Giant Fiery Laser Beams and Commuting Operators

Size: px
Start display at page:

Download "Giant Fiery Laser Beams and Commuting Operators"

Transcription

1 Differential Operators and Giant Fiery Laser Beams and Commuting Operators for Department of Mathematics University of Washington Winter 2015

2 Differential Operators and Outline 1 Differential Operators and

3 Basic Question Differential Operators and Question What differential operators commute with a the following operator δ = 2 + rsech 2 (x) Some basic observations: Commuting operators form an algebra C(δ) Any polynomial in δ commutes with δ Operators commuting with δ must have constant leading coefficient Algebra C(δ) = C[δ] or C(δ) generated by δ and an operator of odd order

4 Example 1 Differential Operators and Example If r = 0, δ = 2 and C(δ) = C[ ] (affine line). Example If r = 2, δ = 2 and C(δ) = C[δ, η] (singular cubic), for η the order 3 operator given by η = 3 (3sech 2 (x) 1) + 3sech 2 (x) tanh(x). Can we say something about the algebra in general?

5 Differential Operators and Helpful Theorems Theorem (Schur) For any differential operator ω, the algebra C(ω) is commutative. Theorem (Burchnall-Chaundy) For any second-order differential operator ω, the algebra C(ω) is an irreducible algebraic plane curve. Theorem For δ as given by the question, the curve C(δ) is rational. These theorems give us a general framework, but we can say more!

6 Differential Operators and Schrödinger Operators Definition A differential operator of the form 2 + q(x) is called a Schrödinger operator. The function q(x) is called the potential. A potential is called short-range if q(x) goes to zero rapidly as x ±. These definitions come from (steady-state) Schrödinger s equation 2 2m ψ (x) + v(x)ψ(x) = Eψ(x). describing a one-dimensional particle interacting with a potential v(x).

7 Differential Operators and Figure: A mighty laser blast revealing molecular structure (Credit: SLAC National Accelerator Laboratory) to understand shape of things too small to see, shoot small particles at it and see where they end up figuring out where a particular potential will send particles is direct scattering recovering the structure of a potential from the scattered particles is inverse scattering

8 Differential Operators and Beam Fired from Far Away A laser fired from sends a particle at a one-dimensional short-range potential Near +, we see transmitted beam Near, we see fired beam + reflected beam (opposite phase) Away from potential, particles in beam are free particles" Figure: A sketch of wave function from a beam at

9 Jost Solutions Differential Operators and The wave function of a particle in a beam from has the asymptotic behavior { T (k)e ψ(x) = ikx, x e ikx + R(k)e ikx, x ±k depends on beam frequency and phase The right irregular Jost solution f ± (x, k, ) is unique eigenfunction of δ with eigenvalue k 2 satisfying f ± (x, k, ) = e ±ikx + o(1/x) as x. The left irregular Jost solution f ± (x, k, ) is defined similarly, but satisfies f ± (x, k, ) = e ±ikx + o(1/x) as x.

10 Data Differential Operators and Note ψ(x) = T (k)f + (x, k, ) (for 2 /2m = 1) f + (x, k, ) = T (k) 1 f + (x, k, ) + T (k) 1 R(k)f (x, k, ) T (k) and R(k) are transmission and reflection coefficients We call a short-range potential v(x) reflectionless if R(k) = 0 for all k Theorem If a Schrödinger operator with short-range potential commutes with an operator of odd order, then the potential must be reflectionless.

11 Differential Operators and for rsech 2 (x) after a change of variable and gauge transformation, δ becomes the hypergeometric operator 2 z (1 z)z + z (c (a + b + 1)z) ab a = 1 2 ik, b = ik, c = r. can calculate eigenfunctions in terms of hypergeometric functions gives us scattering coefficients T (k) = Γ(c b)γ(2a + b c) Γ(1 ik)γ( ik) T 1 (k)r(k) = sec(πk) 1 sec(π 4 r)

12 Centrilizer of δ Differential Operators and Corollary The potential v(x) = rsech 2 (x) is reflectionless if and only if r = n(n + 1) for some nonnegative integer n. Theorem If r = n(n 1), then C(δ) is generated by an operator of order 2 and an operator of order 2n + 1, and is isomorphic to C[u, v]/(v 2 f (u) 2 u), f (u) = n (u m 2 ), m=1 which is a rational plane curve of degree n with n double points.

