound P r(x > ( + ɛ )E[x]) ( + ɛ )k( e ɛ e ) k by using the value of E[x] from above e ( + ɛ )( ɛ ) + ɛ ɛ P r(x > k e ) e ɛ µ 3 e ɛ ck δ using k c log ɛ δ The lower bound can be demonstrated with similar logic to what was done to prove the upper c bound above. This shows that when run enough times, log ɛ δ, we can minimize the probability for error to a sufficient level. Lemma 4. If DE t > ɛ t then P r[error] δ Using the Union Bound, we know the total P r[error] cannot exceed the sum of the P r[error] of the lower bound and the P r[error] of the upper bound. δ + δ δ Lemma 5. For all t such that DE t > ɛ t then P r[error] δ Theorem 6. Algorithm returns an estimate of DE within ( ± ɛ) with probability ( δ). Theorem 6 shows that this algorithm to count distinct items has achieved our goal of finding an algorithm that computes DE under the following accuracy constraint: ( ɛ)de DE DE( + ɛ) for ɛ > 0 and does so with probability ( δ). 6 Space and Time Complexity of Count Distinct Items Space Complexity: O( ɛ 3 log n(log δ +log logn+log ɛ )) Time Complexity: O( ɛ 3 log n(log δ +log logn+log ɛ )) Ignoring constants, there are ɛ logn copies that need to be stored and each requires bit. The space complexity of EST IMAT E is log logn ɛ ɛδ Expanding this space complexity yields: (loglogn + log ɛ ɛ + log δ ) Combining the space complexity and number of copies yields the total space complexity: 7

8 O( ɛ 3 logn(log δ + log logn + log )) (5) ɛ The time complexity can be computed in the same way as the space complexity. In practice, the space and time dependency on ɛ 3 is generally problematic. The optimal lower bound on space complexity for counting distinct items in a stream was shown to be Ω( + log n). ɛ References [] Daniel M. Kane, Jelani Nelson and David P. Woodruff. An Optimal Algorithm for the Distinct Elements Problem. PODS 00:

Lecture 2 Sept. 8, 2015

Lecture 2 Sept. 8, 2015 CS 9r: Algorithms for Big Data Fall 5 Prof. Jelani Nelson Lecture Sept. 8, 5 Scribe: Jeffrey Ling Probability Recap Chebyshev: P ( X EX > λ) < V ar[x] λ Chernoff: For X,..., X n independent in [, ],

More information

Lecture 3 Sept. 4, 2014

Lecture 3 Sept. 4, 2014 CS 395T: Sublinear Algorithms Fall 2014 Prof. Eric Price Lecture 3 Sept. 4, 2014 Scribe: Zhao Song In today s lecture, we will discuss the following problems: 1. Distinct elements 2. Turnstile model 3.

More information

1 Estimating Frequency Moments in Streams

1 Estimating Frequency Moments in Streams CS 598CSC: Algorithms for Big Data Lecture date: August 28, 2014 Instructor: Chandra Chekuri Scribe: Chandra Chekuri 1 Estimating Frequency Moments in Streams A significant fraction of streaming literature

More information

Lecture 2: Streaming Algorithms

Lecture 2: Streaming Algorithms CS369G: Algorithmic Techniques for Big Data Spring 2015-2016 Lecture 2: Streaming Algorithms Prof. Moses Chariar Scribes: Stephen Mussmann 1 Overview In this lecture, we first derive a concentration inequality

More information

Lecture 1 September 3, 2013

Lecture 1 September 3, 2013 CS 229r: Algorithms for Big Data Fall 2013 Prof. Jelani Nelson Lecture 1 September 3, 2013 Scribes: Andrew Wang and Andrew Liu 1 Course Logistics The problem sets can be found on the course website: http://people.seas.harvard.edu/~minilek/cs229r/index.html

More information

Randomness and Computation March 13, Lecture 3

Randomness and Computation March 13, Lecture 3 0368.4163 Randomness and Computation March 13, 2009 Lecture 3 Lecturer: Ronitt Rubinfeld Scribe: Roza Pogalnikova and Yaron Orenstein Announcements Homework 1 is released, due 25/03. Lecture Plan 1. Do

More information

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials).

