Root Locus Design Example #4

Size: px
Start display at page:

Download "Root Locus Design Example #4"

Transcription

1 Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is the desired heading angle for the ship ψ ref (s), and the output signal Y (s) is the actual heading (yaw) angle ψ(s). In this example, angles will be expressed in degrees. The input to the plant, U(s), is the commanded rudder angle δ r com (s) that is used to control the heading of the ship. The transfer function for the system is G p (s) = Y (s) U(s) = (s ) s (s ) (s )(s ) = ψ(s) δ r com (s) The gain , the poles at s = and s = ,andthezeroat s = describe the dynamics of the system between the actual rudder angle and the rate of change in heading angle. The pole at s =provides the integration from the rate of change in heading angle to the heading angle itself. The pole at s =.3333 models the hydraulic actuator dynamics between the commanded rudder angle δ r com (s) and the actual rudder angle δ r (s). The negative sign associated with the gain indicates that a negative rudder angle produces a positive rate of change in heading angle. This is from the usual convention of how a coordinate system is fixed to the ship, a step that is analogous to assigning directions of positive current flow within an electrical circuit. Because of this sign convention used in ship steering, the sign of the compensator gain must also be negative, meaning that a positive heading angle error produces a negative rudder angle. The performance specifications that are imposed on the system are: Percent overshoot to a step input must satisfy PO 2%; Settling time for a step input must satisfy T s 2 seconds; Steady-state error in the closed-loop ramp response must not exceed 2 degrees. B. Evaluating G p (s) Relative to the Specifications The first step in determining what type of compensation is needed is to evaluate the plant model relative to the specifications. Since the specifications are given in terms of percent overshoot and settling time, root locus will be the design method. Therefore, the desired location of the dominant closed-loop pole s = s must be determined. Since the plant is not second-order, it is not reasonable to assume that the second-order system equations will be valid, so a conservative approach will be used. The values used for percent overshoot and settling time will be PO design = PO spec =4%, T s design =.75 T s spec =5sec (2) 5 Using these design values and the equations for second-order systems, the dominant closed-loop pole is calculated to be ζ = s = h POdesign Ln i r ³ h =.756 (3) i 2 π 2 POdesign + Ln µ 4 +jtan cos (ζ) = j (4) T s design ()

2 2 Figure shows the root locus and step response plots for the uncompensated system K c G p (s) with K c =. This gain of is included with the plant at this point so that the positive root locus methods (K >) can be used. The actual gains of the final compensator and the plant will be negative. K c is only used in the evaluation of the uncompensated system. Unity feedback is assumed, so H(s) =. The upper right plot in Fig. clearly shows that the root locus does not go through the point s, and the step response plot clearly shows that the overshoot and settling time specifications are not satisfied. Therefore, some form of compensation is needed. The angle of the plant and compensator at s must be computed. K c G p (s ) = tan tan 2 (5) tan tan tan = = G c (s )=8 K c G p (s )=39.62 (6) Since the required phase shift of the compensator at s is positive, the compensator will be phase lead. C. Compensator Designs ) Overview: The compensator design technique discussed in the text which calculates both the pole and zero angles at s will be used. This requires computing the phase angle of the point s, which is s =tan 2 =35.7 (7) The lead compensator will be designed using this method. Once that design is completed which hopefully will result in the transient performance specifications being satisfied the steady-state error of the plant/compensator combination will be checked. If the error is too large, then a special lag compensator will be designed to satisfy that specification. If the transient performance specifications are not satisfied by the lead compensator, several options exist to try and correct the problem. Some of these are shown below. Choose another value for s, using either more conservative or less conservative choices for percent overshoot and settling time. Choose different locations for the compensator zero and pole. Reconfigure the original design into the Proportional+Derivative with Derivative on Output Only (PD-DOO) version. Only the last option, the PD-DOO configuration, will be used in this example. In general, any or all of these options can be used together to try and obtain a compensator design that satisfies all specifications. K. Ogata, Modern Control Engineering, 4th Edition, Prentice Hall, Upper Saddle River, NJ, 22.

3 3.6 Uncompensated Root Locus. Zoomed View s Imag Axis Imag Axis Real Axis Real Axis.5 Uncompensated Step Response.5 PO = 43.8%, T s = 45.8 sec Fig.. Root locus and step response for the uncompensated system.

