ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS. SEMESTER 2 May 2013

Size: px
Start display at page:

Download "ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS. SEMESTER 2 May 2013"

Transcription

1 ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER 2 May 2013 COURSE NAME: CODE: Mechanical Engineering Science [8 CHARACTER COURSE CODE] GROUP: AD-ENG 1 DATE: TIME: DURATION: "[EXAM DATE]" "[TIME OF PAPER]" 2 hours INSTRUCTIONS: 1. This paper consists of SIX questions. 2. Candidates must attempt ANY FOUR questions on this paper. 3. All working MUST be CLEARLY shown. 4. Keep all parts of the same question together. 5. The use of non-programmable calculators is permitted. DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Instructions: Answer any FOUR (4) questions. 1

2 [Question 1] (a) A uniform beam AB has a length of 4.0 m and a mass of 30 kg. The beam rests on two supports at its ends. A 200 N load acts at a distance 1 m from end A and a 300 N load acts at a distance 1.5 m from end B. (i) Draw a free-body diagram showing all the forces acting on the beam. (ii) Determine the reactions at the supports A and B. [3 marks] [10 marks] (b) The diagram in Figure 1 shows a rectangular steel lamina of length 2.2 m and width 1.3 m. A square segment of side 0.6 m is removed from the lamina. y 2.2 m 0.6 m 0.6 m Figure m 1.3 m x (i) Find the position of the centroid of the lamina from the y-axis. (ii) Find the mass of the weight of the lamina if its thickness is 0.8 cm. Density of steel = 7800 kg/m 3. [8 marks] [4 marks] [Question 2] (a) Define the terms: (i) mechanical advantage, (ii) velocity ratio, (iii) efficiency. [3 marks] (b) With the aid of a suitable labelled diagram, explain the operation of one (1) of the following simple machines. Screw jack, Differential wheel and axle 2

3 Wheel and axle Block and tackle pulley system [8 marks] (c) The table below gives values of load and effort from an experiment on a machine. Load W (kn) Effort E (kn) i. Use the data in the table above to draw an effort versus load graph. [6 marks] ii. State the law of the machine described by the data. [4 marks] iii. If the ideal mechanical advantage is 5. What is the effort required to overcome friction at a load of 4.5 kn? [4 marks] [Question 3] (a) Define the following: (b) (i) plane stress (ii) plane strain. [2 marks] (b) Sketch the stress-strain graph for a ferrous material and show the following points 1. the stress at the limit of proportionality ( lim ). 2. the ultimate tensile stress (UTS). 3. the yield stress ( yield ). [7 marks] (c) A steel reinforcing bar has a diameter of 32 mm and a gauge length of 6.0 m. Calculate tension in the bar if it extends by 0.5 mm. [8 marks] (d) (i) Define the terms: 1. shear stress, 2. shear strain. [2 marks] (ii) It is required to cut a cylindrical steel bar of diameter 32 mm using a shearing force of 300 kn. Determine the ultimate shear stress for the bar. [6 marks] 3

4 (Question 4) (a) Three point masses A, B and C of magnitudes 4 kg, 5 kg and 3 kg respectively are mounted on a shaft as shown in Figure 2. The distance of masses A, B and C, from the axis of the shaft are 10 cm, 15 cm and 20 cm respectively. If the shaft turns at 300 rev/min., determine B 5 kg 15 cm A cm 4 kg 3 kg C 20 cm Figure 2 i. the magnitude and direction of the out of balance force. [11 marks] ii. the kinetic energy of the masses. [3 marks] (b) The speed of a rotating wheel decreases uniformly from 300 rev /min to rest in 10 seconds. Find: i. the angular deceleration of the wheel, [3 marks] ii. the number of revolution turned during the deceleration. [3 marks] (c) A spanner of length 35 cm was used to turn a bolt. A force of 140 N was applied perpendicular to the handle of the spanner. Find: i. the torque applied, [2 marks] ii. the work done if the spanner makes 6 revolutions. [3 marks] 4

