# CHAPTER 3 Introduction to Fluids in Motion

Size: px
Start display at page:

Transcription

1 CHAPTER 3 Introduction to Fluids in Motion FE-tpe Eam Review Problems: Problems 3- to 3-9 nˆ 0 ( n ˆi+ n ˆj) (3ˆi 4 ˆj) 0 or 3n 4n 0 3. (D) 3. (C) 3.3 (D) 3.4 (C) 3.5 (B) 3.6 (C) Also n n n + since ˆn is a unit vector. A simultaneous solution ields 4 / 5 and n 3/ 5. (Each with a negative sign would also be OK) ˆ a + u + v + w ( i) (ˆi ˆj) 6ˆi+ 8ˆi+ 6ˆj t z a ( 8) m/s u u u u u 0 0(4 ) a + u + v + w u t z (4 ) 0 0( )( )(4 ) m/s (4 ) The onl velocit component is u(). We have neglected v() since it is quite small. If v() were not negligible, the flow would be two-dimensional. p waterh m/s.3 air p m/s g g g The manometer reading h implies: 3.7 (B) or (60 0.) 9.39 m/s + p p +.3 The temperature (the viscosit of the water) and the diameter of the pipe are not needed. 9 0 Cengage Learning. All Rights Reserved. Ma not be scanned, copied or duplicated, or posted to a publicl accessible website, in whole or in part.

2 3.8 (A) g p p + + g 800, m/s (D) p ( ) ( ) ,400 Pa Flow Fields d d a) u t+ v t dt dt streamlines t 5 s 3.4 t + t + c t + c (7, ) (35, 5) o + 4 parabola 3.6 Lagrangian: Several college students would be hired to ride bikes around the various roads, making notes of quantities of interest. Eulerian: Several college students would be positioned at each intersection and quantities would be recorded as a function of time. a) ˆi + cosα 0.83 α n + n 0 n ˆ 0 (3ˆ ˆ) ( ˆ ˆ n i+ j ni+ nj) 0 n 3 n 9 + n n + n n, or ˆ (ˆ 3 ˆ n n i j) c) ˆi 5 cosα 0.60 α ( 8) 5n 8n 0 n ˆ 0 (5ˆ 8 ˆ) ( ˆ ˆ n i j ni+ nj) 0 n 5 8 n n n + n 30 0 Cengage Learning. All Rights Reserved. Ma not be scanned, copied or duplicated, or posted to a publicl accessible website, in whole or in part.

3 5 8 n, or ˆ (8ˆ 5 ˆ n n i+ j) b) u + v + w + ( ˆi) + ( ˆj) 4ˆi+ 4ˆj 8ˆi 4ˆj z t 3. The vorticit ω Ω. a) ω 40ˆi c) ω ˆi 4k ˆ a) a r sinθ 40 0 cosθ cosθ 0 ( sin θ) 3 + r r r r r sin θ ( 0.5)( ). 5( ) m/s r r θ aθ θ θ θ r r r sin r cos sin cos r sin θcosθ 0 since sin(80 ) 0 4 r r a φ a + u t + v u + w ˆi z t For stead flow u/ t 0 so that a b) t /0 u ( 0.5 )( e ).875 m/s at t 3.30 D u + v + w + 0(.3 0 e ) Dt z t kg/m s D 3.3 u 4 (0.0) 0.04 kg/m 3 s Dt 3 0 Cengage Learning. All Rights Reserved. Ma not be scanned, copied or duplicated, or posted to a publicl accessible website, in whole or in part.