4 4 2) Design of the Lead Compensator: Using the method in the text, the phase angles from the compensator zero and pole to the point s are computed first, then the distances from the projection of s on the real axis to the zero and pole locations are computed. The angles are (s + z cd )= s + G c (s ) 2 = =87.66 (8) (s + p cd )= s G c (s ) = =48.4 (9) 2 2 Note that (s + z cd ) (s + p cd )=39.62 = G c (s ) as required. The distances from s to the zero and pole are d zcd = d pcd = Im [s ] tan ( (s + z cd )) = Im [s ] tan ( (s + p cd )) = tan (87.66 π/8) = () tan (48.4 π/8) = () Since both of these distances are positive, both the pole and zero of the lead compensator are to the left of s. The zero is located at s = , and the pole is located at s = At this point in the design, the lead compensator is G c Lead (s) = K c (s ) (2) (s ) Now that the lead compensator s pole and zero have been placed to satisfy the root locus phase angle criterion, the gain must be computed to satisfy the magnitude criterion at s. The gain is K c = s s s s s s s K c = K c = (3) Note that the sign on the gain is negative. The forward path transfer function is now G c Lead (s)g p (s) = (s )(s ) s (s ) (s )(s )(s ) (4) D. Evaluation of the Design The design will be evaluated by examining the step response of the lead-compensated system. The total forward transfer function is given in (4). The root locus and step response plots are shown in Fig. 2. The root locus plot shows that the point s is on the root locus as it should be. The closed-loop poles are located at s = ± j ,s= ± j , and s = The step response plot shows that neither of the transient performance specifications has been satisfied. The overshoot of approximately 3% is not acceptable, and the settling time of 23 seconds is too long. The various options that may be used to try and correct this problem were mentioned earlier. The only option that will be described in this example is the Proportional+Derivative (PD) form of the compensator with the Derivative on Output Only (PD-DOO) configuration. The steady-state error of this system for a ramp input is e ss = K v = lim s [s G c Lead (s)g p (s)] =.98 (5)

5 5 so a special lag compensator would be needed in order to satisfy that specification. However, before that is done, the transient response specifications need to be satisfied. There is no point in designing the special lag compensator until the transient performance is satisfactory. E. PD Compensator with Derivative on Output Only The gains and time constant of the Proportional+Derivative (PD) controller are τ = p cd, K p = K c zcd p cd, K d =( K c K p ) τ (6) and the values are τ =9.97 sec, K p =.2239, and K d =9.693, so if the PD compensator was to be placed in series with the plant it would be G c PD (s) = s (7) 9.97s + where the negative sign in G c PD (s) is required since the controller gain is negative. The PD-DOO configuration is [ G p (s)] G DOO (s) = K p K d s +[ G p (s)] τs+ = (8) (s )(s ) s (s )(s )(s ± j ) where the negative sign of the compensator is now included with the plant transfer function. The step response of the system with the PD-DOO configuration is shown in Fig. 3. Both the percent overshoot and the settling time satisfy the transient response specifications. The steady-state error specification does have to be checked to see if a special lag compensator is needed. F. Design of the Special Lag Compensator The steady-state error for a ramp input with the PD-DOO configuration / lim s [sg DOO (s)] = 28.7 (increased from.98 by the change in configurations), and the specified value is 2. Therefore, the error must be reduced by a factor of α g = e ss actual = 28.7 =4.35 = z cg (9) e ss spec 2 p cg This value for α g reduces the steady-state error to the correct value by separating the special lag s pole and zero by the same factor. Using the rule of thumb discussed in class, the compensator zero is placed to the right of s by a factor of, and as always p cg = z cg /α g, so the special lag compensator is G c Spec Lag (s) = (s ) (2) (s ) The step response is shown in Fig. 4. The overshoot and settling time are both very close to the values in Fig. 3, and they still satisfy the specifications. Therefore, the special lag compensator did not disturb the transient response very much. The ramp response of the final version of the compensated system is shown in Fig. 5. The graph illustrates the very long time that it might take for the ramp response to settle to essentially a constant slope. At t = seconds, the error is still larger than 3. Even though it taking a long time to reach steady-state with the ramp response, the steady-state error does have the correct value after the special lag compensator is included.

6 6.6 Compensated Root Locus. Zoomed View s Imag Axis Imag Axis Real Axis Real Axis.5 Compensated Step Response.5 PO = 29.6%, T s = 23. sec Fig. 2. Root locus and step response for the lead-compensated system in the normal configuration.

7 7.4 Compensated Step Response with PD DOO Configuration PO = 7.6%, T s = 86.5 sec Fig. 3. Step response for the compensated system in the PD-DOO configuration.

8 8.4 Compensated Step Response with PD DOO Configuration and Special Lag Compensator PO = 8.7%, T s = 92.3 sec Fig. 4. Step response for the compensated system in PD-DOO configuration with special lag compensator included.