5 (Question 5) (a) Explain the meaning of the following terms: (i) coefficient of limiting friction, (ii) angle of friction. [4 marks] (b) A 50 kg crate is pushed up an inclined plane at constant velocity by a 320 N force acting parallel to the plane. The angle of the inclined plane is 30 0, g = 9.80 m/s 2. (i) Draw a diagram and show all the forces acting on the crate. [3 marks] (ii) Determine: 1. the angle of friction. [2 marks] 2. the coefficient of friction between the crate and the inclined plane [4 marks] 3. the force acting parallel to the inclined plane which is required to make the crate slide down the plane with constant velocity. [4 marks] (c) Figure 3 shows how the torque acting on the shaft of a rotating machine varies over one complete revolution. Find the work done in one revolution. [8 marks] /(Nm) (Question 6) / 0 Figure 3 (a) (i) Differentiate between heat capacity and specific heat capacity. [2 marks] (ii) A piece of metal of mass 5.0 kg is heated to C and immersed into 4.0 kg of water at 25 0 C contained in a brass container. The mass of the brass container is 20 kg. 5

6 Determine the final temperature of the system. [8 marks] Specific heat capacity of water = 4200 J/(kg K). Specific heat capacity of brass = J/(kg K). (b) (i) Distinguish between gauge pressure and absolute pressure. [2 marks] (ii) A U-tube water manometer is used to measure the pressure of a gas in a container. If the gauge pressure of the gas is 12 kn/m 2 and atmospheric pressure is kn/m What is the absolute pressure of the gas in bars? [2 marks] 2. What will be the difference in the levels of the water in the two arms of the manometer? [5 marks] (c) A compressed air tank has a volume of 1.5 m 3. A pressure gauge fitted to this tank reads 1600 kn/m 2 when the barometric pressure was 1020 millibars. If the temperature of the air in the tank is 45 0 C, find the volume the air would occupy at s.t.p. Standard atmospheric pressure is kn/m 2. [6 marks] ****END OF PAPER***** 6

7 ASSOCIATE DEGREE IN ENGINEERING SOLUTIONS SEMESTER DECEMBER COURSE NAME: CODE: Mechanical Engineering Sciencce [8 CHARACTER COURSE CODE] GROUP: "[AD-ENG 1 OR 2]" DATE: TIME: DURATION: "[EXAM DATE]" "[TIME OF PAPER]" 2 hr Solutions [Question 1] (a) (i) 200 N 300 N 300 N 1 m 1 m 0.75 m 1.25 m A R A 4.0 m B R B [3] (ii) M A = 0; x x x R B x 4 = R B x 4 = 0 7

8 (b) (i) 4 R B = 1625 R B = 406 N [5] M B = 0; 200 x x x 1.25 R A x 4 = R A x 4 = 0 4 R A = 1575 R A = 394 N [5] Check: F y = 0; = 0 0 = 0 y 2.2 m A 0.6 m 0.6 m B 1.3 m 0.4 m x Consider the lamina is composed of a full rectangular lamina A and the cut-off part B of negative mass. A = 2.2 x 1.3 x A = 1.1 m = 2.86 m 2 B = x 0.6 x B = = m 2 = 1.5 m [4] (A + B) x = A x A + B x B ( )x = 2.86 x x x = = x = 1.04 m [4] (ii) V = A x w = 2.5 x V = 0.02 m 3 m = V = 800 x 0.02 m = 16.0 kg [4] 8

9 [Question 2] (a) (i) Mechanical advantage is the ratio of load to effort for a machine. [1] (ii) Velocity ratio is the radio of the distance moved by the effort to the distance moved by the load. [1] (iii) Efficiency is the ratio of the work output to the work input. [1] (b) Labelled diagram and operation of a simple machine. [8] (c) (i) 3 Effort (kn) kn Load(kN) [6] (ii) slope = ( )/(6-0) = 1.85/6 = a = b = 1.1 kn Law of the machine: E = L kn [4] 9

10 (iii) From the graph, when the load is 4.5 kn the effort is 2.5 kn Ideal effort = 4.5/5 = 0.9 kn Friction effort = = 1.6 kn [4] [Question 3] (a) (i) Plane stress is the ratio of the force per cross-sectional area of the material. [1] (ii) Plane strain is the ratio of the extension to the original length of the material. [1] (b) Stress UTS yield lim [7] Strain (c) A = π d 2 /4 = π (32) 2 /4 = 804 mm 2 A = 8.04 x 10-4 m 2 [2] L = 6.0 m e = 0.5 x 10-3 mm E = 2.03 x Pa. E = F L/(A e) F = E A e/l [1] = (2.03 x x 8.04 x 10-4 x 0.5 x 10-3 )/6 = (2.03 x 8.04 x 0.5 x )/6 F = 13.6 x 10 3 N (13.6 kn) [5] (d) (i) 1. Shear stress is the ratio of the force to area, where the force acts parallel to the area. [1] 2. Shear strain is the ratio of the deformation of the material parallel to the force to the length perpendicular to the force. [1] (ii) A = 8.04 x 10-4 m 2 (from (c) above) Shear stress = force /area = N/8.04 x 10-4 m 2 Shear stress = 37.3 x 10 7 N/m 2 [6] 10

