Group Actions Definition. Let G be a group, and let X be a set. A left action of G on X is a function θ : G X X satisfying:

Size: px
Start display at page:

Download "Group Actions Definition. Let G be a group, and let X be a set. A left action of G on X is a function θ : G X X satisfying:"

Transcription

1 Group Actions Definition. Let G be a group, and let X be a set. A left action of G on X is a function θ : G X X satisfying: (a) θ(g,θ(g 2,x)) = θ(g g 2,x) for all g,g 2 G and x X. (b) θ(,x) = x for all x X. It s customary to write g x or gx for θ(g,x); the equations above then become If G acts on X, X is a G-set. g (g 2 x) = (g g 2 )x and x = x. Lemma. If X is a G-set, there is a homomorphism φ : G S X, where S X is the group of permutations of X. Conversely, any homomorphism φ : G S X gives rise to a G-set structure on X. Proof. Let X be a G-set. Define φ : G S X by φ(g)(x) = gx. Since φ(g )φ(g)(x) = x and φ(g)φ(g )(x) = x, φ(g) and φ(g ) are inverses. Therefore, φ(g) is a bijection, so φ(g) S X. To see that φ is a homomorphism, note that φ(g )φ(g 2 )(x) = g (g 2 x) = (g g 2 )x = φ(g g 2 )(x). Conversely, suppose φ : G S X is a homomorphism. Define an action of G on X by Then g x = φ(g)(x). φ(g g 2 )(x) = φ(g )φ(g 2 )(x) so (g g 2 )x = g (g 2 x). This verifies property. Since φ is a homomorphism, φ() = id. Hence, x = φ()(x) = id(x) = x. This verifies property 2. Hence, X is a G-set. Example. Any group G acts on any set X by defining g x = x for all g G and all x X. Example. Let Z act on by translation. That is, if n Z and x, define n x = x+n. Now n (n 2 x) = n (x+n 2 ) = x+n 2 +n = (n +n 2 ) x Therefore, this is an action of Z on. 0 x = x+0 = x Example. Let G = {[ ] [ ] [ ] [ ]},,,. 0

2 Make G into a group via matrix multiplication. G acts on 2 by multiplication: e.g. [ ][ ] [ ] x x =. 0 y y Notice that [ ] [ ] 0 [ ] [ ] 0 fixes everything, fixes the x-axis, fixes the y-axis, fixes the origin. Example. S 3 acts on {,2,3}. And in general, S n acts on {,2,...,n}. Definition. Let X be a G-set, and let x X. The orbit of x under the action is Gx = {gx g G}. The set of orbits of X under G is denoted X/G. If X = Gx for some x X, the action is transitive. (In this case, X is said to be a transitive G-set.) Lemma. X is a transitive G-set if and only if for all x,y X, there exists g G such that gx = y. Proof. ( ) Since X is transitive, X = Gz for some z X. Let x = g z and let y = g 2 z, where g,g 2 G. Then g x = z, so y = g 2g x. ( ) Suppose that for all x,y X, there exists g G such that gx = y. Take any x X. If y X, then gx = y for some g G, so y Gx. Thus, X Gx, so X = Gx, and X is a transitive G-set. Definition. Let X be a G-set, and let x X. The isotropy group of x is G x = {g G gx = x}. If G x = {} for all x X, the action is free. (In this case, X is called a free G-set.) Example. Let D 3, the dihedral group of order 6, act on the vertices {,2,3} of an equilateral triangle. If m denotes reflection through the line through vertex, then the isotropy group of vertex is {id,m } (and similarly for the other two vertices). Lemma. Let X be a G-set, and let x X. Then G x < G. Proof. First, x = x, so G x. Suppose g G x. Then gx = x, so x = g x. Therefore, g G x. Finally, suppose g,h G x. Then (gh)x = g(hx) = gx = x. 2

3 Hence, gh G x. Therefore, G x < G. Example. Consider the translation action of Z on defined above. An orbit has the form x+z = {x+n n Z}, where 0 x <. Thus, the space of orbits /Z is equivalent to S, the circle. (Of course, the two are actually isomorphic as groups!) The action is free, since the only n Z which fixes x is 0. On the other hand, the action is not transitive: There is no integer translation carrying 0 to, for instance. 2 Example. Consider the action of the group G = {[ ] [ ] [ ] [ ]},,, 0 on the plane 2. The isotropy groups of points under this action are: {[ G (x,0) = {[ G (0,y) = G (x,y) = Obviously, the action is not free. The orbits of points under the action are: G (0,0) = G, ] [, 0 ], {[ ]} for x 0, [ ] }, for y 0, ]} for x,y 0. {(0,0)}, {(x,0),( x,0)} for x 0, {(0,y),(0, y)} for y 0, {(x,y),( x,y),(x, y),( x, y)} for x,y 0. (-x,y) (x,y) (x,-y) (-x,-y) Since there is more than one orbit, the action is not transitive. 3

