But RECAP. Why is losslessness important? An Instance of Relation NEWS. Suppose we decompose NEWS into: R1(S#, Sname) R2(City, Status)

Size: px
Start display at page:

Download "But RECAP. Why is losslessness important? An Instance of Relation NEWS. Suppose we decompose NEWS into: R1(S#, Sname) R2(City, Status)"

Transcription

1 So far we have seen: RECAP How to use functional dependencies to guide the design of relations How to modify/decompose relations to achieve 1NF, 2NF and 3NF relations But How do we make sure the decompositions are lossless (equivalence preserving)? Are some decompositions better than others? What if there are multiple candidate keys? 1 2 Why is losslessness important? An Instance of Relation NEWS No information is lost or added implicitly by mistake. Any information that can be derived from the original relation can also be derived from the relations that result from the decomposition and vice versa. In other words, you get the same answers to your queries. 3 S# SNAME STATUS CITY S1 Smith 20 London S2 Jones 10 Paris S3 Blake 10 Paris S4 Clark 20 London S5 Adams 30 Athens 4 Suppose we decompose NEWS into: NEWS (S#, SNAME, STATUS, CITY) S# SNAME, STATUS, CITY R1(S#, Sname) R2(City, Status) So no attributes are lost. R1 R2 S# Sname City Status S1 Smith London 20 S2 Jones Paris 10 S3 Blake Athens 30 What is the status or city of Smith? 5 6

2 Would it be good enough if the 2 relations were to have at least one attribute in common? NEWS (S#, SNAME, STATUS, CITY) S# SNAME, STATUS, CITY R1(S#, Sname, Status) R2(City, Status) So no attributes are lost and the R1 and R2 have an attribute in common.?????? Do you see any problems??????? 7 8 R1 R2 S# Sname Status City Status S1 Smith 20 London 20 S2 Jones 10 Paris 10 S3 Blake 30 Athens 30 R1 R2 S# Sname Status City Status S1 Smith 20 London 20 S2 Jones 10 Paris 10 S3 Blake 30 Athens 30 Rome R1 R2 S# Sname Status City Status S1 Smith 20 London 20 S2 Jones 10 Paris 10 S3 Blake 30 Athens 30 Rome 20 What is the city of Smith? London or Rome? So still not good enough. R R1 R2 Do not loose any attributes. Make sure R1 and R2 have some attribute(s) in common. Some extra condition on the shared attribute(s) to ensure losslessness

3 Losslessness Definition: Lossless decomposition A decomposition of a relation R into relations R1,..., Rn is lossless (nonloss) if and only if for every instance of R and the Ri the natural join of R1,..., Rn gives the relation R. Natural Join very briefly Teaches Class Lecturer Course Course class fs logic logic msc jm ai ai msc sd C++ ai meng Teaches JOIN Class Teaches Class Lecturer Course Course Class fs logic logic msc jm ai ai msc sd C++ ai meng2 Lecturer Course Class fs logic msc jm ai msc jm ai meng Another Example of JOIN Teaches Class-number Lecturer Course Number Class fs logic 60 msc jm ai 100 meng2 Teaches JOIN Class-number Lecturer Course Number Class fs logic 60 msc fs logic 100 meng2 jm ai 60 msc jm ai 100 meng2 17 A Lossy Decomposition R A B C a1 b1 c1 a2 b1 c2 a2 b2 c2 18

4 Suppose we decomposed R into R1 and R2. Now consider the JOIN of R1 and R2. R1 R2 A B B C a1 b1 b1 c1 a2 b1 b1 c2 a2 b2 b2 c2 R1 R2 A B B C a1 b1 b1 c1 a2 b1 b1 c2 a2 b2 b2 c R1 JOIN R2 R1 JOIN R2 versus R A B C A B C a1 b1 c1 a1 b1 c1 a1 b1 c2 a2 b1 c2 a2 b1 c1 a2 b2 c2 a2 b1 c2 a2 b2 c2 R Theorem: sufficient condition for losslessness Suppose R is a relation scheme and F is a set of functional dependencies on R. Let R1 and R2 be projections of R such that the union of the sets of attributes of R1 and R2 is equal to the set of attributes of R. This decomposition of R is lossless if at least one of the following fds is in F+: R1 R2 R1 R1 R2 R Example: Lecturer DB Lecturer Course Number Class fs logic 60 msc fs logic 100 meng2 jm ai 60 msc jm ai 100 meng2 Class Number Only key: (Lecturer,Course,Class) Example cntd. What normal form is Lecturer DB in? Lecturer(Lecturer,Course,Number,Class) Decompose to: Degree(Class,Number) Teaches(Lecturer,Course,Class) Degree Teaches = Class Class Degree 23 24