11 (Question 4) (a) i. = 300 x 2 /60 = 10 rad/sec. [1] F = m 2 r F A = 4 x (10 ) 2 x 0.1 = 395 N F B = 5 x (10 ) 2 x 0.15 = 740 N F C = 3 x (10 ) 2 x 0.2 = 592 N [3] Determine the resultant of the three forces: x-component (N) y-component (N) F A F B F C 592 cos = sin = Total [5] N F R 23.6 N F R = ( ) = 322 N [1] = tan -1 (321.4/23.6) = 86 0 [1] ii. K.E. = 0.5 m 2 r 2 = 0.5(10 ) 2 [ 4(0.1) 2 + 5(0.15) 2 + 3(0.2) 2 ] = 493.5[ ] K.E. = 134 J [3] 11

12 (b) i = 300 rpm = 10 rad/sec. f = 0 t = 10 s i. f = i + t 0 = = - 10 /10 = rad/s 2 [3] ii. 2 2 f = i = (10 ) x ( ) = 157 rad = 25 revs. [3] (c) i. = 140 x 0.35 = 49 N m [2] ii. W = = 49 x (6 x 2 ) W = 1847 J [3] (Question 5) (a) (i) The ratio of the limiting frictional force to the normal reaction for impending motion. [2] (ii) The angle between the reaction of the ground (frictional force plus normal reaction) and the normal reaction. [2] (b) (i) F k N 500 cos sin N [3] - (ii) 1. F y = 0; N cos 30 0 = 0 N = 433 N [3] F X = 0; sin F k = 0 F k = sin 30 0 = 70 N [3] 12

13 µ k = F k /N = 70/433 µ k = 0.16 [2] 2. = tan -1 (0.16) = [2] 3. F k N 500 sin P 500 cos 30 0 F X = 0; 500 sin F k - P = P = 0 P = 180 N (c) Find the work done in one revolution. [8] /(Nm) / 0 Work done = area under graph = [100 x / ( ) x / x x 150] = [ ] = (750) Work done = 2356 J [8] (Question 6) (a) (i) Heat capacity is the amount of heat absorbed or given off by a body when its temperature changes by one degree, whereas specific heat capacity is the 13

14 amount of heat given off or absorbed by 1 kg of a substance when the temperature changes by one degree, [2] (ii) Heat lost by hot metal ingot = heat absorbed by water + heat absorbed by brass container 5 x c ingot x (200-55) = 4 x 4200 x (55-25) + 10 x 350 (55-25) 725 x c ingot = = c ingot = /725 = 840 c ingot = 840 J/(kg K) [8] (b) (i) Gauge pressure is the excess pressure above atmospheric pressure and absolute pressure is the sum of the gauge pressure and atmospheric pressure. [2] (c) (ii) 1. absolute pressure = = 212 kn/m 2. = 2.12 bars [2] 2. P = g h h = 12000/(1000 x 9.8) h = 1.22 m [5] A compressed air tank has a volume of 1.5 m 3. A pressure gauge fitted to this tank reads 1600 kn/m 2 when the barometric pressure was 1020 millibars. If the temperature of the air in the tank is 45 0 C, find the volume the air would occupy at s.t.p. Standard atmospheric pressure is kn/m 2. P 1 = = kpa V 1 = 1.5 m 3 T 1 = = 318 K P 2 = kpa T 2 = 273 K [2] P 1 V 1 /T 1 = P 2 V 2 /T 2 V 2 = P 1 V 1 T 2 / P 2 T 1 = (1701.3) x 1.5 x 273/(101.3 x 318) V 2 = 21.6 m 3 [4] \ 14