4 The set of orbits 2 /G looks like the first quadrant {(x,y) x,y 0}. Example. Consider the action of S 3 on {,2,3}. The action is transitive: If i,j {,2,3}, i j, the transposition (i j) carries i to j. (If i = j, there s nothing to do.) The isotropy groups are G {} = {id,(2 3)} G {2} = {id,( 3)} G {3} = {id,( 2)} Proposition. Let X be a G-set. Then X is partitioned by the orbits. Proof. If x X, then x Gx. Hence, X is certainly the union of the orbits. I need to show that two orbits are either disjoint or identical. Suppose that Gx Gy. Find z Gx Gy. Then z = g x and z = g 2 y for some g,g 2 G. Hence, g x = g 2 y, so x = g g 2y and y = g2 g x. Now let gx Gx. Then gx = gg g 2y Gy. This proves Gx Gy. Likewise, if gy Gy, then gy = gg2 g x Gx, so Gy Gx. Therefore, Gx = Gy. Hence, two orbits which intersect nontrivially must in fact coincide. This proves that the orbits partition X. There is a group-theoretic relationship between isotropy groups of points in the same orbit. Proposition. Let X be a G-set, let x X, and let g G. Then G gx = gg x g. Proof. Suppose h G gx, so hgx = gx. Then g hgx = x, so g hg = g 0 G x. Hence, h = gg 0 g gg x g. This shows that G gx gg x g. Conversely, suppose gg 0 g gg x g, where g 0 G x. Since g 0 x = x, gg 0 g (gx) = gg 0 x = gx. This shows that gg 0 g G gx, so gg x g G gx. Therefore, G gx = gg x g. Corollary. Let X be a G-set. If x and y are in the same G-orbit, then G x and G y are conjugate subgroups. In particular, G x G y. The following result not only serves as a counting theorem in the finite case, but also says that up to equivalence, every G-set looks like a union of sets of cosets of G. Theorem. Let X be a G-set, and let x X. (a) There is a bijection Gx G/G x. (b) If G is finite, Gx = G/G x = (G : G x ): the order of the orbit equals the index of the isotropy group. Proof. Define φ : Gx G/G x by φ(gx) = gg x. I must check that φ is well-defined. Suppose then that g x = g 2 x. Then g 2 g x = x, so g 2 g G x. Hence, g G x = g 2 G x. Now φ(g x) = g G x = g 2 G x = φ(g 2 x). 4

5 Therefore, φ is indeed well-defined. Define ψ : G/G x Gx by ψ(gg x ) = gx. I must check that ψ is well-defined. Suppose that g G x = g 2 G x. Then g2 g G x = G x, so g2 g G x. This means that g2 g x = x, or g x = g 2 x. It follows that ψ(g G x ) = g x = g 2 x = ψ(g 2 G x ). Hence, ψ is well-defined. Since φ and ψ are inverses, they are both bijections, and Gx and G/G x are in - correspondence. The second statement follows immediately from the first. Definition. Let X be a G-set, and let S G. The fixed point set of X under S is X S = {x X gx = x for all g S}. If g G, then X g denotes the elements of X fixed by g: i.e. X g = {x X gx = x}. Example. Consider the action of S 3 on the set {,2,3}. Here is a picture of the isotropy groups and the fixed point sets: id ( 2) ( 3) (2 3) ( 2 3) ( 3 2) 2 3 A in a position means that the element of {,2,3} which labels the row is fixed by the element of S 3 which labels the column. Example. Consider the group of symmetries of the hexagon below: Since the hexagon is not regular, the symmetry group has only 4 elements: the identity map (id), reflection across the x-axis (m x ), reflection across the y-axis (m y ), and rotation by π (r). The symmetry 5

6 group acts on the set of vertices by permutations. id m x m y r This action is not transitive (unlike the action in the preceding example). The orbits are {,4} and {2,3,5,6}. The following counting theorem,has important combinatorial applications; it relates the number of orbits under a group action to the size of the fixed point sets. Theorem. (Burnside) Let X be a finite G-set, where G is a finite group. Then X/G = G X g. g G Proof. Observe that g G x if and only if x X g. It follows that Now just compute: G g G x X X g = G x. g G x X X g = G x = G x = G G (G : G x ) = x X x X x X Gx = K X/Gx K K = K X/G = X/G. Example. Each side of a square may be colored red, green, or blue. Colors may be repeated, and the square may be turned over. How many distinct squares are there? Note that since the square may be turned over, the following colored squares are considered the same: G B B G 6

7 I ll temporarily nail the square to the wall so it can t move. There are then 3 4 = 8 ways to paint the square. Two such paintings are the same if one can be carried into the other by a symmetry of the square i.e., by an element of D 4. Thus, X is the set of paintings of the fixed square. G = D 4 acts by symmetries. An equivalence class of paintings is simply an orbit under this action, and I want the number of orbits. According to Burnside, I simply count the number of fixed-square paintings (elements of X) fixed by each element of G. element id r r 2 r 3 m x m y m + m fixed points For example, m x, reflection about the x-axis, fixes paintings where the top and bottom sides have the same color. Each side can be a different color, so there are = 27 paintings fixed by m x. The total number of fixed points is 68. Since D 4 = 8, there are 68/8 = 2 distinct paintings. c 2007 by Bruce Ikenaga 7

Cosets. gh = {gh h H}. Hg = {hg h H}.

Cosets. gh = {gh h H}. Hg = {hg h H}. Cosets 10-4-2006 If H is a subgroup of a group G, a left coset of H in G is a subset of the form gh = {gh h H}. A right coset of H in G is a subset of the form Hg = {hg h H}. The collection of left cosets

More information

Normal Subgroups and Quotient Groups

Normal Subgroups and Quotient Groups Normal Subgroups and Quotient Groups 3-20-2014 A subgroup H < G is normal if ghg 1 H for all g G. Notation: H G. Every subgroup of an abelian group is normal. Every subgroup of index 2 is normal. If H

More information

The Class Equation X = Gx. x X/G

The Class Equation X = Gx. x X/G The Class Equation 9-9-2012 If X is a G-set, X is partitioned by the G-orbits. So if X is finite, X = x X/G ( x X/G means you should take one representative x from each orbit, and sum over the set of representatives.