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials). Tail Inequalities William Hunt Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV William.Hunt@mail.wvu.edu Introduction In this chapter, we are interested

More information

CSE 190, Great ideas in algorithms: Pairwise independent hash functions

CSE 190, Great ideas in algorithms: Pairwise independent hash functions CSE 190, Great ideas in algorithms: Pairwise independent hash functions 1 Hash functions The goal of hash functions is to map elements from a large domain to a small one. Typically, to obtain the required

More information

The space complexity of approximating the frequency moments

The space complexity of approximating the frequency moments The space complexity of approximating the frequency moments Felix Biermeier November 24, 2015 1 Overview Introduction Approximations of frequency moments lower bounds 2 Frequency moments Problem Estimate

More information

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation.

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation. Chernoff Bounds Theme: try to show that it is unlikely a random variable X is far away from its expectation. The more you know about X, the better the bound you obtain. Markov s inequality: use E[X ] Chebyshev

More information

Lecture 4: Hashing and Streaming Algorithms

Lecture 4: Hashing and Streaming Algorithms CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 4: Hashing and Streaming Algorithms Lecturer: Shayan Oveis Gharan 01/18/2017 Scribe: Yuqing Ai Disclaimer: These notes have not been subjected

More information

Topics in Probabilistic Combinatorics and Algorithms Winter, Basic Derandomization Techniques

Topics in Probabilistic Combinatorics and Algorithms Winter, Basic Derandomization Techniques Topics in Probabilistic Combinatorics and Algorithms Winter, 016 3. Basic Derandomization Techniques Definition. DTIME(t(n)) : {L : L can be decided deterministically in time O(t(n)).} EXP = { L: L can

More information

Some notes on streaming algorithms continued

Some notes on streaming algorithms continued U.C. Berkeley CS170: Algorithms Handout LN-11-9 Christos Papadimitriou & Luca Trevisan November 9, 016 Some notes on streaming algorithms continued Today we complete our quick review of streaming algorithms.

More information

Lecture 6 September 13, 2016

Lecture 6 September 13, 2016 CS 395T: Sublinear Algorithms Fall 206 Prof. Eric Price Lecture 6 September 3, 206 Scribe: Shanshan Wu, Yitao Chen Overview Recap of last lecture. We talked about Johnson-Lindenstrauss (JL) lemma [JL84]

More information

Expectation, inequalities and laws of large numbers

Expectation, inequalities and laws of large numbers Chapter 3 Expectation, inequalities and laws of large numbers 3. Expectation and Variance Indicator random variable Let us suppose that the event A partitions the sample space S, i.e. A A S. The indicator

More information

Lecture 2. Frequency problems

Lecture 2. Frequency problems 1 / 43 Lecture 2. Frequency problems Ricard Gavaldà MIRI Seminar on Data Streams, Spring 2015 Contents 2 / 43 1 Frequency problems in data streams 2 Approximating inner product 3 Computing frequency moments

More information

Randomized algorithm

Randomized algorithm Tutorial 4 Joyce 2009-11-24 Outline Solution to Midterm Question 1 Question 2 Question 1 Question 2 Question 3 Question 4 Question 5 Solution to Midterm Solution to Midterm Solution to Midterm Question

More information

CS261: A Second Course in Algorithms Lecture #18: Five Essential Tools for the Analysis of Randomized Algorithms

CS261: A Second Course in Algorithms Lecture #18: Five Essential Tools for the Analysis of Randomized Algorithms CS261: A Second Course in Algorithms Lecture #18: Five Essential Tools for the Analysis of Randomized Algorithms Tim Roughgarden March 3, 2016 1 Preamble In CS109 and CS161, you learned some tricks of

More information

Homework 4 Solutions

Homework 4 Solutions CS 174: Combinatorics and Discrete Probability Fall 01 Homework 4 Solutions Problem 1. (Exercise 3.4 from MU 5 points) Recall the randomized algorithm discussed in class for finding the median of a set

More information

Lecture 1: Introduction to Sublinear Algorithms

Lecture 1: Introduction to Sublinear Algorithms CSE 522: Sublinear (and Streaming) Algorithms Spring 2014 Lecture 1: Introduction to Sublinear Algorithms March 31, 2014 Lecturer: Paul Beame Scribe: Paul Beame Too much data, too little time, space for