15 Examination Paper Analysis Associate of Applied Science Degree Module: Mechanical Engineering Science Date: March 30, 2013 Examiner: Noel Brown Syllabus Objectives Question A B C D E F G H I J 1 X 2 X 3 X 4 X 5 X X 6 X X Question 1 Question is adequate for this level. Check editing. Question 2 Question is adequate for this level. Check Formatting. Question 3 Question is adequate for this level. B1 and B2 seems to be asking to identify the same point. Question 4 Question is adequate for this level. Question 5 Question is adequate for this level. Question 6 Question is adequate for this level. Check the solution 6b, it does not correspond to the question asked. Overall the paper provides good coverage of the syllabus objectives. Only a few changes are recommended, I have included some of the changes. Please ensure that the paper is proofread and all formatting are removed. Six questions are adequate for this exam, the time allotted (2 hours) is also adequate. The students should be able to complete four questions in 2 hours. 15

PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY

PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 JUNE 2011 COURSE NAME: Mechanical Engineering Science CODE: GROUP: ADET 1 DATE: JUNE 28 TIME: DURATION:

More information

PORTMORE COMMUNITY COLLEGE

PORTMORE COMMUNITY COLLEGE PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 July 2012 COURSE NAME: Mechanical Engineering Science CODE: GROUP: ADET 1 DATE: July 3, 2012 TIME: DURATION:

More information

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /15 PAPER A

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /15 PAPER A SSOCITE DEGREE IN ENGINEERING EXMINTIONS SEMESTER 2 2014/15 PPER COURSE NME: ENGINEERING MECHNICS - STTICS CODE: ENG 2008 GROUP: D ENG II DTE: May 2015 TIME: DURTION: 2 HOURS INSTRUCTIONS: 1. This paper

More information

SECOND ENGINEER REG. III/2 APPLIED MECHANICS

SECOND ENGINEER REG. III/2 APPLIED MECHANICS SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces

More information

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment. Introduction Fundamentals of statics Applications of fundamentals of statics Friction Centroid & Moment of inertia Simple Stresses & Strain Stresses in Beam Torsion Principle Stresses DEPARTMENT OF CIVIL

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) I B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) Term-End Examination 00 December, 2009 Co : ENGINEERING MECHANICS CD Time : 3 hours Maximum Marks : 70 Note : Attempt

More information

MANGA DISTRICT JOINT EVALUATION TEST 2010 Kenya Certificate of Secondary Education (K.C.S.E)

MANGA DISTRICT JOINT EVALUATION TEST 2010 Kenya Certificate of Secondary Education (K.C.S.E) Name. School Index No.. Candidate s sign. Date. 232/1 PHYSICS Paper 1 July/August 2010 2 Hours MANGA DISTRICT JOINT EVALUATION TEST 2010 Kenya Certificate of Secondary Education (K.C.S.E) 232/1 PHYSICS

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13 ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER 2 2012/13 COURSE NAME: ENGINEERING MECHANICS - STATICS CODE: ENG 2008 GROUP: AD ENG II DATE: May 2013 TIME: DURATION: 2 HOURS INSTRUCTIONS: 1. This

More information

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. Semester 1 July 2012

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. Semester 1 July 2012 ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS Semester 1 July 2012 COURSE NAME: ENGINEERING PHYSICS I CODE: PHS 1005 GROUP: ADET 2 DATE: July 4, 2012 TIME: DURATION: 9:00 am 2 HOURS INSTRUCTIONS:

More information

Experiment: Torsion Test Expected Duration: 1.25 Hours

Experiment: Torsion Test Expected Duration: 1.25 Hours Course: Higher Diploma in Civil Engineering Unit: Structural Analysis I Experiment: Expected Duration: 1.25 Hours Objective: 1. To determine the shear modulus of the metal specimens. 2. To determine the

More information

Physics P201 D. Baxter/R. Heinz. EXAM #3 November 21, :00 9:00 PM INSTRUCTIONS

Physics P201 D. Baxter/R. Heinz. EXAM #3 November 21, :00 9:00 PM INSTRUCTIONS Seat # Your exam is form 1. Physics P201 D. Baxter/R. Heinz EXAM #3 November 21, 2002 7:00 9:00 PM INSTRUTIONS 1. Please indicate which form (1, 2, 3, or 4) exam you have by marking the appropriate bubble

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Level 3 Cambridge Technical in Engineering

Level 3 Cambridge Technical in Engineering Oxford Cambridge and RSA Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825 Unit 3: Principles of mechanical engineering Sample Assessment Material Date - Morning/Afternoon Time allowed:

More information

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY Spring 2006 Final Examination STUDENT S NAME (please print) STUDENT S SIGNATURE STUDENT NUMBER IDE 110 CLASS SECTION INSTRUCTOR S NAME Do not turn this page until instructed to start. Write your name on

More information

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam.