More information

Course 311: Abstract Algebra Academic year

Course 311: Abstract Algebra Academic year Course 311: Abstract Algebra Academic year 2007-08 D. R. Wilkins Copyright c David R. Wilkins 1997 2007 Contents 1 Topics in Group Theory 1 1.1 Groups............................... 1 1.2 Examples of Groups.......................

More information

Group Theory

Group Theory Group Theory 2014 2015 Solutions to the exam of 4 November 2014 13 November 2014 Question 1 (a) For every number n in the set {1, 2,..., 2013} there is exactly one transposition (n n + 1) in σ, so σ is

More information

Automorphism Groups Definition. An automorphism of a group G is an isomorphism G G. The set of automorphisms of G is denoted Aut G.

Automorphism Groups Definition. An automorphism of a group G is an isomorphism G G. The set of automorphisms of G is denoted Aut G. Automorphism Groups 9-9-2012 Definition. An automorphism of a group G is an isomorphism G G. The set of automorphisms of G is denoted Aut G. Example. The identity map id : G G is an automorphism. Example.

More information

What is a semigroup? What is a group? What is the difference between a semigroup and a group?

What is a semigroup? What is a group? What is the difference between a semigroup and a group? The second exam will be on Thursday, July 5, 2012. The syllabus will be Sections IV.5 (RSA Encryption), III.1, III.2, III.3, III.4 and III.8, III.9, plus the handout on Burnside coloring arguments. Of

More information

Isomorphisms. 0 a 1, 1 a 3, 2 a 9, 3 a 7

Isomorphisms. 0 a 1, 1 a 3, 2 a 9, 3 a 7 Isomorphisms Consider the following Cayley tables for the groups Z 4, U(), R (= the group of symmetries of a nonsquare rhombus, consisting of four elements: the two rotations about the center, R 8, and

More information

Author: Bob Howlett Group representation theory Lecture 1, 28/7/97. Introduction

Author: Bob Howlett Group representation theory Lecture 1, 28/7/97. Introduction Author: Bob Howlett Group representation theory Lecture 1, 28/7/97 Introduction This course is a mix of group theory and linear algebra, with probably more of the latter than the former. You may need to

More information

Teddy Einstein Math 4320

Teddy Einstein Math 4320 Teddy Einstein Math 4320 HW4 Solutions Problem 1: 2.92 An automorphism of a group G is an isomorphism G G. i. Prove that Aut G is a group under composition. Proof. Let f, g Aut G. Then f g is a bijective

More information

Homework #4 Solutions Due: July 3, Do the following exercises from Lax: Page 124: 9.1, 9.3, 9.5

Homework #4 Solutions Due: July 3, Do the following exercises from Lax: Page 124: 9.1, 9.3, 9.5 Do the following exercises from Lax: Page 124: 9.1, 9.3, 9.5 9.1. a) Find the number of different squares with vertices colored red, white, or blue. b) Find the number of different m-colored squares for

More information

Name: Solutions - AI FINAL EXAM

Name: Solutions - AI FINAL EXAM 1 2 3 4 5 6 7 8 9 10 11 12 13 total Name: Solutions - AI FINAL EXAM The first 7 problems will each count 10 points. The best 3 of # 8-13 will count 10 points each. Total is 100 points. A 4th problem from

More information

CONJUGATION IN A GROUP

CONJUGATION IN A GROUP CONJUGATION IN A GROUP KEITH CONRAD 1. Introduction A reflection across one line in the plane is, geometrically, just like a reflection across any other line. That is, while reflections across two different

More information

SPRING BREAK PRACTICE PROBLEMS - WORKED SOLUTIONS

SPRING BREAK PRACTICE PROBLEMS - WORKED SOLUTIONS Math 330 - Abstract Algebra I Spring 2009 SPRING BREAK PRACTICE PROBLEMS - WORKED SOLUTIONS (1) Suppose that G is a group, H G is a subgroup and K G is a normal subgroup. Prove that H K H. Solution: We

More information

Part II Permutations, Cosets and Direct Product

Part II Permutations, Cosets and Direct Product Part II Permutations, Cosets and Direct Product Satya Mandal University of Kansas, Lawrence KS 66045 USA January 22 8 Permutations Definition 8.1. Let A be a set. 1. A a permuation of A is defined to be

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall I. Take-Home Portion: Math 350 Final Exam Due by 5:00pm on Tues. 5/12/15 No resources/devices other than our class textbook and class notes/handouts may be used. You must work alone. Choose any 5 problems

More information

Groups and Symmetries

Groups and Symmetries Groups and Symmetries Definition: Symmetry A symmetry of a shape is a rigid motion that takes vertices to vertices, edges to edges. Note: A rigid motion preserves angles and distances. Definition: Group

More information

MAT1100HF ALGEBRA: ASSIGNMENT II. Contents 1. Problem Problem Problem Problem Problem Problem

MAT1100HF ALGEBRA: ASSIGNMENT II. Contents 1. Problem Problem Problem Problem Problem Problem MAT1100HF ALEBRA: ASSINMENT II J.A. MRACEK 998055704 DEPARTMENT OF MATHEMATICS UNIVERSITY OF TORONTO Contents 1. Problem 1 1 2. Problem 2 2 3. Problem 3 2 4. Problem 4 3 5. Problem 5 3 6. Problem 6 3 7.