More information

Lecture 01 August 31, 2017

Lecture 01 August 31, 2017 Sketching Algorithms for Big Data Fall 2017 Prof. Jelani Nelson Lecture 01 August 31, 2017 Scribe: Vinh-Kha Le 1 Overview In this lecture, we overviewed the six main topics covered in the course, reviewed

More information

Notes on MapReduce Algorithms

Notes on MapReduce Algorithms Notes on MapReduce Algorithms Barna Saha 1 Finding Minimum Spanning Tree of a Dense Graph in MapReduce We are given a graph G = (V, E) on V = N vertices and E = m N 1+c edges for some constant c > 0. Our

More information

Lecture 5: The Principle of Deferred Decisions. Chernoff Bounds

Lecture 5: The Principle of Deferred Decisions. Chernoff Bounds Randomized Algorithms Lecture 5: The Principle of Deferred Decisions. Chernoff Bounds Sotiris Nikoletseas Associate Professor CEID - ETY Course 2013-2014 Sotiris Nikoletseas, Associate Professor Randomized

More information

CSE548, AMS542: Analysis of Algorithms, Spring 2014 Date: May 12. Final In-Class Exam. ( 2:35 PM 3:50 PM : 75 Minutes )

CSE548, AMS542: Analysis of Algorithms, Spring 2014 Date: May 12. Final In-Class Exam. ( 2:35 PM 3:50 PM : 75 Minutes ) CSE548, AMS54: Analysis of Algorithms, Spring 014 Date: May 1 Final In-Class Exam ( :35 PM 3:50 PM : 75 Minutes ) This exam will account for either 15% or 30% of your overall grade depending on your relative

More information

CS 591, Lecture 9 Data Analytics: Theory and Applications Boston University

CS 591, Lecture 9 Data Analytics: Theory and Applications Boston University CS 591, Lecture 9 Data Analytics: Theory and Applications Boston University Babis Tsourakakis February 22nd, 2017 Announcement We will cover the Monday s 2/20 lecture (President s day) by appending half

More information

14.1 Finding frequent elements in stream

14.1 Finding frequent elements in stream Chapter 14 Streaming Data Model 14.1 Finding frequent elements in stream A very useful statistics for many applications is to keep track of elements that occur more frequently. It can come in many flavours

More information

6.842 Randomness and Computation Lecture 5

6.842 Randomness and Computation Lecture 5 6.842 Randomness and Computation 2012-02-22 Lecture 5 Lecturer: Ronitt Rubinfeld Scribe: Michael Forbes 1 Overview Today we will define the notion of a pairwise independent hash function, and discuss its

More information

Lecture Lecture 3 Tuesday Sep 09, 2014

Lecture Lecture 3 Tuesday Sep 09, 2014 CS 4: Advanced Algorithms Fall 04 Lecture Lecture 3 Tuesday Sep 09, 04 Prof. Jelani Nelson Scribe: Thibaut Horel Overview In the previous lecture we finished covering data structures for the predecessor

More information

As mentioned, we will relax the conditions of our dictionary data structure. The relaxations we

As mentioned, we will relax the conditions of our dictionary data structure. The relaxations we CSE 203A: Advanced Algorithms Prof. Daniel Kane Lecture : Dictionary Data Structures and Load Balancing Lecture Date: 10/27 P Chitimireddi Recap This lecture continues the discussion of dictionary data

More information

CSE 525 Randomized Algorithms & Probabilistic Analysis Spring Lecture 3: April 9

CSE 525 Randomized Algorithms & Probabilistic Analysis Spring Lecture 3: April 9 CSE 55 Randomized Algorithms & Probabilistic Analysis Spring 01 Lecture : April 9 Lecturer: Anna Karlin Scribe: Tyler Rigsby & John MacKinnon.1 Kinds of randomization in algorithms So far in our discussion

More information

Lecture 5: Hashing. David Woodruff Carnegie Mellon University

Lecture 5: Hashing. David Woodruff Carnegie Mellon University Lecture 5: Hashing David Woodruff Carnegie Mellon University Hashing Universal hashing Perfect hashing Maintaining a Dictionary Let U be a universe of keys U could be all strings of ASCII characters of