13 Summary! Differential Operators and Calculating centrilizers of differential operators is complicated and fun! Differential operators give rise to interesting algebraic constructions Giant Fiery Laser Beams is a Great Title Thanks for coming!

14 References: Differential Operators and Koelink, Erik. " Theory" Landelijke Master Radboud Universiteit Nijmegen, Spring 2008 Segal, Graeme and George Wilson. "Loop Groups and Equations of KdV Type". Comm. on Pure and Applied Mathematics 37 (1984), pp Mulase, Motohico. "Algebraic Theory of the KP Equations". Perspectives in Mathematical Physics (1994), pp

An Algebraic Approach to Reflectionless Potentials in One Dimension. Abstract

An Algebraic Approach to Reflectionless Potentials in One Dimension. Abstract An Algebraic Approach to Reflectionless Potentials in One Dimension R.L. Jaffe Center for Theoretical Physics, 77 Massachusetts Ave., Cambridge, MA 02139-4307 (Dated: January 31, 2009) Abstract We develop

More information

NORMALIZATION OF THE KRICHEVER DATA. Motohico Mulase

NORMALIZATION OF THE KRICHEVER DATA. Motohico Mulase NORMALIZATION OF THE KRICHEVER DATA Motohico Mulase Institute of Theoretical Dynamics University of California Davis, CA 95616, U. S. A. and Max-Planck-Institut für Mathematik Gottfried-Claren-Strasse

More information

Connection Formula for Heine s Hypergeometric Function with q = 1

Connection Formula for Heine s Hypergeometric Function with q = 1 Connection Formula for Heine s Hypergeometric Function with q = 1 Ryu SASAKI Department of Physics, Shinshu University based on arxiv:1411.307[math-ph], J. Phys. A in 48 (015) 11504, with S. Odake nd Numazu

More information

Recursion Systems and Recursion Operators for the Soliton Equations Related to Rational Linear Problem with Reductions

Recursion Systems and Recursion Operators for the Soliton Equations Related to Rational Linear Problem with Reductions GMV The s Systems and for the Soliton Equations Related to Rational Linear Problem with Reductions Department of Mathematics & Applied Mathematics University of Cape Town XIV th International Conference

More information

which implies that we can take solutions which are simultaneous eigen functions of

which implies that we can take solutions which are simultaneous eigen functions of Module 1 : Quantum Mechanics Chapter 6 : Quantum mechanics in 3-D Quantum mechanics in 3-D For most physical systems, the dynamics is in 3-D. The solutions to the general 3-d problem are quite complicated,

More information

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet Mathematical Tripos Part IB Michaelmas Term 2015 Quantum Mechanics Dr. J.M. Evans Example Sheet 1 Values of some physical constants are given on the supplementary sheet 1. Whenasampleofpotassiumisilluminatedwithlightofwavelength3

More information

Supersymmetric Origins of the Properties of sech- Pulses and sine-gordon Solitons

Supersymmetric Origins of the Properties of sech- Pulses and sine-gordon Solitons University of Massachusetts Boston ScholarWorks at UMass Boston Graduate Masters Theses Doctoral Dissertations and Masters Theses 6-2011 Supersymmetric Origins of the Properties of sech- Pulses and sine-gordon

More information

Section 0.2 & 0.3 Worksheet. Types of Functions

Section 0.2 & 0.3 Worksheet. Types of Functions MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

Appendix B: The Transfer Matrix Method

Appendix B: The Transfer Matrix Method Y D Chong (218) PH441: Quantum Mechanics III Appendix B: The Transfer Matrix Method The transfer matrix method is a numerical method for solving the 1D Schrödinger equation, and other similar equations

More information

where c R and the content of f is one. 1

where c R and the content of f is one. 1 9. Gauss Lemma Obviously it would be nice to have some more general methods of proving that a given polynomial is irreducible. The first is rather beautiful and due to Gauss. The basic idea is as follows.