More information

Notes on Algebra. Donu Arapura

Notes on Algebra. Donu Arapura Notes on Algebra Donu Arapura December 5, 2017 Contents 1 The idea of a group 3 1.5 Exercises............................... 8 2 The group of permutations 11 2.11 Exercises...............................

More information

Proof. Right multiplication of a permutation by a transposition of neighbors either creates a new inversion or kills an existing one.

Proof. Right multiplication of a permutation by a transposition of neighbors either creates a new inversion or kills an existing one. GROUPS AROUND US Pavel Etingof Introduction These are notes of a mini-course of group theory for high school students that I gave in the Summer of 2009. This mini-course covers the most basic parts of

More information

Physics 251 Solution Set 1 Spring 2017

Physics 251 Solution Set 1 Spring 2017 Physics 5 Solution Set Spring 07. Consider the set R consisting of pairs of real numbers. For (x,y) R, define scalar multiplication by: c(x,y) (cx,cy) for any real number c, and define vector addition

More information

POLYA S ENUMERATION ALEC ZHANG

POLYA S ENUMERATION ALEC ZHANG POLYA S ENUMERATION ALEC ZHANG Abstract. We explore Polya s theory of counting from first principles, first building up the necessary algebra and group theory before proving Polya s Enumeration Theorem

More information

Notes on Group Theory. by Avinash Sathaye, Professor of Mathematics November 5, 2013

Notes on Group Theory. by Avinash Sathaye, Professor of Mathematics November 5, 2013 Notes on Group Theory by Avinash Sathaye, Professor of Mathematics November 5, 2013 Contents 1 Preparation. 2 2 Group axioms and definitions. 2 Shortcuts................................. 2 2.1 Cyclic groups............................

More information

CHAPTER 1. Symmetry, group actions, the orbit counting formula, the class equation, and applications

CHAPTER 1. Symmetry, group actions, the orbit counting formula, the class equation, and applications CHAPTER 1 Symmetry, group actions, the orbit counting formula, the class equation, and applications 1 Contents Chapter 1. Symmetry, group actions, the orbit counting formula, the class equation, and applications

More information

Algebra: Groups. Group Theory a. Examples of Groups. groups. The inverse of a is simply a, which exists.

Algebra: Groups. Group Theory a. Examples of Groups. groups. The inverse of a is simply a, which exists. Group Theory a Let G be a set and be a binary operation on G. (G, ) is called a group if it satisfies the following. 1. For all a, b G, a b G (closure). 2. For all a, b, c G, a (b c) = (a b) c (associativity).

More information

Module MA3411: Galois Theory Michaelmas Term 2009

Module MA3411: Galois Theory Michaelmas Term 2009 Module MA3411: Galois Theory Michaelmas Term 2009 D. R. Wilkins Copyright c David R. Wilkins 1997 2009 Contents 1 Basic Concepts and Results of Group Theory 1 1.1 Groups...............................

More information

M3P10: GROUP THEORY LECTURES BY DR. JOHN BRITNELL; NOTES BY ALEKSANDER HORAWA

M3P10: GROUP THEORY LECTURES BY DR. JOHN BRITNELL; NOTES BY ALEKSANDER HORAWA M3P10: GROUP THEORY LECTURES BY DR. JOHN BRITNELL; NOTES BY ALEKSANDER HORAWA These are notes from the course M3P10: Group Theory taught by Dr. John Britnell, in Fall 2015 at Imperial College London. They

More information

Cosets and Normal Subgroups

Cosets and Normal Subgroups Cosets and Normal Subgroups (Last Updated: November 3, 2017) These notes are derived primarily from Abstract Algebra, Theory and Applications by Thomas Judson (16ed). Most of this material is drawn from

More information

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV. Glossary 1 Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.23 Abelian Group. A group G, (or just G for short) is

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

120A LECTURE OUTLINES

120A LECTURE OUTLINES 120A LECTURE OUTLINES RUI WANG CONTENTS 1. Lecture 1. Introduction 1 2 1.1. An algebraic object to study 2 1.2. Group 2 1.3. Isomorphic binary operations 2 2. Lecture 2. Introduction 2 3 2.1. The multiplication

More information

Theorems and Definitions in Group Theory

Theorems and Definitions in Group Theory Theorems and Definitions in Group Theory Shunan Zhao Contents 1 Basics of a group 3 1.1 Basic Properties of Groups.......................... 3 1.2 Properties of Inverses............................. 3

More information

GROUP ACTIONS KEITH CONRAD

GROUP ACTIONS KEITH CONRAD GROUP ACTIONS KEITH CONRAD 1. Introduction The symmetric groups S n, alternating groups A n, and (for n 3) dihedral groups D n behave, by their very definition, as permutations on certain sets. The groups

More information

Lecture 4: Orbits. Rajat Mittal. IIT Kanpur

Lecture 4: Orbits. Rajat Mittal. IIT Kanpur Lecture 4: Orbits Rajat Mittal IIT Kanpur In the beginning of the course we asked a question. How many different necklaces can we form using 2 black beads and 10 white beads? In the question, the numbers