More information

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a]

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a] U.C. Berkeley CS273: Parallel and Distributed Theory Lecture 4 Professor Satish Rao September 7, 2010 Lecturer: Satish Rao Last revised September 13, 2010 Lecture 4 1 Deviation bounds. Deviation bounds

More information

CS5314 Randomized Algorithms. Lecture 15: Balls, Bins, Random Graphs (Hashing)

CS5314 Randomized Algorithms. Lecture 15: Balls, Bins, Random Graphs (Hashing) CS5314 Randomized Algorithms Lecture 15: Balls, Bins, Random Graphs (Hashing) 1 Objectives Study various hashing schemes Apply balls-and-bins model to analyze their performances 2 Chain Hashing Suppose

More information

6.1 Occupancy Problem

6.1 Occupancy Problem 15-859(M): Randomized Algorithms Lecturer: Anupam Gupta Topic: Occupancy Problems and Hashing Date: Sep 9 Scribe: Runting Shi 6.1 Occupancy Problem Bins and Balls Throw n balls into n bins at random. 1.

More information

Lecture 4: Sampling, Tail Inequalities

Lecture 4: Sampling, Tail Inequalities Lecture 4: Sampling, Tail Inequalities Variance and Covariance Moment and Deviation Concentration and Tail Inequalities Sampling and Estimation c Hung Q. Ngo (SUNY at Buffalo) CSE 694 A Fun Course 1 /

More information

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010 Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/2/200 Counting Problems Today we describe counting problems and the class #P that they define, and we show that every counting

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms What do you do when a problem is NP-complete? or, when the polynomial time solution is impractically slow? assume input is random, do expected performance. Eg, Hamiltonian path

More information

2 How many distinct elements are in a stream?

2 How many distinct elements are in a stream? Dealing with Massive Data January 31, 2011 Lecture 2: Distinct Element Counting Lecturer: Sergei Vassilvitskii Scribe:Ido Rosen & Yoonji Shin 1 Introduction We begin by defining the stream formally. Definition

More information

Lecture 4 February 2nd, 2017

Lecture 4 February 2nd, 2017 CS 224: Advanced Algorithms Spring 2017 Prof. Jelani Nelson Lecture 4 February 2nd, 2017 Scribe: Rohil Prasad 1 Overview In the last lecture we covered topics in hashing, including load balancing, k-wise

More information

Lecture 5: Two-point Sampling

Lecture 5: Two-point Sampling Randomized Algorithms Lecture 5: Two-point Sampling Sotiris Nikoletseas Professor CEID - ETY Course 2017-2018 Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 5 1 / 26 Overview A. Pairwise

More information

Lecture 4 Thursday Sep 11, 2014

Lecture 4 Thursday Sep 11, 2014 CS 224: Advanced Algorithms Fall 2014 Lecture 4 Thursday Sep 11, 2014 Prof. Jelani Nelson Scribe: Marco Gentili 1 Overview Today we re going to talk about: 1. linear probing (show with 5-wise independence)

More information

Tail Inequalities Randomized Algorithms. Sariel Har-Peled. December 20, 2002

Tail Inequalities Randomized Algorithms. Sariel Har-Peled. December 20, 2002 Tail Inequalities 497 - Randomized Algorithms Sariel Har-Peled December 0, 00 Wir mssen wissen, wir werden wissen (We must know, we shall know) David Hilbert 1 Tail Inequalities 1.1 The Chernoff Bound

More information

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15)

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15) Problem 1: Chernoff Bounds via Negative Dependence - from MU Ex 5.15) While deriving lower bounds on the load of the maximum loaded bin when n balls are thrown in n bins, we saw the use of negative dependence.

More information

Hash Tables. Given a set of possible keys U, such that U = u and a table of m entries, a Hash function h is a

Hash Tables. Given a set of possible keys U, such that U = u and a table of m entries, a Hash function h is a Hash Tables Given a set of possible keys U, such that U = u and a table of m entries, a Hash function h is a mapping from U to M = {1,..., m}. A collision occurs when two hashed elements have h(x) =h(y).