More information

An analogue of the KP theory in dimension 2

An analogue of the KP theory in dimension 2 An analogue of the KP theory in dimension 2 A.Zheglov 1 1 Moscow State University, Russia XVII Geometrical Seminar, Zlatibor, Serbia, September 3-8, 2012 Outline 1 History: 1-dimensional KP theory Isospectral

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Quantum Mechanics Exercises and solutions

Quantum Mechanics Exercises and solutions Quantum Mechanics Exercises and solutions P.J. Mulders Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 181, 181 HV Amsterdam, the Netherlands email:

More information

Chapter 3: Polynomial and Rational Functions

Chapter 3: Polynomial and Rational Functions Chapter 3: Polynomial and Rational Functions 3.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 The numbers

More information

Physics 202 Laboratory 5. Linear Algebra 1. Laboratory 5. Physics 202 Laboratory

Physics 202 Laboratory 5. Linear Algebra 1. Laboratory 5. Physics 202 Laboratory Physics 202 Laboratory 5 Linear Algebra Laboratory 5 Physics 202 Laboratory We close our whirlwind tour of numerical methods by advertising some elements of (numerical) linear algebra. There are three

More information

Physics 218 Quantum Mechanics I Assignment 6

Physics 218 Quantum Mechanics I Assignment 6 Physics 218 Quantum Mechanics I Assignment 6 Logan A. Morrison February 17, 2016 Problem 1 A non-relativistic beam of particles each with mass, m, and energy, E, which you can treat as a plane wave, is

More information

LECTURE 7, WEDNESDAY

LECTURE 7, WEDNESDAY LECTURE 7, WEDNESDAY 25.02.04 FRANZ LEMMERMEYER 1. Singular Weierstrass Curves Consider cubic curves in Weierstraß form (1) E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6, the coefficients a i

More information

Summary of Last Time Barrier Potential/Tunneling Case I: E<V 0 Describes alpha-decay (Details are in the lecture note; go over it yourself!!) Case II:

Summary of Last Time Barrier Potential/Tunneling Case I: E<V 0 Describes alpha-decay (Details are in the lecture note; go over it yourself!!) Case II: Quantum Mechanics and Atomic Physics Lecture 8: Scattering & Operators and Expectation Values http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh Summary of Last Time Barrier Potential/Tunneling Case

More information

Math 575-Lecture 26. KdV equation. Derivation of KdV

Math 575-Lecture 26. KdV equation. Derivation of KdV Math 575-Lecture 26 KdV equation We look at the KdV equations and the so-called integrable systems. The KdV equation can be written as u t + 3 2 uu x + 1 6 u xxx = 0. The constants 3/2 and 1/6 are not

More information

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore

More information

Sample algebra qualifying exam

Sample algebra qualifying exam Sample algebra qualifying exam University of Hawai i at Mānoa Spring 2016 2 Part I 1. Group theory In this section, D n and C n denote, respectively, the symmetry group of the regular n-gon (of order 2n)

More information

Quantum Physics III (8.06) Spring 2008 Assignment 10

Quantum Physics III (8.06) Spring 2008 Assignment 10 May 5, 2008 Quantum Physics III (8.06) Spring 2008 Assignment 10 You do not need to hand this pset in. The solutions will be provided after Friday May 9th. Your FINAL EXAM is MONDAY MAY 19, 1:30PM-4:30PM,

More information

arxiv: v2 [math.fa] 19 Oct 2014

arxiv: v2 [math.fa] 19 Oct 2014 P.Grinevich, S.Novikov 1 Spectral Meromorphic Operators and Nonlinear Systems arxiv:1409.6349v2 [math.fa] 19 Oct 2014 LetusconsiderordinarydifferentiallinearoperatorsL = n x + n i 2 a i n i x with x-meromorphic

More information

A PERIODICITY PROBLEM FOR THE KORTEWEG DE VRIES AND STURM LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY

A PERIODICITY PROBLEM FOR THE KORTEWEG DE VRIES AND STURM LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY A PERIODICITY PROBLEM FOR THE KORTEWEG DE VRIES AND STURM LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY B. A. DUBROVIN AND S. P. NOVIKOV 1. As was shown in the remarkable communication

More information

ABSTRACT INVESTIGATION INTO SOLVABLE QUINTICS. Professor Lawrence C. Washington Department of Mathematics

ABSTRACT INVESTIGATION INTO SOLVABLE QUINTICS. Professor Lawrence C. Washington Department of Mathematics ABSTRACT Title of thesis: INVESTIGATION INTO SOLVABLE QUINTICS Maria-Victoria Checa, Master of Science, 2004 Thesis directed by: Professor Lawrence C. Washington Department of Mathematics Solving quintics

More information

Quantum Physics III (8.06) Spring 2005 Assignment 9

Quantum Physics III (8.06) Spring 2005 Assignment 9 Quantum Physics III (8.06) Spring 2005 Assignment 9 April 21, 2005 Due FRIDAY April 29, 2005 Readings Your reading assignment on scattering, which is the subject of this Problem Set and much of Problem