More information

Discrete Mathematics. Benny George K. September 22, 2011

Discrete Mathematics. Benny George K. September 22, 2011 Discrete Mathematics Benny George K Department of Computer Science and Engineering Indian Institute of Technology Guwahati ben@iitg.ernet.in September 22, 2011 Set Theory Elementary Concepts Let A and

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

Chapter 16 MSM2P2 Symmetry And Groups

Chapter 16 MSM2P2 Symmetry And Groups Chapter 16 MSM2P2 Symmetry And Groups 16.1 Symmetry 16.1.1 Symmetries Of The Square Definition 1 A symmetry is a function from an object to itself such that for any two points a and b in the object, the

More information

The Symmetric Groups

The Symmetric Groups Chapter 7 The Symmetric Groups 7. Introduction In the investigation of finite groups the symmetric groups play an important role. Often we are able to achieve a better understanding of a group if we can

More information

Mathematics 331 Solutions to Some Review Problems for Exam a = c = 3 2 1

Mathematics 331 Solutions to Some Review Problems for Exam a = c = 3 2 1 Mathematics 331 Solutions to Some Review Problems for Exam 2 1. Write out all the even permutations in S 3. Solution. The six elements of S 3 are a =, b = 1 3 2 2 1 3 c =, d = 3 2 1 2 3 1 e =, f = 3 1

More information

INTRODUCTION GROUP THEORY

INTRODUCTION GROUP THEORY MATH10021 Algebra INTRODUCTION TO GROUP THEORY Michael Wemyss 2012/13 1 2 Dr. Michael Wemyss Office 5602 m.wemyss@ed.ac.uk Throughout the term, all course information (including exercise sheets, workshop

More information

Groups and Galois Theory

Groups and Galois Theory Groups and Galois Theory Course Notes Alberto Elduque Departamento de Matemáticas Universidad de Zaragoza 50009 Zaragoza, Spain c 2009-2019 Alberto Elduque Contents Syllabus What is this course about?

More information

x 2 = xn xn = x 2 N = N = 0

x 2 = xn xn = x 2 N = N = 0 Potpourri. Spring 2010 Problem 2 Let G be a finite group with commutator subgroup G. Let N be the subgroup of G generated by the set {x 2 : x G}. Then N is a normal subgroup of G and N contains G. Proof.

More information

SUMMARY OF GROUPS AND RINGS GROUPS AND RINGS III Week 1 Lecture 1 Tuesday 3 March.

SUMMARY OF GROUPS AND RINGS GROUPS AND RINGS III Week 1 Lecture 1 Tuesday 3 March. SUMMARY OF GROUPS AND RINGS GROUPS AND RINGS III 2009 Week 1 Lecture 1 Tuesday 3 March. 1. Introduction (Background from Algebra II) 1.1. Groups and Subgroups. Definition 1.1. A binary operation on a set

More information

Overgroups of Intersections of Maximal Subgroups of the. Symmetric Group. Jeffrey Kuan

Overgroups of Intersections of Maximal Subgroups of the. Symmetric Group. Jeffrey Kuan Overgroups of Intersections of Maximal Subgroups of the Symmetric Group Jeffrey Kuan Abstract The O Nan-Scott theorem weakly classifies the maximal subgroups of the symmetric group S, providing some information

More information

3.8 Cosets, Normal Subgroups, and Factor Groups

3.8 Cosets, Normal Subgroups, and Factor Groups 3.8 J.A.Beachy 1 3.8 Cosets, Normal Subgroups, and Factor Groups from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 29. Define φ : C R by φ(z) = z, for

More information

A FRIENDLY INTRODUCTION TO GROUP THEORY

A FRIENDLY INTRODUCTION TO GROUP THEORY A FRIENDLY INTRODUCTION TO GROUP THEORY JAKE WELLENS 1. who cares? You do, prefrosh. If you re a math major, then you probably want to pass Math 5. If you re a chemistry major, then you probably want to

More information

Math 430 Final Exam, Fall 2008

Math 430 Final Exam, Fall 2008 IIT Dept. Applied Mathematics, December 9, 2008 1 PRINT Last name: Signature: First name: Student ID: Math 430 Final Exam, Fall 2008 Grades should be posted Friday 12/12. Have a good break, and don t forget

More information

SF2729 GROUPS AND RINGS LECTURE NOTES

SF2729 GROUPS AND RINGS LECTURE NOTES SF2729 GROUPS AND RINGS LECTURE NOTES 2011-03-01 MATS BOIJ 6. THE SIXTH LECTURE - GROUP ACTIONS In the sixth lecture we study what happens when groups acts on sets. 1 Recall that we have already when looking

More information

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS.

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ANDREW SALCH 1. Subgroups, conjugacy, normality. I think you already know what a subgroup is: Definition

More information

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS by J. Szenthe Abstract. In case of Riemannian manifolds isometric actions admitting submanifolds

More information

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch Definitions, Theorems and Exercises Abstract Algebra Math 332 Ethan D. Bloch December 26, 2013 ii Contents 1 Binary Operations 3 1.1 Binary Operations............................... 4 1.2 Isomorphic Binary

More information

MATH 436 Notes: Cyclic groups and Invariant Subgroups.