More information

The Monte Carlo Method

The Monte Carlo Method The Monte Carlo Method Example: estimate the value of π. Choose X and Y independently and uniformly at random in [0, 1]. Let Pr(Z = 1) = π 4. 4E[Z] = π. { 1 if X Z = 2 + Y 2 1, 0 otherwise, Let Z 1,...,

More information

Lecture 5. 1 Review (Pairwise Independence and Derandomization)

Lecture 5. 1 Review (Pairwise Independence and Derandomization) 6.842 Randomness and Computation September 20, 2017 Lecture 5 Lecturer: Ronitt Rubinfeld Scribe: Tom Kolokotrones 1 Review (Pairwise Independence and Derandomization) As we discussed last time, we can

More information

Lecture Lecture 9 October 1, 2015

Lecture Lecture 9 October 1, 2015 CS 229r: Algorithms for Big Data Fall 2015 Lecture Lecture 9 October 1, 2015 Prof. Jelani Nelson Scribe: Rachit Singh 1 Overview In the last lecture we covered the distance to monotonicity (DTM) and longest

More information

variance of independent variables: sum of variances So chebyshev predicts won t stray beyond stdev.

variance of independent variables: sum of variances So chebyshev predicts won t stray beyond stdev. Announcements No class monday. Metric embedding seminar. Review expectation notion of high probability. Markov. Today: Book 4.1, 3.3, 4.2 Chebyshev. Remind variance, standard deviation. σ 2 = E[(X µ X

More information

Advanced Algorithm Design: Hashing and Applications to Compact Data Representation

Advanced Algorithm Design: Hashing and Applications to Compact Data Representation Advanced Algorithm Design: Hashing and Applications to Compact Data Representation Lectured by Prof. Moses Chariar Transcribed by John McSpedon Feb th, 20 Cucoo Hashing Recall from last lecture the dictionary

More information

Lecture 23: Alternation vs. Counting

Lecture 23: Alternation vs. Counting CS 710: Complexity Theory 4/13/010 Lecture 3: Alternation vs. Counting Instructor: Dieter van Melkebeek Scribe: Jeff Kinne & Mushfeq Khan We introduced counting complexity classes in the previous lecture

More information

Twelfth Problem Assignment

Twelfth Problem Assignment EECS 401 Not Graded PROBLEM 1 Let X 1, X 2,... be a sequence of independent random variables that are uniformly distributed between 0 and 1. Consider a sequence defined by (a) Y n = max(x 1, X 2,..., X

More information

Lecture Examples of problems which have randomized algorithms

Lecture Examples of problems which have randomized algorithms 6.841 Advanced Complexity Theory March 9, 2009 Lecture 10 Lecturer: Madhu Sudan Scribe: Asilata Bapat Meeting to talk about final projects on Wednesday, 11 March 2009, from 5pm to 7pm. Location: TBA. Includes

More information

Lecture 13 March 7, 2017

Lecture 13 March 7, 2017 CS 224: Advanced Algorithms Spring 2017 Prof. Jelani Nelson Lecture 13 March 7, 2017 Scribe: Hongyao Ma Today PTAS/FPTAS/FPRAS examples PTAS: knapsack FPTAS: knapsack FPRAS: DNF counting Approximation

More information

Sparser Johnson-Lindenstrauss Transforms

Sparser Johnson-Lindenstrauss Transforms Sparser Johnson-Lindenstrauss Transforms Jelani Nelson Princeton February 16, 212 joint work with Daniel Kane (Stanford) Random Projections x R d, d huge store y = Sx, where S is a k d matrix (compression)

More information

Data Stream Methods. Graham Cormode S. Muthukrishnan

Data Stream Methods. Graham Cormode S. Muthukrishnan Data Stream Methods Graham Cormode graham@dimacs.rutgers.edu S. Muthukrishnan muthu@cs.rutgers.edu Plan of attack Frequent Items / Heavy Hitters Counting Distinct Elements Clustering items in Streams Motivating

More information

1 Randomized Computation

1 Randomized Computation CS 6743 Lecture 17 1 Fall 2007 1 Randomized Computation Why is randomness useful? Imagine you have a stack of bank notes, with very few counterfeit ones. You want to choose a genuine bank note to pay at