More information

Polynomial and Rational Functions. Chapter 3

Polynomial and Rational Functions. Chapter 3 Polynomial and Rational Functions Chapter 3 Quadratic Functions and Models Section 3.1 Quadratic Functions Quadratic function: Function of the form f(x) = ax 2 + bx + c (a, b and c real numbers, a 0) -30

More information

Structure relations for the symmetry algebras of classical and quantum superintegrable systems

Structure relations for the symmetry algebras of classical and quantum superintegrable systems UNAM talk p. 1/4 Structure relations for the symmetry algebras of classical and quantum superintegrable systems Willard Miller miller@ima.umn.edu University of Minnesota UNAM talk p. 2/4 Abstract 1 A quantum

More information

Inverse scattering technique in gravity

Inverse scattering technique in gravity 1 Inverse scattering technique in gravity The purpose of this chapter is to describe the Inverse Scattering Method ISM for the gravitational field. We begin in section 1.1 with a brief overview of the

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

ERRATA. Abstract Algebra, Third Edition by D. Dummit and R. Foote (most recently revised on March 4, 2009)

ERRATA. Abstract Algebra, Third Edition by D. Dummit and R. Foote (most recently revised on March 4, 2009) ERRATA Abstract Algebra, Third Edition by D. Dummit and R. Foote (most recently revised on March 4, 2009) These are errata for the Third Edition of the book. Errata from previous editions have been fixed

More information

NOTES: Chapter 11. Radicals & Radical Equations. Algebra 1B COLYER Fall Student Name:

NOTES: Chapter 11. Radicals & Radical Equations. Algebra 1B COLYER Fall Student Name: NOTES: Chapter 11 Radicals & Radical Equations Algebra 1B COLYER Fall 2016 Student Name: Page 2 Section 3.8 ~ Finding and Estimating Square Roots Radical: A symbol use to represent a. Radicand: The number

More information

6.302 Feedback Systems Recitation 7: Root Locus Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 7: Root Locus Prof. Joel L. Dawson To start with, let s mae sure we re clear on exactly what we mean by the words root locus plot. Webster can help us with this: ROOT: A number that reduces and equation to an identity when it is substituted

More information

Chapter 2 Formulas and Definitions:

Chapter 2 Formulas and Definitions: Chapter 2 Formulas and Definitions: (from 2.1) Definition of Polynomial Function: Let n be a nonnegative integer and let a n,a n 1,...,a 2,a 1,a 0 be real numbers with a n 0. The function given by f (x)

More information

Exponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension

Exponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension Exponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension Vasile Gradinaru Seminar for Applied Mathematics ETH Zürich CH 8092 Zürich, Switzerland, George A. Hagedorn Department of

More information

Chemistry 532 Problem Set 7 Spring 2012 Solutions

Chemistry 532 Problem Set 7 Spring 2012 Solutions Chemistry 53 Problem Set 7 Spring 01 Solutions 1. The study of the time-independent Schrödinger equation for a one-dimensional particle subject to the potential function leads to the differential equation

More information

Q N id β. 2. Let I and J be ideals in a commutative ring A. Give a simple description of

Q N id β. 2. Let I and J be ideals in a commutative ring A. Give a simple description of Additional Problems 1. Let A be a commutative ring and let 0 M α N β P 0 be a short exact sequence of A-modules. Let Q be an A-module. i) Show that the naturally induced sequence is exact, but that 0 Hom(P,

More information

Invariants under simultaneous conjugation of SL 2 matrices

Invariants under simultaneous conjugation of SL 2 matrices Invariants under simultaneous conjugation of SL 2 matrices Master's colloquium, 4 November 2009 Outline 1 The problem 2 Classical Invariant Theory 3 Geometric Invariant Theory 4 Representation Theory 5

More information

Representation Theory

Representation Theory Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section II 19I 93 (a) Define the derived subgroup, G, of a finite group G. Show that if χ is a linear character

More information

1.2 Mathematical Models: A Catalog of Essential Functions

1.2 Mathematical Models: A Catalog of Essential Functions 1.2 Mathematical Models: A Catalog of Essential Functions A is a mathematical description of a real-world phenomenon. e.g., the size of a population, the demand for a product, the speed of a falling object,

More information

{(V0-E)Ψ(x) if x < 0 or x > L

{(V0-E)Ψ(x) if x < 0 or x > L This is our first example of a bound state system. A bound state is an eigenstate of the Hamiltonian with eigenvalue E that has asymptotically E < V(x) as x Couple of general theorems, (for single dimension)

More information

Math 203, Solution Set 4.