MATH 436 Notes: Cyclic groups and Invariant Subgroups. MATH 436 Notes: Cyclic groups and Invariant Subgroups. Jonathan Pakianathan September 30, 2003 1 Cyclic Groups Now that we have enough basic tools, let us go back and study the structure of cyclic groups.

More information

D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 3. Modular arithmetic, quotients, product groups

D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 3. Modular arithmetic, quotients, product groups D-MATH Algebra I HS 2013 Prof. Brent Doran Solution 3 Modular arithmetic, quotients, product groups 1. Show that the functions f = 1/x, g = (x 1)/x generate a group of functions, the law of composition

More information

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno 3.1. The denition. 3. G Groups, as men, will be known by their actions. - Guillermo Moreno D 3.1. An action of a group G on a set X is a function from : G X! X such that the following hold for all g, h

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Supplementary Notes: Simple Groups and Composition Series

Supplementary Notes: Simple Groups and Composition Series 18.704 Supplementary Notes: Simple Groups and Composition Series Genevieve Hanlon and Rachel Lee February 23-25, 2005 Simple Groups Definition: A simple group is a group with no proper normal subgroup.

More information

Math 451, 01, Exam #2 Answer Key

Math 451, 01, Exam #2 Answer Key Math 451, 01, Exam #2 Answer Key 1. (25 points): If the statement is always true, circle True and prove it. If the statement is never true, circle False and prove that it can never be true. If the statement

More information

book 2005/1/23 20:41 page 132 #146

book 2005/1/23 20:41 page 132 #146 book 2005/1/23 20:41 page 132 #146 132 2. BASIC THEORY OF GROUPS Definition 2.6.16. Let a and b be elements of a group G. We say that b is conjugate to a if there is a g G such that b = gag 1. You are

More information

Algebra-I, Fall Solutions to Midterm #1

Algebra-I, Fall Solutions to Midterm #1 Algebra-I, Fall 2018. Solutions to Midterm #1 1. Let G be a group, H, K subgroups of G and a, b G. (a) (6 pts) Suppose that ah = bk. Prove that H = K. Solution: (a) Multiplying both sides by b 1 on the

More information

The number 6. Gabriel Coutinho 2013

The number 6. Gabriel Coutinho 2013 The number 6 Gabriel Coutinho 2013 Abstract The number 6 has a unique and distinguished property. It is the only natural number n for which there is a construction of n isomorphic objects on a set with

More information

Math 120: Homework 6 Solutions

Math 120: Homework 6 Solutions Math 120: Homewor 6 Solutions November 18, 2018 Problem 4.4 # 2. Prove that if G is an abelian group of order pq, where p and q are distinct primes then G is cyclic. Solution. By Cauchy s theorem, G has

More information

GROUP ACTIONS KEITH CONRAD

GROUP ACTIONS KEITH CONRAD GROUP ACTIONS KEITH CONRAD. Introduction The groups S n, A n, and (for n 3) D n behave, by their definitions, as permutations on certain sets. The groups S n and A n both permute the set {, 2,..., n} and

More information

Math 31 Lesson Plan. Day 22: Tying Up Loose Ends. Elizabeth Gillaspy. October 31, Supplies needed: Colored chalk.

Math 31 Lesson Plan. Day 22: Tying Up Loose Ends. Elizabeth Gillaspy. October 31, Supplies needed: Colored chalk. Math 31 Lesson Plan Day 22: Tying Up Loose Ends Elizabeth Gillaspy October 31, 2011 Supplies needed: Colored chalk Other topics V 4 via (P ({1, 2}), ) and Cayley table. D n for general n; what s the center?

More information

MATH 101: ALGEBRA I WORKSHEET, DAY #3. Fill in the blanks as we finish our first pass on prerequisites of group theory.

MATH 101: ALGEBRA I WORKSHEET, DAY #3. Fill in the blanks as we finish our first pass on prerequisites of group theory. MATH 101: ALGEBRA I WORKSHEET, DAY #3 Fill in the blanks as we finish our first pass on prerequisites of group theory 1 Subgroups, cosets Let G be a group Recall that a subgroup H G is a subset that is

More information

17 More Groups, Lagrange s Theorem and Direct Products

17 More Groups, Lagrange s Theorem and Direct Products 7 More Groups, Lagrange s Theorem and Direct Products We consider several ways to produce groups. 7. The Dihedral Group The dihedral group D n is a nonabelian group. This is the set of symmetries of a

More information

Group Theory. Hwan Yup Jung. Department of Mathematics Education, Chungbuk National University

Group Theory. Hwan Yup Jung. Department of Mathematics Education, Chungbuk National University Group Theory Hwan Yup Jung Department of Mathematics Education, Chungbuk National University Hwan Yup Jung (CBNU) Group Theory March 1, 2013 1 / 111 Groups Definition A group is a set G with a binary operation

More information

The Outer Automorphism of S 6

The Outer Automorphism of S 6 Meena Jagadeesan 1 Karthik Karnik 2 Mentor: Akhil Mathew 1 Phillips Exeter Academy 2 Massachusetts Academy of Math and Science PRIMES Conference, May 2016 What is a Group? A group G is a set of elements

More information

Geometric Transformations and Wallpaper Groups

Geometric Transformations and Wallpaper Groups Geometric Transformations and Wallpaper Groups Lance Drager Texas Tech University Geometric Transformations III p.1/25 Introduction to Groups of Isometrics Geometric Transformations III p.2/25 Symmetries