More information

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13 Discrete Mathematics & Mathematical Reasoning Chapter 7 (continued): Markov and Chebyshev s Inequalities; and Examples in probability: the birthday problem Kousha Etessami U. of Edinburgh, UK Kousha Etessami

More information

Problem Set 2. Assigned: Mon. November. 23, 2015

Problem Set 2. Assigned: Mon. November. 23, 2015 Pseudorandomness Prof. Salil Vadhan Problem Set 2 Assigned: Mon. November. 23, 2015 Chi-Ning Chou Index Problem Progress 1 SchwartzZippel lemma 1/1 2 Robustness of the model 1/1 3 Zero error versus 1-sided

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 1/29/2002. Notes for Lecture 3

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 1/29/2002. Notes for Lecture 3 U.C. Bereley CS278: Computational Complexity Handout N3 Professor Luca Trevisan 1/29/2002 Notes for Lecture 3 In this lecture we will define the probabilistic complexity classes BPP, RP, ZPP and we will

More information

11.1 Set Cover ILP formulation of set cover Deterministic rounding

11.1 Set Cover ILP formulation of set cover Deterministic rounding CS787: Advanced Algorithms Lecture 11: Randomized Rounding, Concentration Bounds In this lecture we will see some more examples of approximation algorithms based on LP relaxations. This time we will use

More information

With high probability

With high probability With high probability So far we have been mainly concerned with expected behaviour: expected running times, expected competitive ratio s. But it would often be much more interesting if we would be able

More information

Notes on Discrete Probability

Notes on Discrete Probability Columbia University Handout 3 W4231: Analysis of Algorithms September 21, 1999 Professor Luca Trevisan Notes on Discrete Probability The following notes cover, mostly without proofs, the basic notions

More information

Lecture 4: Two-point Sampling, Coupon Collector s problem

Lecture 4: Two-point Sampling, Coupon Collector s problem Randomized Algorithms Lecture 4: Two-point Sampling, Coupon Collector s problem Sotiris Nikoletseas Associate Professor CEID - ETY Course 2013-2014 Sotiris Nikoletseas, Associate Professor Randomized Algorithms

More information

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems Arnab Bhattacharyya, Palash Dey, and David P. Woodruff Indian Institute of Science, Bangalore {arnabb,palash}@csa.iisc.ernet.in

More information

Approximate Counting and Markov Chain Monte Carlo

Approximate Counting and Markov Chain Monte Carlo Approximate Counting and Markov Chain Monte Carlo A Randomized Approach Arindam Pal Department of Computer Science and Engineering Indian Institute of Technology Delhi March 18, 2011 April 8, 2011 Arindam

More information

The Communication Complexity of Correlation. Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan

The Communication Complexity of Correlation. Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan The Communication Complexity of Correlation Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan Transmitting Correlated Variables (X, Y) pair of correlated random variables Transmitting

More information

Big Data. Big data arises in many forms: Common themes:

Big Data. Big data arises in many forms: Common themes: Big Data Big data arises in many forms: Physical Measurements: from science (physics, astronomy) Medical data: genetic sequences, detailed time series Activity data: GPS location, social network activity

More information

Sparse Johnson-Lindenstrauss Transforms

Sparse Johnson-Lindenstrauss Transforms Sparse Johnson-Lindenstrauss Transforms Jelani Nelson MIT May 24, 211 joint work with Daniel Kane (Harvard) Metric Johnson-Lindenstrauss lemma Metric JL (MJL) Lemma, 1984 Every set of n points in Euclidean

More information

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Hoeffding, Chernoff, Bennet, and Bernstein Bounds Stat 928: Statistical Learning Theory Lecture: 6 Hoeffding, Chernoff, Bennet, Bernstein Bounds Instructor: Sham Kakade 1 Hoeffding s Bound We say X is a sub-gaussian rom variable if it has quadratically

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Announcements: Homework 6 deadline extended to April 24 th at 11:59 PM Course Evaluation Survey: Live until 4/29/2018

More information

25.2 Last Time: Matrix Multiplication in Streaming Model

25.2 Last Time: Matrix Multiplication in Streaming Model EE 381V: Large Scale Learning Fall 01 Lecture 5 April 18 Lecturer: Caramanis & Sanghavi Scribe: Kai-Yang Chiang 5.1 Review of Streaming Model Streaming model is a new model for presenting massive data.