Math 203, Solution Set 4. Math 203, Solution Set 4. Problem 1. Let V be a finite dimensional vector space and let ω Λ 2 V be such that ω ω = 0. Show that ω = v w for some vectors v, w V. Answer: It is clear that if ω = v w then

More information

M3P11/M4P11/M5P11. Galois Theory

M3P11/M4P11/M5P11. Galois Theory BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2014 This paper is also taken for the relevant examination for the Associateship of the Royal College of Science. M3P11/M4P11/M5P11 Galois Theory Date:

More information

CONSTRUCTION OF THE HALF-LINE POTENTIAL FROM THE JOST FUNCTION

CONSTRUCTION OF THE HALF-LINE POTENTIAL FROM THE JOST FUNCTION CONSTRUCTION OF THE HALF-LINE POTENTIAL FROM THE JOST FUNCTION Tuncay Aktosun Department of Mathematics and Statistics Mississippi State University Mississippi State, MS 39762 Abstract: For the one-dimensional

More information

q-inverting pairs of linear transformations and the q-tetrahedron algebra

q-inverting pairs of linear transformations and the q-tetrahedron algebra q-inverting pairs of linear transformations and the q-tetrahedron algebra arxiv:math/0606237v1 [math.rt] 10 Jun 2006 Tatsuro Ito and Paul Terwilliger Abstract As part of our study of the q-tetrahedron

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Chapter 2: Mathematical Concepts Divisibility Congruence Quadratic Residues

More information

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d Math 201C Homework Edward Burkard 5.1. Field Extensions. 5. Fields and Galois Theory Exercise 5.1.7. If v is algebraic over K(u) for some u F and v is transcendental over K, then u is algebraic over K(v).

More information

22.02 Intro to Applied Nuclear Physics

22.02 Intro to Applied Nuclear Physics 22.02 Intro to Applied Nuclear Physics Mid-Term Exam Solution Problem 1: Short Questions 24 points These short questions require only short answers (but even for yes/no questions give a brief explanation)

More information

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April Exam 2

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April Exam 2 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April 18 2012 Exam 2 Last Name: First Name: Check Recitation Instructor Time R01 Barton Zwiebach 10:00 R02

More information

Commutative partial differential operators

Commutative partial differential operators Physica D 152 153 (2001) 66 77 Commutative partial differential operators Alex Kasman a,, Emma Previato b a Department of Mathematics, College of Charleston, 66 George Street, Charleston, SC 29424-0001,

More information

Quantum Mechanics: Vibration and Rotation of Molecules

Quantum Mechanics: Vibration and Rotation of Molecules Quantum Mechanics: Vibration and Rotation of Molecules 8th April 2008 I. 1-Dimensional Classical Harmonic Oscillator The classical picture for motion under a harmonic potential (mass attached to spring

More information

Baker-Akhiezer functions and configurations of hyperplanes

Baker-Akhiezer functions and configurations of hyperplanes Baker-Akhiezer functions and configurations of hyperplanes Alexander Veselov, Loughborough University ENIGMA conference on Geometry and Integrability, Obergurgl, December 2008 Plan BA function related

More information

Qualifying Exams I, 2014 Spring

Qualifying Exams I, 2014 Spring Qualifying Exams I, 2014 Spring 1. (Algebra) Let k = F q be a finite field with q elements. Count the number of monic irreducible polynomials of degree 12 over k. 2. (Algebraic Geometry) (a) Show that

More information

df(x) dx = h(x) Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation

df(x) dx = h(x) Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation Chemistry 4531 Mathematical Preliminaries Spring 009 I. A Primer on Differential Equations Order of differential equation Linearity of differential equation Partial vs. Ordinary Differential Equations

More information

Lecture 15 Review. Fractal dimension of Sierpinski s gasket. Affine transformations and fractal examples. ection algorithm.

Lecture 15 Review. Fractal dimension of Sierpinski s gasket. Affine transformations and fractal examples. ection algorithm. Lecture 15 Review Fractal dimension of Sierpinski s gasket. Affine transformations and fractal examples. Root finding: N-R and bi-se ection algorithm. TE Coan/SMU 1 HW aside: Newton-Raphson Beware Software

More information

Notes on Quantum Mechanics

Notes on Quantum Mechanics Notes on Quantum Mechanics Kevin S. Huang Contents 1 The Wave Function 1 1.1 The Schrodinger Equation............................ 1 1. Probability.................................... 1.3 Normalization...................................