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam. ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICS OF SOLIDS (21000) ASSIGNMENT 1 SIMPLE STRESSES AND STRAINS SN QUESTION YEAR MARK 1 State and prove the relationship

More information

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS Unit 2: Unit code: QCF Level: 4 Credit value: 15 Engineering Science L/601/1404 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS 1. Be able to determine the behavioural characteristics of elements of static engineering

More information

2014 MECHANICS OF MATERIALS

2014 MECHANICS OF MATERIALS R10 SET - 1 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

National Exams May 2015

National Exams May 2015 National Exams May 2015 04-BS-6: Mechanics of Materials 3 hours duration Notes: If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear

More information

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Student Name Student ID Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Approximate your answer to those given for each question. Use this table to fill in your answer

More information

A. Objective of the Course: Objectives of introducing this subject at second year level in civil branches are: 1. Introduction 02

A. Objective of the Course: Objectives of introducing this subject at second year level in civil branches are: 1. Introduction 02 Subject Code: 0CL030 Subject Name: Mechanics of Solids B.Tech. II Year (Sem-3) Mechanical & Automobile Engineering Teaching Credits Examination Marks Scheme Theory Marks Practical Marks Total L 4 T 0 P

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

MECHANICS OF SOLIDS Credit Hours: 6

MECHANICS OF SOLIDS Credit Hours: 6 MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second

More information

S.3 PHYSICS HOLIDAY WORK Where necessary assume the acceleration due to gravity, g 10ms. 1. 7. 13. 19. 25. 2. 8. 14. 20. 26. 3. 9. 15. 21. 27. 4. 10. 16. 22. 28. 5. 11. 17. 23. 29. 6. 12. 18. 24. 30. SECTION

More information

UNIVERSITY OF MANITOBA. All questions are of equal value. No marks are subtracted for wrong answers.

UNIVERSITY OF MANITOBA. All questions are of equal value. No marks are subtracted for wrong answers. (3:30 pm 6:30 pm) PAGE NO.: 1 of 7 All questions are of equal value. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will

More information

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points)

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) ME 270 3 rd Sample inal Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) IND: In your own words, please state Newton s Laws: 1 st Law = 2 nd Law = 3 rd Law = PROBLEM

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

Physics 141 Rotational Motion 2 Page 1. Rotational Motion 2

Physics 141 Rotational Motion 2 Page 1. Rotational Motion 2 Physics 141 Rotational Motion 2 Page 1 Rotational Motion 2 Right handers, go over there, left handers over here. The rest of you, come with me.! Yogi Berra Torque Motion of a rigid body, like motion of

More information

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)

More information

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5 BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

More information

SECTION A. 8 kn/m. C 3 m 3m

SECTION A. 8 kn/m. C 3 m 3m SECTION Question 1 150 m 40 kn 5 kn 8 kn/m C 3 m 3m D 50 ll dimensions in mm 15 15 Figure Q1(a) Figure Q1(b) The horizontal beam CD shown in Figure Q1(a) has a uniform cross-section as shown in Figure

More information

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3. ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

Where, m = slope of line = constant c = Intercept on y axis = effort required to start the machine

Where, m = slope of line = constant c = Intercept on y axis = effort required to start the machine (ISO/IEC - 700-005 Certified) Model Answer: Summer 07 Code: 70 Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17204 15162 3 Hours / 100 Marks Seat No. Instructions : (1) All Questions are compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary.

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS. Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university

CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS. Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Agenda Introduction to your lecturer Introduction

More information

NAME: Given Formulae: Law of Cosines: Law of Sines:

NAME: Given Formulae: Law of Cosines: Law of Sines: NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

More information

Solid Mechanics Homework Answers

Solid Mechanics Homework Answers Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

More information

Honors Physics Review

Honors Physics Review Honors Physics Review Work, Power, & Energy (Chapter 5) o Free Body [Force] Diagrams Energy Work Kinetic energy Gravitational Potential Energy (using g = 9.81 m/s 2 ) Elastic Potential Energy Hooke s Law

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Friction Chapter 8 Overview Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Dry Friction Friction is defined as a force of resistance acting on a body which prevents slipping of the body

More information

Experiment Two (2) Torsional testing of Circular Shafts

Experiment Two (2) Torsional testing of Circular Shafts Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design.