4 u a + u t v 3.34 a + v a + ( ) t t w az + w t π ˆ 5 ˆ Ω k krad/s ( 0.707ˆi kˆ) 3.535ˆi 3.535km/s ˆ A Ω + Ω ( Ω r ) 5ˆ ˆ ˆ k ( 3.535i k) k ˆ kˆ (6.4 0 )( 0.707i k ˆ) 5 0 ˆj ˆi m/s 5 6 ˆ 5 Note: We have neglected the acceleration of the earth relative to the sun since it is quite small (it is / d S dt ). The component ( ˆ j ) is the Coriolis acceleration and causes air motions to move c.w. or c.c.w. in the two hemispheres. Classification of Fluid Flows 3.38 Stead: a, c, e, f, h Unstead: b, d, g 3.4 a) inviscid c) inviscid e) viscous inside the boundar laers and separated regions. g) viscous. L 3.46 Re ν Turbulent 3.48 a) D. 0.0 Re 795 ν Alwas laminar Assume the flow is parallel to the leaf. Then T/ν ν / / m T The flow is epected to be laminar 3 0 Cengage Learning. All Rights Reserved. Ma not be scanned, copied or duplicated, or posted to a publicl accessible website, in whole or in part.

5 3.5 D u + v + w + 0 Dt z t For a stead, plane flow / t 0 and w 0 Then u + v 0 Bernoulli s Equation p Use. kg/m 3 a) v p / 000 /. 60 m/s p + 0 p m/s.3 p U p + + b) Let r rc: pt U 3 d) Let θ 90 : p90 U p U p a) p ( U u ) 0π π 50 + c) p ( U u ) 60π π Cengage Learning. All Rights Reserved. Ma not be scanned, copied or duplicated, or posted to a publicl accessible website, in whole or in part.

6 Assume the velocit in the plenum is zero. Then 3.6 or (60 0.) 9.39 m/s + p p +.3 We found 3. kg/ m 3 in Table B.. Bernoulli from the stream to the pitot probe: Manometer: pt + H HgH h p h p T + p 3.64 Then, + p+ H Hg H p Hg ( H) (3.6 )9800 a) ( 0.04) m/s (3.6 )9800 b) ( 0.) m/s 3.66 The pressure at 90 from Problem 3.58 is p90 3 U /. The pressure at the stagnation point is pt U /. The manometer provides: p T H p U U. U.76 m/s Bernoulli: p + g p + g 3.68 Manometer: + + Hg + p z H H z p g Substitute Bernoulli s into the manometer equation: p + ( Hg ) H + p g b) Use H 0.05 m: Substitute into Bernoulli: 9800 (3.6 ) m/s p ,600 Pa g Cengage Learning. All Rights Reserved. Ma not be scanned, copied or duplicated, or posted to a publicl accessible website, in whole or in part.

7 Write Bernoulli s equation between points and along the center streamline: p z p z Since the flow is horizontal, z z and Bernoulli s equation becomes p+ 000 p From fluid statics, the pressure at is p h Pa and at, using p H, Bernoulli s equation predicts H+ 000 H 0.98 m or 9.8 cm Assume incompressible flow ( < 00 m/s) with point outside the wind tunnel where p 0 and 0. Bernoulli s equation gives 3.7 p 0 + p p 90 3 a).39 kg/m p Pa RT p 9 3 c).094 kg/m p Pa RT Bernoulli across nozzle: + p p + p / 3.74 Bernoulli to ma. height: a) p g p + + h p g / 700,000 / m/s + + h h p / h p / 700,000/ m b) p /, 400,000 / m/s h p /,400,000/ m p p + p 00,000 Pa, the lowest possible pressure Cengage Learning. All Rights Reserved. Ma not be scanned, copied or duplicated, or posted to a publicl accessible website, in whole or in part.

8 a) 600,000 00, m/s b) 300, , m/s b) p ( ) ( ) ,300 Pa d) p ( ) ( ) Pa Appl Bernoulli s equation between the eit (point ) where the radius is R and a point in between the eit and the center of the tube at a radius r less than R: 3.80 Since + + p p p <, we see that p is negative (a vacuum) so that the envelope would tend to rise due to the negative pressure over most of its area (ecept for a small area near the end of the tube) A burr downstream of the opening will create a region that acts similar to a stagnation region thereb creating a high pressure since the velocit will be relativel low in that region. The higher pressure at B will force the fluid toward the lower pressure at A, especiall in the wall region of slow moving fluid, thereb causing a secondar flow normal to the pipe s ais. This results in a relativel high loss for an elbow. stagnation region 36 0 Cengage Learning. All Rights Reserved. Ma not be scanned, copied or duplicated, or posted to a publicl accessible website, in whole or in part.