9 9 Compensated Ramp Response Zoomed View Fig. 5. Ramp response for the compensated system in PD-DOO configuration with special lag compensator.

Root Locus Design Example #3

Root Locus Design Example #3 Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll

More information

Dynamic Compensation using root locus method

Dynamic Compensation using root locus method CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the

More information

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller

More information

Homework 7 - Solutions

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

More information

Robust Performance Example #1

Robust Performance Example #1 Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants

More information

EEE 184 Project: Option 1

EEE 184 Project: Option 1 EEE 184 Project: Option 1 Date: November 16th 2012 Due: December 3rd 2012 Work Alone, show your work, and comment your results. Comments, clarity, and organization are important. Same wrong result or same

More information

Compensator Design to Improve Transient Performance Using Root Locus

Compensator Design to Improve Transient Performance Using Root Locus 1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

More information

(a) Find the transfer function of the amplifier. Ans.: G(s) =

(a) Find the transfer function of the amplifier. Ans.: G(s) = 126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

More information

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions EE C28 / ME C34 Fall 24 HW 8 - Solutions HW 8 - Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot

More information

SECTION 5: ROOT LOCUS ANALYSIS

SECTION 5: ROOT LOCUS ANALYSIS SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

Proportional plus Integral (PI) Controller

Proportional plus Integral (PI) Controller Proportional plus Integral (PI) Controller 1. A pole is placed at the origin 2. This causes the system type to increase by 1 and as a result the error is reduced to zero. 3. Originally a point A is on

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES

CHAPTER 7 STEADY-STATE RESPONSE ANALYSES CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of

More information

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginally-stable

More information

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD 206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)

More information

PID controllers. Laith Batarseh. PID controllers

PID controllers. Laith Batarseh. PID controllers Next Previous 24-Jan-15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time

More information

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may

More information

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

More information

Due Wednesday, February 6th EE/MFS 599 HW #5

Due Wednesday, February 6th EE/MFS 599 HW #5 Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unity-feedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]

More information

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0. 6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

More information

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 First-Order Specs: Step : Pole Real inputs contain

More information

Unit 8: Part 2: PD, PID, and Feedback Compensation

Unit 8: Part 2: PD, PID, and Feedback Compensation Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:

More information

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010 Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

More information

Controller Design using Root Locus

Controller Design using Root Locus Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Control Systems. University Questions

Control Systems. University Questions University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write

More information

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

More information

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

More information

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies. SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

More information

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

MAS107 Control Theory Exam Solutions 2008

MAS107 Control Theory Exam Solutions 2008 MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Design of a Lead Compensator

Design of a Lead Compensator Design of a Lead Compensator Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD The Lecture Contains Standard Forms of

More information

6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closed-loop behavior what we want it to be. To review: - G c (s) G(s) H(s) you are here! plant For

More information

IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION. K. M. Yanev A. Obok Opok

IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION. K. M. Yanev A. Obok Opok IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION K. M. Yanev A. Obok Opok Considering marginal control systems, a useful technique, contributing to the method of multi-stage compensation is suggested. A

More information

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

Inverted Pendulum. Objectives

Inverted Pendulum. Objectives Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives

More information

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1 Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

More information

CYBER EXPLORATION LABORATORY EXPERIMENTS

CYBER EXPLORATION LABORATORY EXPERIMENTS CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

More information

1 Chapter 9: Design via Root Locus

1 Chapter 9: Design via Root Locus 1 Figure 9.1 a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B); b. responses from poles at A and B 2

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year

More information

Homework Assignment 3

Homework Assignment 3 ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full

More information

PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada

PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closed-loop

More information

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering

More information

SECTION 4: STEADY STATE ERROR

SECTION 4: STEADY STATE ERROR SECTION 4: STEADY STATE ERROR MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Steady State Error Introduction 3 Consider a simple unity feedback system The error is the difference between

More information

Transient Response of a Second-Order System

Transient Response of a Second-Order System Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

More information

Alireza Mousavi Brunel University

Alireza Mousavi Brunel University Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

More information

Last week: analysis of pinion-rack w velocity feedback

Last week: analysis of pinion-rack w velocity feedback Last week: analysis of pinion-rack w velocity feedback Calculation of the steady state error Transfer function: V (s) V ref (s) = 0.362K s +2+0.362K Step input: V ref (s) = s Output: V (s) = s 0.362K s

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

Feedback Control part 2

Feedback Control part 2 Overview Feedback Control part EGR 36 April 19, 017 Concepts from EGR 0 Open- and closed-loop control Everything before chapter 7 are open-loop systems Transient response Design criteria Translate criteria