The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design. CHAPER ORSION ORSION orsion refers to the twisting of a structural member when it is loaded by moments/torques that produce rotation about the longitudinal axis of the member he problem of transmitting

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur Module Stresses in machine elements Lesson Compound stresses in machine parts Instructional Objectives t the end of this lesson, the student should be able to understand Elements of force system at a beam

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALS-I 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Sample Question Paper

Sample Question Paper Scheme I Sample Question Paper Program Name : Mechanical Engineering Program Group Program Code : AE/ME/PG/PT/FG Semester : Third Course Title : Strength of Materials Marks : 70 Time: 3 Hrs. Instructions:

More information

Matlab Sheet 2. Arrays

Matlab Sheet 2. Arrays Matlab Sheet 2 Arrays 1. a. Create the vector x having 50 logarithmically spaced values starting at 10 and ending at 1000. b. Create the vector x having 20 logarithmically spaced values starting at 10

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

GATUNDU SOUTH KCSE REVISION MOCK EXAMS 2015

GATUNDU SOUTH KCSE REVISION MOCK EXAMS 2015 GATUNDU SOUTH KCSE REVISION MOCK EXAMS 2015 232/1 PHYSICS PAPER 1 JULY/AUGUST 2015 TIME: 2 HOURS SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai Tel: 0711 88

More information

Sample Test Paper - I

Sample Test Paper - I Scheme - G Sample Test Paper - I Course Name : Civil, Chemical, Mechanical and Electrical Engineering Group Course Code : AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS Semester : Second Subject Title :

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information

I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM)

I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM) Code.No: 09A1BS05 R09 SET-1 I B.TECH EXAMINATIONS, JUNE - 2011 ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM) Time: 3 hours Max. Marks: 75 Answer any FIVE questions All questions

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Group Number: Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Signature: INSTRUCTIONS Begin each problem

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016 Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES CONTENT Be able to determine the operating characteristics of lifting

More information

Attempt ALL QUESTIONS IN SECTION A and ANY TWO QUESTIONS IN SECTION B Linear graph paper will be provided.

Attempt ALL QUESTIONS IN SECTION A and ANY TWO QUESTIONS IN SECTION B Linear graph paper will be provided. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2013-2014 ENGINEERING PRINCIPLES AND LAWS ENG-4002Y Time allowed: 3 Hours Attempt ALL QUESTIONS IN SECTION A and ANY TWO QUESTIONS

More information

Static Failure (pg 206)

Static Failure (pg 206) Static Failure (pg 06) All material followed Hookeʹs law which states that strain is proportional to stress applied, until it exceed the proportional limits. It will reach and exceed the elastic limit

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

UNIT 4 FLYWHEEL 4.1 INTRODUCTION 4.2 DYNAMICALLY EQUIVALENT SYSTEM. Structure. Objectives. 4.1 Introduction

UNIT 4 FLYWHEEL 4.1 INTRODUCTION 4.2 DYNAMICALLY EQUIVALENT SYSTEM. Structure. Objectives. 4.1 Introduction UNIT 4 FLYWHEEL Structure 4.1 Introduction Objectives 4. Dynamically Equivalent System 4.3 Turning Moment Diagram 4.3.1 Turning Moment Diagram of a Single Cylinder 4-storke IC Engine 4.3. Turning Moment

More information

OUTCOME 1 MECHANICAL POWER TRANSMISSION SYSTEMS TUTORIAL 3 FLYWHEELS. On completion of this short tutorial you should be able to do the following.