More information

The Graphs of Polynomial Functions

The Graphs of Polynomial Functions Section 4.3 The Graphs of Polynomial Functions Objective 1: Understanding the Definition of a Polynomial Function Definition Polynomial Function n n 1 n 2 The function f() x = anx + an 1x + an 2x + L +

More information

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs 2.6 Limits Involving Infinity; Asymptotes of Graphs Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs Definition. Formal Definition of Limits at Infinity.. We say that

More information

Field Theory Problems

Field Theory Problems Field Theory Problems I. Degrees, etc. 1. Answer the following: (a Find u R such that Q(u = Q( 2, 3 5. (b Describe how you would find all w Q( 2, 3 5 such that Q(w = Q( 2, 3 5. 2. If a, b K are algebraic

More information

Recall, R is an integral domain provided: R is a commutative ring If ab = 0 in R, then either a = 0 or b = 0.

Recall, R is an integral domain provided: R is a commutative ring If ab = 0 in R, then either a = 0 or b = 0. Recall, R is an integral domain provided: R is a commutative ring If ab = 0 in R, then either a = 0 or b = 0. Examples: Z Q, R Polynomials over Z, Q, R, C The Gaussian Integers: Z[i] := {a + bi : a, b

More information

Reflectionless Analytic Difference Operators (A Os): Examples, Open Questions and Conjectures

Reflectionless Analytic Difference Operators (A Os): Examples, Open Questions and Conjectures Journal of Nonlinear Mathematical Physics 2001, V.8, Supplement, 240 248 Proceedings: NEEDS 99 Reflectionless Analytic Difference Operators (A Os): Examples, Open Questions and Conjectures S N M RUIJSENAARS

More information

A classification of sharp tridiagonal pairs. Tatsuro Ito, Kazumasa Nomura, Paul Terwilliger

A classification of sharp tridiagonal pairs. Tatsuro Ito, Kazumasa Nomura, Paul Terwilliger Tatsuro Ito Kazumasa Nomura Paul Terwilliger Overview This talk concerns a linear algebraic object called a tridiagonal pair. We will describe its features such as the eigenvalues, dual eigenvalues, shape,

More information

The converse is clear, since

The converse is clear, since 14. The minimal polynomial For an example of a matrix which cannot be diagonalised, consider the matrix ( ) 0 1 A =. 0 0 The characteristic polynomial is λ 2 = 0 so that the only eigenvalue is λ = 0. The

More information

Application of Resurgence Theory to Approximate Inverse Square Potential in Quantum Mechanics

Application of Resurgence Theory to Approximate Inverse Square Potential in Quantum Mechanics Macalester Journal of Physics and Astronomy Volume 3 Issue 1 Spring 015 Article 10 May 015 Application of Resurgence Theory to Approximate Inverse Square Potential in Quantum Mechanics Jian Zhang Ms. Macalester

More information

Scattering in one dimension

Scattering in one dimension Scattering in one dimension Oleg Tchernyshyov Department of Physics and Astronomy, Johns Hopkins University I INTRODUCTION This writeup accompanies a numerical simulation of particle scattering in one

More information

BEZOUT S THEOREM CHRISTIAN KLEVDAL

BEZOUT S THEOREM CHRISTIAN KLEVDAL BEZOUT S THEOREM CHRISTIAN KLEVDAL A weaker version of Bézout s theorem states that if C, D are projective plane curves of degrees c and d that intersect transversally, then C D = cd. The goal of this

More information

11 Block Designs. Linear Spaces. Designs. By convention, we shall

11 Block Designs. Linear Spaces. Designs. By convention, we shall 11 Block Designs Linear Spaces In this section we consider incidence structures I = (V, B, ). always let v = V and b = B. By convention, we shall Linear Space: We say that an incidence structure (V, B,

More information

Quantum Harmonic Oscillator

Quantum Harmonic Oscillator Quantum Harmonic Oscillator Chapter 13 P. J. Grandinetti Chem. 4300 Oct 20, 2017 P. J. Grandinetti (Chem. 4300) Quantum Harmonic Oscillator Oct 20, 2017 1 / 26 Kinetic and Potential Energy Operators Harmonic