### ( 4. AP Exam Practice Questions for Chapter 7. AP Exam Practice Questions for Chapter 7 1 = = x dx. 1 3x So, the answer is A.

AP Eam Practice Questions for Chapter 7 AP Eam Practice Questions for Chapter 7. e e So, the answer is A. e e ( ) A e e d e e e e. 7 + + (, ) + (, ) (, ) 7 + + + 7 + 7 + ( ) ( ),, A d + + + + + + + d +

### CHAPTER 4 The Integral Forms of the Fundamental Laws

CHAPTER 4 The Integral Forms of the Fundamental Laws FE-type Exam Review Problems: Problems 4- to 4-5 4 (B) 4 (D) 4 (A) 44 (D) p m ρa A π 4 7 87 kg/s RT 87 9 Refer to the circle of Problem 47: 757 Q A

### Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

### In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0.

bernoulli_11 In which of the following scenarios is applying the following form of Bernoulli s equation: p V z constant! g + g + = from point 1 to point valid? a. 1 stagnant column of water steady, inviscid,

### Q1 Give answers to all of the following questions (5 marks each):

FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

### Unit C-1: List of Subjects

Unit C-: List of Subjects The elocity Field The Acceleration Field The Material or Substantial Derivative Steady Flow and Streamlines Fluid Particle in a Flow Field F=ma along a Streamline Bernoulli s

### Fluids. Fluids in Motion or Fluid Dynamics

Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

### The Bernoulli Equation

The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

### Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

### !! +! 2!! +!"!! =!! +! 2!! +!"!! +!!"!"!"

Homework 4 Solutions 1. (15 points) Bernoulli s equation can be adapted for use in evaluating unsteady flow conditions, such as those encountered during start- up processes. For example, consider the large

### Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

### MECHANICS of FLUIDS, 4 TH EDITION, SI

A STUDENT S SOLUTIONS MANUAL TO ACCOMPANY MECHANICS of FLUIDS, 4 TH EDITION, SI MERLE C. POTTER DAID C. WIGGERT BASSEM H. RAMADAN STUDENT'S SOLUTIONS MANUAL TO ACCOMPANY MECHANICS of FLUIDS FOURTH EDITION,

### Measurements using Bernoulli s equation

An Internet Book on Fluid Dynamics Measurements using Bernoulli s equation Many fluid measurement devices and techniques are based on Bernoulli s equation and we list them here with analysis and discussion.

### Computational Fluid Dynamics (CFD, CHD)*

1 / 1 Computational Fluid Dnamics (CFD, CHD)* PDE (Shocks 1st); Part I: Basics, Part II: Vorticit Fields Rubin H Landau Sall Haerer, Producer-Director Based on A Surve of Computational Phsics b Landau,

### SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

### 5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

### HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION

AMEE 0 Introduction to Fluid Mechanics Instructor: Marios M. Fyrillas Email: m.fyrillas@frederick.ac.cy HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION. Conventional spray-guns operate by achieving a low pressure

### Rate of Flow Quantity of fluid passing through any section (area) per unit time

Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

### Fluid Mechanics Qualifying Examination Sample Exam 2

Fluid Mechanics Qualifying Examination Sample Exam 2 Allotted Time: 3 Hours The exam is closed book and closed notes. Students are allowed one (double-sided) formula sheet. There are five questions on

### Chapter 3 Bernoulli Equation

1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

### CHAPTER 2 Fluid Statics

Chapter / Fluid Statics CHPTER Fluid Statics FE-type Eam Review Problems: Problems - to -9. (C). (D). (C).4 ().5 () The pressure can be calculated using: p = γ h were h is the height of mercury. p= γ h=

### FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

### A first contact with STAR-CCM+ Comparing analytical and finite volume solutions with STAR-CCM+ simulations

A first contact with STAR-CCM+ Comparing analtical and finite volume solutions with STAR-CCM+ simulations Michael Heer Analtical Finite volumes STAR-CCM+ What is ParisTech? ParisTech is a consortium of

### SOLUTIONS TO CONCEPTS CHAPTER 2

SOLUTIONS TO CONCPTS CHAPTR 1. As shown in the figure, The angle between A and B = 11 = 9 A = and B = 4m Resultant R = A B ABcos = 5 m Let be the angle between R and A 4 sin9 = tan 1 = tan 1 (4/) = 5 4cos9

### 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

### Iran University of Science & Technology School of Mechanical Engineering Advance Fluid Mechanics

1. Consider a sphere of radius R immersed in a uniform stream U0, as shown in 3 R Fig.1. The fluid velocity along streamline AB is given by V ui U i x 1. 0 3 Find (a) the position of maximum fluid acceleration

### Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

### 2 Internal Fluid Flow

Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

### AP Exam Practice Questions for Chapter 6

AP Eam Practice Questions for Chapter 6 AP Eam Practice Questions for Chapter 6. To find which graph is a slope field for, 5 evaluate the derivative at selected points. At ( 0, ),.. 3., 0,. 5 At ( ) At

### CE Final Exam. December 12, Name. Student I.D.

CE 100 - December 12, 2009 Name Student I.D. This exam is closed book. You are allowed three sheets of paper (8.5 x 11, both sides) of your own notes. You will be given three hours to complete four problems.

### Figure 1 Answer: = m

Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

### Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

### Lab Reports Due on Monday, 11/24/2014

AE 3610 Aerodynamics I Wind Tunnel Laboratory: Lab 4 - Pressure distribution on the surface of a rotating circular cylinder Lab Reports Due on Monday, 11/24/2014 Objective In this lab, students will be

### Mass of fluid leaving per unit time

5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

### ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

### Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

### MAE 101A. Homework 7 - Solutions 3/12/2018

MAE 101A Homework 7 - Solutions 3/12/2018 Munson 6.31: The stream function for a two-dimensional, nonviscous, incompressible flow field is given by the expression ψ = 2(x y) where the stream function has

### Signature: (Note that unsigned exams will be given a score of zero.)

Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

### Isentropic Flow. Gas Dynamics

Isentropic Flow Agenda Introduction Derivation Stagnation properties IF in a converging and converging-diverging nozzle Application Introduction Consider a gas in horizontal sealed cylinder with a piston

### ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

### Method of Images

. - Marine Hdrodnamics, Spring 5 Lecture 11. - Marine Hdrodnamics Lecture 11 3.11 - Method of Images m Potential for single source: φ = ln + π m ( ) Potential for source near a wall: φ = m ln +( ) +ln

### BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.

BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over

### COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

### V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

### 10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

### Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Phs 221 Chapter 3 Vectors adzubenko@csub.edu http://www.csub.edu/~adzubenko 2014. Dzubenko 2014 rooks/cole 1 Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists

### PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG

1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity

### FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation

FLUID MECHANICS Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation CHAP 3. ELEMENTARY FLUID DYNAMICS - THE BERNOULLI EQUATION CONTENTS 3. Newton s Second Law 3. F = ma along a Streamline 3.3

### for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory?

1. 5% short answers for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? in what country (per Anderson) was the first

### Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

### Incompressible Viscous Flows

Incompressible Viscous Flows Q. Choose the crect answer (i) The maximum velocit of a one-dimensional incompressible full developed viscous flow between two fixed parallel plates is 6m/s. The mean velocit

### AP Exam Practice Questions for Chapter 5

AP Eam Practice Questions for Chapter 5 AP Eam Practice Questions for Chapter 5 d. To find which graph is a slope field for, 5 evaluate the derivative at selected points. d At ( 0, ),. d At (, 0 ),. 5