OUTCOME 1 MECHANICAL POWER TRANSMISSION SYSTEMS TUTORIAL 3 FLYWHEELS. On completion of this short tutorial you should be able to do the following. Unit 60: Dynamics of Machines Unit code: H/60/4 QCF Level:4 Credit value:5 OUTCOME MECHANCAL POWER TRANSMSSON SYSTEMS TUTORAL 3 FLYWHEELS. Be able to determine the kinetic and dynamic parameters of mechanical

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains STRENGTH OF MATERIALS-I Unit-1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2016/2017 ENGINEERING PRINCIPLES 2

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2016/2017 ENGINEERING PRINCIPLES 2 UNIVERSITY OF BOLTON OCD15 WESTERN INTERNATIONAL COLLEGE FZE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 016/017 ENGINEERING PRINCIPLES MODULE NO: AME4053 Date: Wednesday 4 May 017 Time:

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. NAME: ME 270 Fall 2012 Examination No. 3 - Makeup Please review the following statement: Group No.: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

More information

Bending Stress. Sign convention. Centroid of an area

Bending Stress. Sign convention. Centroid of an area Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Centroid of an area Figure 40: Sign convention followed. If the area can be divided into n parts

More information

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS Time Allowed:2 Hours Maximum Marks: 300 Attention: 1. Paper consists of Part A (Civil & Structural) Part B (Electrical) and Part C (Mechanical)

More information

REVIEW. Final Exam. Final Exam Information. Final Exam Information. Strategy for Studying. Test taking strategy. Sign Convention Rules

REVIEW. Final Exam. Final Exam Information. Final Exam Information. Strategy for Studying. Test taking strategy. Sign Convention Rules Final Exam Information REVIEW Final Exam (Print notes) DATE: WEDNESDAY, MAY 12 TIME: 1:30 PM - 3:30 PM ROOM ASSIGNMENT: Toomey Hall Room 199 1 2 Final Exam Information Comprehensive exam covers all topics

More information

Torsion Stresses in Tubes and Rods

Torsion Stresses in Tubes and Rods Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2 O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see

More information

Sample 5. Determine the tension in the cable and the horizontal and vertical components of reaction at the pin A. Neglect the size of the pulley.

Sample 5. Determine the tension in the cable and the horizontal and vertical components of reaction at the pin A. Neglect the size of the pulley. Sample 1 The tongs are designed to handle hot steel tubes which are being heat-treated in an oil bath. For a 20 jaw opening, what is the minimum coefficient of static friction between the jaws and the

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17204 15116 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

1 of 7. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ

1 of 7. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ NME: ES30 STRENGTH OF MTERILS FINL EXM: FRIDY, MY 1 TH 4PM TO 7PM Closed book. Calculator and writing supplies allowed. Protractor and compass allowed. 180 Minute Time Limit GIVEN FORMULE: Law of Cosines:

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

ENGINEERING ENTRANCE EXAMINATION QUESTIONS IN MATHEMATICS NOTE: ANSWER ANY 11 QUESTIONS OUT OF 16 QUESTIONS

ENGINEERING ENTRANCE EXAMINATION QUESTIONS IN MATHEMATICS NOTE: ANSWER ANY 11 QUESTIONS OUT OF 16 QUESTIONS ENGINEERING ENTRANCE EXAMINATION QUESTIONS IN MATHEMATICS NOTE: ANSWER ANY QUESTIONS OUT OF 6 QUESTIONS. Evaluate 3 lim 4 + 3. Find the equation of the straight line passing through (3,) which is perpendicular

More information

PHYSICS. Unit 3 Written examination Trial Examination SOLUTIONS

PHYSICS. Unit 3 Written examination Trial Examination SOLUTIONS PHYSICS Unit 3 Written examination 1 2012 Trial Examination SECTION A Core Motion in one and two dimensions Question 1 SOLUTIONS Answer: 120 N Figure 1 shows that at t = 5 sec, the cart is travelling with

More information

1. Attempt any ten of the following : 20

1. Attempt any ten of the following : 20 *17204* 17204 21314 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Answer each next main question on a new page. (3) Illustrate your answers with neat sketches wherever

More information

3.5 STRESS AND STRAIN IN PURE SHEAR. The next element is in a state of pure shear.

3.5 STRESS AND STRAIN IN PURE SHEAR. The next element is in a state of pure shear. 3.5 STRESS AND STRAIN IN PURE SHEAR The next element is in a state of pure shear. Fig. 3-20 Stresses acting on a stress element cut from a bar in torsion (pure shear) Stresses on inclined planes Fig. 3-21

More information

Final Examination Study Set 1. (Solutions will be in the Solutions Manual of Textbook)

Final Examination Study Set 1. (Solutions will be in the Solutions Manual of Textbook) Final Examination Study Set 1 (Solutions will be in the Solutions Manual of Textbook) Final Examination Study Set 2 (Solutions will be in the Solutions Manual of Textbook) 3/86 The shaft, lever,

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information