More information

Frequency Estimators

Frequency Estimators Frequency Estimators Outline for Today Randomized Data Structures Our next approach to improving performance. Count-Min Sketches A simple and powerful data structure for estimating frequencies. Count Sketches

More information

Randomized Complexity Classes; RP

Randomized Complexity Classes; RP Randomized Complexity Classes; RP Let N be a polynomial-time precise NTM that runs in time p(n) and has 2 nondeterministic choices at each step. N is a polynomial Monte Carlo Turing machine for a language

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Lecture and notes by: Alessio Guerrieri and Wei Jin Bloom filters and Hashing

Lecture and notes by: Alessio Guerrieri and Wei Jin Bloom filters and Hashing Bloom filters and Hashing 1 Introduction The Bloom filter, conceived by Burton H. Bloom in 1970, is a space-efficient probabilistic data structure that is used to test whether an element is a member of

More information

Probability Background

Probability Background Probability Background Namrata Vaswani, Iowa State University August 24, 2015 Probability recap 1: EE 322 notes Quick test of concepts: Given random variables X 1, X 2,... X n. Compute the PDF of the second

More information

Introduction to discrete probability. The rules Sample space (finite except for one example)

Introduction to discrete probability. The rules Sample space (finite except for one example) Algorithms lecture notes 1 Introduction to discrete probability The rules Sample space (finite except for one example) say Ω. P (Ω) = 1, P ( ) = 0. If the items in the sample space are {x 1,..., x n }

More information

1 Maintaining a Dictionary

1 Maintaining a Dictionary 15-451/651: Design & Analysis of Algorithms February 1, 2016 Lecture #7: Hashing last changed: January 29, 2016 Hashing is a great practical tool, with an interesting and subtle theory too. In addition

More information

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions 18.175: Lecture 8 Weak laws and moment-generating/characteristic functions Scott Sheffield MIT 18.175 Lecture 8 1 Outline Moment generating functions Weak law of large numbers: Markov/Chebyshev approach

More information

Lecture 5: Probabilistic tools and Applications II

Lecture 5: Probabilistic tools and Applications II T-79.7003: Graphs and Networks Fall 2013 Lecture 5: Probabilistic tools and Applications II Lecturer: Charalampos E. Tsourakakis Oct. 11, 2013 5.1 Overview In the first part of today s lecture we will

More information

1 Review of The Learning Setting

1 Review of The Learning Setting COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #8 Scribe: Changyan Wang February 28, 208 Review of The Learning Setting Last class, we moved beyond the PAC model: in the PAC model we

More information

1 Approximate Counting by Random Sampling

1 Approximate Counting by Random Sampling COMP8601: Advanced Topics in Theoretical Computer Science Lecture 5: More Measure Concentration: Counting DNF Satisfying Assignments, Hoeffding s Inequality Lecturer: Hubert Chan Date: 19 Sep 2013 These

More information

CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014

CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014 CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014 Instructor: Chandra Cheuri Scribe: Chandra Cheuri The Misra-Greis deterministic counting guarantees that all items with frequency > F 1 /

More information

COS 341: Discrete Mathematics

COS 341: Discrete Mathematics COS 341: Discrete Mathematics Final Exam Fall 2006 Print your name General directions: This exam is due on Monday, January 22 at 4:30pm. Late exams will not be accepted. Exams must be submitted in hard

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 2 Luca Trevisan August 29, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 2 Luca Trevisan August 29, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analysis Handout Luca Trevisan August 9, 07 Scribe: Mahshid Montazer Lecture In this lecture, we study the Max Cut problem in random graphs. We compute the probable

More information

Common-Knowledge / Cheat Sheet

Common-Knowledge / Cheat Sheet CSE 521: Design and Analysis of Algorithms I Fall 2018 Common-Knowledge / Cheat Sheet 1 Randomized Algorithm Expectation: For a random variable X with domain, the discrete set S, E [X] = s S P [X = s]

More information

Expectation of geometric distribution. Variance and Standard Deviation. Variance: Examples