More information

NONSINGULAR CURVES BRIAN OSSERMAN

NONSINGULAR CURVES BRIAN OSSERMAN NONSINGULAR CURVES BRIAN OSSERMAN The primary goal of this note is to prove that every abstract nonsingular curve can be realized as an open subset of a (unique) nonsingular projective curve. Note that

More information

Multiplicity free actions of simple algebraic groups

Multiplicity free actions of simple algebraic groups Multiplicity free actions of simple algebraic groups D. Testerman (with M. Liebeck and G. Seitz) EPF Lausanne Edinburgh, April 2016 D. Testerman (with M. Liebeck and G. Seitz) (EPF Lausanne) Multiplicity

More information

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22 NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22 RAVI VAKIL Hi Dragos The class is in 381-T, 1:15 2:30. This is the very end of Galois theory; you ll also start commutative ring theory. Tell them: midterm

More information

Non Adiabatic Transitions in a Simple Born Oppenheimer Scattering System

Non Adiabatic Transitions in a Simple Born Oppenheimer Scattering System 1 Non Adiabatic Transitions in a Simple Born Oppenheimer Scattering System George A. Hagedorn Department of Mathematics and Center for Statistical Mechanics, Mathematical Physics, and Theoretical Chemistry

More information

Dimension Quasi-polynomials of Inversive Difference Field Extensions with Weighted Translations

Dimension Quasi-polynomials of Inversive Difference Field Extensions with Weighted Translations Dimension Quasi-polynomials of Inversive Difference Field Extensions with Weighted Translations Alexander Levin The Catholic University of America Washington, D. C. 20064 Spring Eastern Sectional AMS Meeting

More information

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u Problem Set 7 Solutions 8.4 Spring 13 April 9, 13 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators (a) (3 points) Suppose φ u is an eigenfunction of U with eigenvalue u,

More information

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction NONCOMMUTATIVE POLYNOMIAL EQUATIONS Edward S Letzter Introduction My aim in these notes is twofold: First, to briefly review some linear algebra Second, to provide you with some new tools and techniques

More information

This operation is - associative A + (B + C) = (A + B) + C; - commutative A + B = B + A; - has a neutral element O + A = A, here O is the null matrix

This operation is - associative A + (B + C) = (A + B) + C; - commutative A + B = B + A; - has a neutral element O + A = A, here O is the null matrix 1 Matrix Algebra Reading [SB] 81-85, pp 153-180 11 Matrix Operations 1 Addition a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn + b 11 b 12 b 1n b 21 b 22 b 2n b m1 b m2 b mn a 11 + b 11 a 12 + b 12 a 1n

More information

Random Matrix Theory Lecture 3 Free Probability Theory. Symeon Chatzinotas March 4, 2013 Luxembourg

Random Matrix Theory Lecture 3 Free Probability Theory. Symeon Chatzinotas March 4, 2013 Luxembourg Random Matrix Theory Lecture 3 Free Probability Theory Symeon Chatzinotas March 4, 2013 Luxembourg Outline 1. Free Probability Theory 1. Definitions 2. Asymptotically free matrices 3. R-transform 4. Additive

More information

Waves and the Schroedinger Equation

Waves and the Schroedinger Equation Waves and the Schroedinger Equation 5 april 010 1 The Wave Equation We have seen from previous discussions that the wave-particle duality of matter requires we describe entities through some wave-form

More information

Complex Algebraic Geometry: Smooth Curves Aaron Bertram, First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool

Complex Algebraic Geometry: Smooth Curves Aaron Bertram, First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool Complex Algebraic Geometry: Smooth Curves Aaron Bertram, 2010 12. First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool for classifying smooth projective curves, i.e. giving

More information

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 3 Notes

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 3 Notes 3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Outline 1. Schr dinger: Eigenfunction Problems & Operator Properties 2. Piecewise Function/Continuity Review -Scattering from

More information

The Algebra of Tensors; Tensors on a Vector Space Definition. Suppose V 1,,V k and W are vector spaces. A map. F : V 1 V k

The Algebra of Tensors; Tensors on a Vector Space Definition. Suppose V 1,,V k and W are vector spaces. A map. F : V 1 V k The Algebra of Tensors; Tensors on a Vector Space Definition. Suppose V 1,,V k and W are vector spaces. A map F : V 1 V k is said to be multilinear if it is linear as a function of each variable seperately:

More information

Chapter 1 Recollections from Elementary Quantum Physics

Chapter 1 Recollections from Elementary Quantum Physics Chapter 1 Recollections from Elementary Quantum Physics Abstract We recall the prerequisites that we assume the reader to be familiar with, namely the Schrödinger equation in its time dependent and time

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

The Final Deterministic Automaton on Streams

The Final Deterministic Automaton on Streams The Final Deterministic Automaton on Streams Helle Hvid Hansen Clemens Kupke Jan Rutten Joost Winter Radboud Universiteit Nijmegen & CWI Amsterdam Brouwer seminar, 29 April 2014 Overview 1. Automata, streams

More information

Algebra 1. Standard 1: Operations With Real Numbers Students simplify and compare expressions. They use rational exponents and simplify square roots.