More information

Fix(g). Orb(x) i=1. O i G. i=1. O i. i=1 x O i. = n G

Fix(g). Orb(x) i=1. O i G. i=1. O i. i=1 x O i. = n G Math 761 Fall 2015 Homework 4 Drew Armstrong Problem 1 Burnside s Lemma Let X be a G-set and for all g G define the set Fix(g : {x X : g(x x} X (a If G and X are finite, prove that Fix(g Stab(x g G x X

More information

Section 10: Counting the Elements of a Finite Group

Section 10: Counting the Elements of a Finite Group Section 10: Counting the Elements of a Finite Group Let G be a group and H a subgroup. Because the right cosets are the family of equivalence classes with respect to an equivalence relation on G, it follows

More information

EXERCISES ON THE OUTER AUTOMORPHISMS OF S 6

EXERCISES ON THE OUTER AUTOMORPHISMS OF S 6 EXERCISES ON THE OUTER AUTOMORPHISMS OF S 6 AARON LANDESMAN 1. INTRODUCTION In this class, we investigate the outer automorphism of S 6. Let s recall some definitions, so that we can state what an outer

More information

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31 Contents 1 Lecture 1: Introduction 2 2 Lecture 2: Logical statements and proof by contradiction 7 3 Lecture 3: Induction and Well-Ordering Principle 11 4 Lecture 4: Definition of a Group and examples 15

More information

Abstract Algebra II Groups ( )

Abstract Algebra II Groups ( ) Abstract Algebra II Groups ( ) Melchior Grützmann / melchiorgfreehostingcom/algebra October 15, 2012 Outline Group homomorphisms Free groups, free products, and presentations Free products ( ) Definition

More information

Lecture Notes. Group Theory. Gunnar Traustason (Autumn 2016)

Lecture Notes. Group Theory. Gunnar Traustason (Autumn 2016) Lecture Notes in Group Theory Gunnar Traustason (Autumn 2016) 0 0 Introduction. Groups and symmetry Group Theory can be viewed as the mathematical theory that deals with symmetry, where symmetry has a

More information

1. Group actions and other topics in group theory

1. Group actions and other topics in group theory 1. Group actions and other topics in group theory October 11, 2014 The main topics considered here are group actions, the Sylow theorems, semi-direct products, nilpotent and solvable groups, and simple

More information

Counting Colorings Cleverly

Counting Colorings Cleverly Counting Colorings Cleverly by Zev Chonoles How many ways are there to color a shape? Of course, the answer depends on the number of colors we re allowed to use. More fundamentally, the answer depends

More information

Disjoint G-Designs and the Intersection Problem for Some Seven Edge Graphs. Daniel Hollis

Disjoint G-Designs and the Intersection Problem for Some Seven Edge Graphs. Daniel Hollis Disjoint G-Designs and the Intersection Problem for Some Seven Edge Graphs by Daniel Hollis A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements

More information

ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH

ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH 1. Homomorphisms and isomorphisms between groups. Definition 1.1. Let G, H be groups.

More information

Homomorphisms. The kernel of the homomorphism ϕ:g G, denoted Ker(ϕ), is the set of elements in G that are mapped to the identity in G.

Homomorphisms. The kernel of the homomorphism ϕ:g G, denoted Ker(ϕ), is the set of elements in G that are mapped to the identity in G. 10. Homomorphisms 1 Homomorphisms Isomorphisms are important in the study of groups because, being bijections, they ensure that the domain and codomain groups are of the same order, and being operation-preserving,

More information

Math 3140 Fall 2012 Assignment #3

Math 3140 Fall 2012 Assignment #3 Math 3140 Fall 2012 Assignment #3 Due Fri., Sept. 21. Remember to cite your sources, including the people you talk to. My solutions will repeatedly use the following proposition from class: Proposition

More information

Groups. Groups. 1.Introduction. 1.Introduction. TS.NguyễnViết Đông. 1. Introduction 2.Normal subgroups, quotien groups. 3. Homomorphism.

Groups. Groups. 1.Introduction. 1.Introduction. TS.NguyễnViết Đông. 1. Introduction 2.Normal subgroups, quotien groups. 3. Homomorphism. Groups Groups 1. Introduction 2.Normal sub, quotien. 3. Homomorphism. TS.NguyễnViết Đông 1 2 1.1. Binary Operations 1.2.Definition of Groups 1.3.Examples of Groups 1.4.Sub 1.1. Binary Operations 1.2.Definition

More information

The L 3 (4) near octagon

The L 3 (4) near octagon The L 3 (4) near octagon A. Bishnoi and B. De Bruyn October 8, 206 Abstract In recent work we constructed two new near octagons, one related to the finite simple group G 2 (4) and another one as a sub-near-octagon

More information

ENTRY GROUP THEORY. [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld.

ENTRY GROUP THEORY. [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld. ENTRY GROUP THEORY [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld Group theory [Group theory] is studies algebraic objects called groups.

More information

Module MA3411: Abstract Algebra Galois Theory Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Michaelmas Term 2013 Module MA3411: Abstract Algebra Galois Theory Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents 1 Basic Principles of Group Theory 1 1.1 Groups...............................