Expectation of geometric distribution. Variance and Standard Deviation. Variance: Examples Expectation of geometric distribution Variance and Standard Deviation What is the probability that X is finite? Can now compute E(X): Σ k=f X (k) = Σ k=( p) k p = pσ j=0( p) j = p ( p) = E(X) = Σ k=k (

More information

Advanced topic: Space complexity

Advanced topic: Space complexity Advanced topic: Space complexity CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2016 1/28 Review: time complexity We have looked at how long it takes to

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 32

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 32 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 32 CS 473: Algorithms, Spring 2018 Universal Hashing Lecture 10 Feb 15, 2018 Most

More information

PRAMs. M 1 M 2 M p. globaler Speicher

PRAMs. M 1 M 2 M p. globaler Speicher PRAMs A PRAM (parallel random access machine) consists of p many identical processors M,..., M p (RAMs). Processors can read from/write to a shared (global) memory. Processors work synchronously. M M 2

More information

Impagliazzo s Hardcore Lemma

Impagliazzo s Hardcore Lemma Average Case Complexity February 8, 011 Impagliazzo s Hardcore Lemma ofessor: Valentine Kabanets Scribe: Hoda Akbari 1 Average-Case Hard Boolean Functions w.r.t. Circuits In this lecture, we are going

More information

Lecture 24: Approximate Counting

Lecture 24: Approximate Counting CS 710: Complexity Theory 12/1/2011 Lecture 24: Approximate Counting Instructor: Dieter van Melkebeek Scribe: David Guild and Gautam Prakriya Last time we introduced counting problems and defined the class

More information

Randomized Algorithms Multiple Choice Test

Randomized Algorithms Multiple Choice Test 4435 Randomized Algorithms Multiple Choice Test Sample test: only 8 questions 24 minutes (Real test has 30 questions 90 minutes) Årskort Name Each of the following 8 questions has 4 possible answers of

More information

Lecture 6. Today we shall use graph entropy to improve the obvious lower bound on good hash functions.

Lecture 6. Today we shall use graph entropy to improve the obvious lower bound on good hash functions. CSE533: Information Theory in Computer Science September 8, 010 Lecturer: Anup Rao Lecture 6 Scribe: Lukas Svec 1 A lower bound for perfect hash functions Today we shall use graph entropy to improve the

More information

In a five-minute period, you get a certain number m of requests. Each needs to be served from one of your n servers.

In a five-minute period, you get a certain number m of requests. Each needs to be served from one of your n servers. Suppose you are a content delivery network. In a five-minute period, you get a certain number m of requests. Each needs to be served from one of your n servers. How to distribute requests to balance the

More information

Randomized Algorithms. Zhou Jun

Randomized Algorithms. Zhou Jun Randomized Algorithms Zhou Jun 1 Content 13.1 Contention Resolution 13.2 Global Minimum Cut 13.3 *Random Variables and Expectation 13.4 Randomized Approximation Algorithm for MAX 3- SAT 13.6 Hashing 13.7

More information

Lecture Lecture 25 November 25, 2014

Lecture Lecture 25 November 25, 2014 CS 224: Advanced Algorithms Fall 2014 Lecture Lecture 25 November 25, 2014 Prof. Jelani Nelson Scribe: Keno Fischer 1 Today Finish faster exponential time algorithms (Inclusion-Exclusion/Zeta Transform,

More information

The diameter of a random Cayley graph of Z q

The diameter of a random Cayley graph of Z q The diameter of a random Cayley graph of Z q Gideon Amir Ori Gurel-Gurevich September 4, 009 Abstract Consider the Cayley graph of the cyclic group of prime order q with k uniformly chosen generators.

More information

Non-Interactive Zero Knowledge (II)

Non-Interactive Zero Knowledge (II) Non-Interactive Zero Knowledge (II) CS 601.442/642 Modern Cryptography Fall 2017 S 601.442/642 Modern CryptographyNon-Interactive Zero Knowledge (II) Fall 2017 1 / 18 NIZKs for NP: Roadmap Last-time: Transformation

More information

Solutions to Problem Set 4

Solutions to Problem Set 4 UC Berkeley, CS 174: Combinatorics and Discrete Probability (Fall 010 Solutions to Problem Set 4 1. (MU 5.4 In a lecture hall containing 100 people, you consider whether or not there are three people in

More information