### Lab Section Date. ME4751 Air Flow Rate Measurement

Name Lab Section Date ME4751 Air Flow Rate Measurement Objective The objective of this experiment is to determine the volumetric flow rate of air flowing through a pipe using a Pitot-static tube and a

### Chapter 4 Transport of Pollutants

4- Introduction Phs. 645: Environmental Phsics Phsics Department Yarmouk Universit hapter 4 Transport of Pollutants - e cannot avoid the production of pollutants. hat can we do? - Transform pollutants

### MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

### FLUID MECHANICS. 1. Division of Fluid Mechanics. Hydrostatics Aerostatics Hydrodynamics Gasdynamics. v velocity p pressure ρ density

FLUID MECHANICS. Diision of Fluid Mechanics elocit p pressure densit Hdrostatics Aerostatics Hdrodnamics asdnamics. Properties of fluids Comparison of solid substances and fluids solid fluid τ F A [Pa]

### FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

### The Pilot Design Studio-Classroom. Joseph Cataldo The Cooper Union for the Advancement of Science and Art

The Pilot Design Studio-Classroom Joseph Cataldo The Cooper Union for the Advancement of Science and Art Studio Method Used for Many decades in Architectural and Art Schools Origins The concept of the

### Flow rate and mass flow rate

EEN-E1040 Measurement and control of energy systems Flow measurements / 14 Sep 2017 WELCOME! v. 01 / T. Paloposki Flow rate and mass flow rate Consider the system shown here 1 Volume flow rate through

### Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Pressure in stationary and moving fluid Lab-On-Chip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;

### 6. Basic basic equations I ( )

6. Basic basic equations I (4.2-4.4) Steady and uniform flows, streamline, streamtube One-, two-, and three-dimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity

### Physics 40 Chapter 7 Homework Solutions

Phsics 40 Chapter 7 Homework Solutions T = F 3 g (1) T sin θ + T sin θ = Fg () 1 1 T cosθ = T cosθ (3) 1 1 Eliminate T and solve for T 1 Fgcos θ T = = T 1 3 g ( sin θ cosθ + cosθ sin θ ) sin ( θ + θ )

### Inviscid & Incompressible flow

< 3.1. Introduction and Road Map > Basic aspects of inviscid, incompressible flow Bernoulli s Equation Laplaces s Equation Some Elementary flows Some simple applications 1.Venturi 2. Low-speed wind tunnel

### Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

### Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

### So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144.

AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f 4 + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f( ) are and.. Evaluate each point. A: d d C: d d B: D: d d d

### Given the water behaves as shown above, which direction will the cylinder rotate?

water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

### Fluid Mechanics. du dy

FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

### Math 107. Rumbos Fall Solutions to Review Problems for Exam 3

Math 17. umbos Fall 29 1 Solutions to eview Problems for Eam 3 1. Consider a wheel of radius a which is rolling on the ais in the plane. Suppose that the center of the wheel moves in the positive direction

### 3.8 The First Law of Thermodynamics and the Energy Equation

CEE 3310 Control Volume Analysis, Sep 30, 2011 65 Review Conservation of angular momentum 1-D form ( r F )ext = [ˆ ] ( r v)d + ( r v) out ṁ out ( r v) in ṁ in t CV 3.8 The First Law of Thermodynamics and

### Signature: (Note that unsigned exams will be given a score of zero.)

Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

### CHAPTER 2 Fluid Statics

Chapter / Fluid Statics CHPTER Fluid Statics FE-tpe Exam Review Problems: Problems - to -9. (C) p = γ h = (.6 98) (8.5.54) = 96 6 Pa = 96.6 kpa Hg. (D) p = p ρ gh = 84. 9.8 4 = 44 76 Pa. (C) p = p + γ