More information

1.5 Applications Of The Sylow Theorems

1.5 Applications Of The Sylow Theorems 14 CHAPTER1. GROUP THEORY 8. The Sylow theorems are about subgroups whose order is a power of a prime p. Here is a result about subgroups of index p. Let H be a subgroup of the finite group G, and assume

More information

SUPPLEMENT ON THE SYMMETRIC GROUP

SUPPLEMENT ON THE SYMMETRIC GROUP SUPPLEMENT ON THE SYMMETRIC GROUP RUSS WOODROOFE I presented a couple of aspects of the theory of the symmetric group S n differently than what is in Herstein. These notes will sketch this material. You

More information

DISCRETE MATH (A LITTLE) & BASIC GROUP THEORY - PART 3/3. Contents

DISCRETE MATH (A LITTLE) & BASIC GROUP THEORY - PART 3/3. Contents DISCRETE MATH (A LITTLE) & BASIC GROUP THEORY - PART 3/3 T.K.SUBRAHMONIAN MOOTHATHU Contents 1. Cayley s Theorem 1 2. The permutation group S n 2 3. Center of a group, and centralizers 4 4. Group actions

More information

The Number of Symmetric Colorings of the Quaternion Group

The Number of Symmetric Colorings of the Quaternion Group Symmetry 010,, 69-75; doi:10.3390/sym010069 Article OPEN ACCESS symmetry ISSN 073-8994 www.mdpi.com/journal/symmetry The Number of Symmetric Colorings of the Quaternion Group Yuliya Zelenyuk School of

More information

ABSTRACT ALGEBRA: REVIEW PROBLEMS ON GROUPS AND GALOIS THEORY

ABSTRACT ALGEBRA: REVIEW PROBLEMS ON GROUPS AND GALOIS THEORY ABSTRACT ALGEBRA: REVIEW PROBLEMS ON GROUPS AND GALOIS THEORY John A. Beachy Northern Illinois University 2000 ii J.A.Beachy This is a supplement to Abstract Algebra, Second Edition by John A. Beachy and

More information

GROUP ACTIONS RYAN C. SPIELER

GROUP ACTIONS RYAN C. SPIELER GROUP ACTIONS RYAN C. SPIELER Abstract. In this paper, we examine group actions. Groups, the simplest objects in Algebra, are sets with a single operation. We will begin by defining them more carefully

More information

Math 2070BC Term 2 Weeks 1 13 Lecture Notes

Math 2070BC Term 2 Weeks 1 13 Lecture Notes Math 2070BC 2017 18 Term 2 Weeks 1 13 Lecture Notes Keywords: group operation multiplication associative identity element inverse commutative abelian group Special Linear Group order infinite order cyclic

More information

MA441: Algebraic Structures I. Lecture 14

MA441: Algebraic Structures I. Lecture 14 MA441: Algebraic Structures I Lecture 14 22 October 2003 1 Review from Lecture 13: We looked at how the dihedral group D 4 can be viewed as 1. the symmetries of a square, 2. a permutation group, and 3.

More information

Cayley Graphs of Finitely Generated Groups

Cayley Graphs of Finitely Generated Groups Cayley Graphs of Finitely Generated Groups Simon Thomas Rutgers University 13th May 2014 Cayley graphs of finitely generated groups Definition Let G be a f.g. group and let S G { 1 } be a finite generating

More information

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT Contents 1. Group Theory 1 1.1. Basic Notions 1 1.2. Isomorphism Theorems 2 1.3. Jordan- Holder Theorem 2 1.4. Symmetric Group 3 1.5. Group action on Sets 3 1.6.

More information

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3 Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3 3. (a) Yes; (b) No; (c) No; (d) No; (e) Yes; (f) Yes; (g) Yes; (h) No; (i) Yes. Comments: (a) is the additive group

More information

ALGEBRA PROBLEMS FOR MAA MINI-COURSE ON GEOMETRY AND ALGEBRA IN MUSIC THEORY JOINT MATHEMATICS MEETING IN NEW ORLEANS, JANUARY 9, 2011

ALGEBRA PROBLEMS FOR MAA MINI-COURSE ON GEOMETRY AND ALGEBRA IN MUSIC THEORY JOINT MATHEMATICS MEETING IN NEW ORLEANS, JANUARY 9, 2011 ALGEBRA PROBLEMS FOR MAA MINI-COURSE ON GEOMETRY AND ALGEBRA IN MUSIC THEORY JOINT MATHEMATICS MEETING IN NEW ORLEANS, JANUARY 9, 2011 THOMAS M. FIORE 1. Pitches and Pitch Classes (1.1) (Pitch Classes

More information

its image and kernel. A subgroup of a group G is a non-empty subset K of G such that k 1 k 1

its image and kernel. A subgroup of a group G is a non-empty subset K of G such that k 1 k 1 10 Chapter 1 Groups 1.1 Isomorphism theorems Throughout the chapter, we ll be studying the category of groups. Let G, H be groups. Recall that a homomorphism f : G H means a function such that f(g 1 g

More information

SYMMETRIES IN R 3 NAMITA GUPTA

SYMMETRIES IN R 3 NAMITA GUPTA SYMMETRIES IN R 3 NAMITA GUPTA Abstract. This paper will introduce the concept of symmetries being represented as permutations and will proceed to explain the group structure of such symmetries under composition.

More information

Groups. Chapter 1. If ab = ba for all a, b G we call the group commutative.

Groups. Chapter 1. If ab = ba for all a, b G we call the group commutative. Chapter 1 Groups A group G is a set of objects { a, b, c, } (not necessarily countable) together with a binary operation which associates with any ordered pair of elements a, b in G a third element ab

More information