Algebra 1. Standard 1: Operations With Real Numbers Students simplify and compare expressions. They use rational exponents and simplify square roots. Standard 1: Operations With Real Numbers Students simplify and compare expressions. They use rational exponents and simplify square roots. A1.1.1 Compare real number expressions. A1.1.2 Simplify square

More information

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

arxiv:nlin/ v1 [nlin.si] 17 Jun 2006

arxiv:nlin/ v1 [nlin.si] 17 Jun 2006 Integrable dispersionless KdV hierarchy with sources arxiv:nlin/0606047v [nlin.si] 7 Jun 2006 Zhihua Yang, Ting Xiao and Yunbo Zeng Department of Mathematical Sciences, Tsinghua University, Beijing 00084,

More information

arxiv:math/ v2 [math.ca] 28 Oct 2008

arxiv:math/ v2 [math.ca] 28 Oct 2008 THE HERMITE-KRICHEVER ANSATZ FOR FUCHSIAN EQUATIONS WITH APPLICATIONS TO THE SIXTH PAINLEVÉ EQUATION AND TO FINITE-GAP POTENTIALS arxiv:math/0504540v [math.ca] 8 Oct 008 KOUICHI TAKEMURA Abstract. Several

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polynomial and Rational Functions 3.1 Polynomial Functions and their Graphs So far, we have learned how to graph polynomials of degree 0, 1, and. Degree 0 polynomial functions are things like f(x) =,

More information

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts?

The highest degree term is x $, therefore the function is degree 4 (quartic) c) What are the x-intercepts? L3 1.3 Factored Form Polynomial Functions Lesson MHF4U Jensen In this section, you will investigate the relationship between the factored form of a polynomial function and the x-intercepts of the corresponding

More information

Two and Three-Dimensional Systems

Two and Three-Dimensional Systems 0 Two and Three-Dimensional Systems Separation of variables; degeneracy theorem; group of invariance of the two-dimensional isotropic oscillator. 0. Consider the Hamiltonian of a two-dimensional anisotropic

More information

Harmonic Oscillator I

Harmonic Oscillator I Physics 34 Lecture 7 Harmonic Oscillator I Lecture 7 Physics 34 Quantum Mechanics I Monday, February th, 008 We can manipulate operators, to a certain extent, as we would algebraic expressions. By considering

More information

Simple one-dimensional potentials

Simple one-dimensional potentials Simple one-dimensional potentials Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 Ninth lecture Outline 1 Outline 2 Energy bands in periodic potentials 3 The harmonic oscillator 4 A charged particle

More information

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree THE SCHRÖDINGER EQUATION (A REVIEW) We do not derive F = ma; we conclude F = ma by induction from a large series of observations. We use it as long as its predictions agree with our experiments. As with

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small x values.

In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small x values. Polynomial functions: End behavior Solutions NAME: In this lab, we are looking at the end behavior of polynomial graphs, i.e. what is happening to the y values at the (left and right) ends of the graph.

More information

IVAN LOSEV. KEK 1 = q 2 E, KF K 1 = q 2 F, EF F E = K K 1 q q 1.

IVAN LOSEV. KEK 1 = q 2 E, KF K 1 = q 2 F, EF F E = K K 1 q q 1. LECTURE 13: REPRESENTATIONS OF U q (g) AND R-MATRICES IVAN LOSEV Introduction In this lecture we study the representation theory of U q (g) when q is not a root of 1. In Section 1, we classify the finite

More information

An integral formula for L 2 -eigenfunctions of a fourth order Bessel-type differential operator

An integral formula for L 2 -eigenfunctions of a fourth order Bessel-type differential operator An integral formula for L -eigenfunctions of a fourth order Bessel-type differential operator Toshiyuki Kobayashi Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba, Meguro,

More information