More information

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRONICS ENGINEERING

More information

Lecture 25: Tue Nov 27, 2018

Lecture 25: Tue Nov 27, 2018 Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review time-domain characteristics of 2nd-order systems intro to control: feedback open-loop vs closed-loop control intro to

More information

EE3CL4: Introduction to Linear Control Systems

EE3CL4: Introduction to Linear Control Systems 1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

Analyzing the Stability Robustness of Interval Polynomials

Analyzing the Stability Robustness of Interval Polynomials 1 Analyzing the Stability Robustness of Interval Polynomials Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Correspondence concerning this paper should be sent to

More information

ME 475/591 Control Systems Final Exam Fall '99

ME 475/591 Control Systems Final Exam Fall '99 ME 475/591 Control Systems Final Exam Fall '99 Closed book closed notes portion of exam. Answer 5 of the 6 questions below (20 points total) 1) What is a phase margin? Under ideal circumstances, what does

More information

Course Summary. The course cannot be summarized in one lecture.

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc.

Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Electrical Engineering Department University of Indonesia 2 Steady State Error How well can

More information

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.

More information

Automatic Control Systems (FCS) Lecture- 8 Steady State Error

Automatic Control Systems (FCS) Lecture- 8 Steady State Error Automatic Control Systems (FCS) Lecture- 8 Steady State Error Introduction Any physical control system inherently suffers steady-state error in response to certain types of inputs. A system may have no

More information

Frequency Response Techniques

Frequency Response Techniques 4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10

More information

AMME3500: System Dynamics & Control

AMME3500: System Dynamics & Control Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Control of Manufacturing Processes

Control of Manufacturing Processes Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =

More information

Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

EE451/551: Digital Control. Final Exam Review Fall 2013

EE451/551: Digital Control. Final Exam Review Fall 2013 EE45/55: Digital Control Final Exam Review Fall 03 Exam Overview The Final Exam will consist of four/five questions for EE45/55 students based on Chapters 7 and a bonus based on Chapters 8 9 (students

More information

Digital Control: Summary # 7

Digital Control: Summary # 7 Digital Control: Summary # 7 Proportional, integral and derivative control where K i is controller parameter (gain). It defines the ratio of the control change to the control error. Note that e(k) 0 u(k)

More information

6.302 Feedback Systems

6.302 Feedback Systems MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Fall Term 2005 Issued : November 18, 2005 Lab 2 Series Compensation in Practice Due

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

Exercises for lectures 13 Design using frequency methods

Exercises for lectures 13 Design using frequency methods Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31-3-17 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)

More information

Steady State Errors. Recall the closed-loop transfer function of the system, is

Steady State Errors. Recall the closed-loop transfer function of the system, is Steady State Errors Outline What is steady-state error? Steady-state error in unity feedback systems Type Number Steady-state error in non-unity feedback systems Steady-state error due to disturbance inputs

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

C(s) R(s) 1 C(s) C(s) C(s) = s - T. Ts + 1 = 1 s - 1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain

C(s) R(s) 1 C(s) C(s) C(s) = s - T. Ts + 1 = 1 s - 1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain analyses of the step response, ramp response, and impulse response of the second-order systems are presented. Section 5 4 discusses the transient-response analysis of higherorder systems. Section 5 5 gives

More information

DIGITAL CONTROLLER DESIGN

DIGITAL CONTROLLER DESIGN ECE4540/5540: Digital Control Systems 5 DIGITAL CONTROLLER DESIGN 5.: Direct digital design: Steady-state accuracy We have spent quite a bit of time discussing digital hybrid system analysis, and some

More information

06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.

06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root

More information

BASIC PROPERTIES OF FEEDBACK

BASIC PROPERTIES OF FEEDBACK ECE450/550: Feedback Control Systems. 4 BASIC PROPERTIES OF FEEDBACK 4.: Setting up an example to benchmark controllers There are two basic types/categories of control systems: OPEN LOOP: Disturbance r(t)

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

More information

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

More information

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

Essence of the Root Locus Technique

Essence of the Root Locus Technique Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general set-up, namely for the case when the closed-loop

More information

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation

More information

EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO

EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information

Control of Manufacturing Processes

Control of Manufacturing Processes Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection

More information

Design via Root Locus

Design via Root Locus Design via Root Locus I 9 Chapter Learning Outcomes J After completing this chapter the student will be able to: Use the root locus to design cascade compensators to improve the steady-state error (Sections

More information

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D. Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

EE3CL4: Introduction to Linear Control Systems

EE3CL4: Introduction to Linear Control Systems 1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

More information

Outline. Classical Control. Lecture 2

Outline. Classical Control. Lecture 2 Outline Outline Outline Review of Material from Lecture 2 New Stuff - Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New

More information