### Physics 123 Unit #1 Review

Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

### Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

### CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

### In steady flow the velocity of the fluid particles at any point is constant as time passes.

Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point

### ME 321: FLUID MECHANICS-I

6/07/08 ME 3: LUID MECHANI-I Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh Universit of Engineering & Technolog (BUET), Dhaka Lecture- 4/07/08 Momentum Principle teacher.buet.ac.bd/toufiquehasan/

### Chapter 4 MOTION IN TWO AND THREE DIMENSIONS

Chapter 4 MTIN IN TW AND THREE DIMENSINS Section 4-5, 4-6 Projectile Motion Projectile Motion Analzed Important skills from this lecture: 1. Identif the projectile motion and its velocit and acceleration

### Fluid Physics 8.292J/12.330J

Fluid Phsics 8.292J/12.0J Problem Set 4 Solutions 1. Consider the problem of a two-dimensional (infinitel long) airplane wing traeling in the negatie x direction at a speed c through an Euler fluid. In

### QUESTION PAPER CODE 65/2/2/F EXPECTED ANSWER/VALUE POINTS

QUESTION PAPER CODE EXPECTED ANSWER/VALUE POINTS SECTION A. P 6 (A A ) P 6 9. (a b c) (a b c) 0 a b c (a b b c c a) 0 a b b c c a. a b sin θ a b cos θ 400 b 4 4. x z 5 or x z 5 mark for dc's of normal

### Lecture 3 The energy equation

Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5

### EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

### Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Lecture slides Challenge the future 3-0-0 Introduction to Aerospace Engineering Aerodynamics 5 & 6 Prof. H. Bijl ir. N. Timmer Delft University of Technology 5. Compressibility

### SYSTEMS VS. CONTROL VOLUMES. Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS)

SYSTEMS VS. CONTROL VOLUMES System (closed system): Predefined mass m, surrounded by a system boundary Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS) Many

### If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body

Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great

### ME332 FLUID MECHANICS LABORATORY (PART I)

ME332 FLUID MECHANICS LABORATORY (PART I) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: January 14, 2002 Contents Unit 1: Hydrostatics

### Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number

Fluid Dynamics Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluids in Motion steady or laminar flow, if each particle of the

### What we know about Fluid Mechanics. What we know about Fluid Mechanics

What we know about Fluid Mechanics 1. Survey says. 3. Image from: www.axs.com 4. 5. 6. 1 What we know about Fluid Mechanics 1. MEB (single input, single output, steady, incompressible, no rxn, no phase

### Consider a control volume in the form of a straight section of a streamtube ABCD.

6 MOMENTUM EQUATION 6.1 Momentum and Fluid Flow In mechanics, the momentum of a particle or object is defined as the product of its mass m and its velocity v: Momentum = mv The particles of a fluid stream

### Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

### Offshore Hydromechanics Module 1

Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 4. Potential Flows part 2 Introduction Topics of Module 1 Problems of interest Chapter 1 Hydrostatics Chapter 2 Floating stability Chapter 2 Constant

### Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M.

Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Scalo Prof. Vlachos

### MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

Test Midterm 1 F2013 MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function

### Fluid Mechanics for International Engineers HW #4: Conservation of Linear Momentum and Conservation of Energy

2141-365 Fluid Mechanics for International Engineers 1 Problem 1 RTT and Time Rate of Change of Linear Momentum and The Corresponding Eternal Force Notation: Here a material volume (MV) is referred to

### Halliday/Resnick/Walker 7e Chapter 4

HRW 7e Chapter 4 Page of Hallida/Resnick/Walker 7e Chapter 4 3. The initial position vector r o satisfies r r = r, which results in o o r = r r = (3.j ˆ 4.k) ˆ (.i ˆ 3.j ˆ + 6. k) ˆ =.ˆi + 6.ˆj k ˆ where

### S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

### FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

### Water is sloshing back and forth between two infinite vertical walls separated by a distance L: h(x,t) Water L

ME9a. SOLUTIONS. Nov., 29. Due Nov. 7 PROBLEM 2 Water is sloshing back and forth between two infinite vertical walls separated by a distance L: y Surface Water L h(x,t x Tank The flow is assumed to be