5 So far we have done: How do we make sure the decompositions are lossless (equivalence preserving)? Are some decompositions better than others? Dependency Preservation It is often possible to decompose a relation in different ways. Amongst the lossless decompositions some may be better than others. What if there are multiple candidate keys? Here is an instance of relation NEWS. Example NEWS (S #, SNAME, STATUS, CITY) S# SNAME, STATUS, CITY 27 S# SNAME STATUS CITY S1 Smith 20 London S2 Jones 10 Paris S3 Blake 10 Paris S4 Clark 20 London S5 Adams 30 Athens NEWS is in 2NF, but not in 3NF. It can be transformed to 3NF by two alternative decompositions. 28 Instance of A A: Supplier (S#, SNAME, CITY) City-info (CITY, STATUS) B: Supplier (S#, SNAME, CITY) Status-info (S#, STATUS) Both decompositions are lossless. All resulting relations are in 3NF. Supplier City-info S# SNAME CITY CITY STATUS S1 Smith London London 20 S2 Jones Paris Paris 10 S3 Blake Paris Athens 30 S4 Clark London Rome 50 S5 Adams Athens 29 30

6 Supplier Instance of B Status-info S# SNAME CITY S# STATUS S1 Smith London S1 20 S2 Jones Paris S2 10 S3 Blake Paris S3 10 S4 Clark London S4 20 S5 Adams Athens S5 30 Which one is better? A or B? Example: Consider the update Change CITY of supplier S1 from London to Paris. What does this involve in A? What does this involve in B? In A In A: All we have to do is change the relevant value in relation Supplier. In B: We have to update both relations Supplier and Status-info to ensure that the functional dependency is maintained. In Supplier: Change <S1, Smith, London> to <S1, Smith, Paris> In B Supplier City-info S# SNAME CITY CITY STATUS S1 Smith London London 20 S2 Jones Paris Paris 10 S3 Blake Paris Athens 30 S4 Clark London Rome 50 S5 Adams Athens In Supplier: Change <S1, Smith, London> to <S1, Smith, Paris>. In Supplier find a row with City=Paris, and read its S#. In Status-info find the Status of that S#. In Status-info change the value of the Status of S1 to this new Status

7 Another problem with B is that: Supplier Status-info S# SNAME CITY S# STATUS S1 Smith London S1 20 S2 Jones Paris S2 10 S3 Blake Paris S3 10 S4 Clark London S4 20 S5 Adams Athens S5 30 (Assuming the Entity Integrity Rule) We cannot insert in B the information that a given city has a given status, unless some supplier is located in that city In A In A, it is the transitive dependency S # STATUS which is an inter-relational constraint. This constraint is maintained automatically as long as the constraints S # CITY are maintained in each relation, and these are just primary key constraints in each relation of A. A: Supplier (S#, SNAME, CITY) City-info (CITY, STATUS) S# SNAME S# CITY S# STATUS In B Formalisation/Generalisation of This Intuition B: Supplier (S#, SNAME, CITY) Status-info (S#, STATUS) S# SNAME S# CITY S# STATUS The problem with B is that the dependency has become an inter-relational constraint. R1 F1 R (F) R2. Rn F2. Fn 41 42

8 Let F = F1 F2.. Fn In general F F. But if F + = F +, then to check F we only need to check F. Definition: Dependency-Preserving A decomposition R1,..., Rn of R is dependencypreserving if and only if F + = F +, where F and F are defined as above. Example: In the NEWS example A is dependency preserving, but B is not Example: NEWS (S #, SNAME, STATUS, CITY) S# SNAME, STATUS, CITY In A F supplier ={S# SNAME, CITY} F city-info = { } A: Supplier (S#, SNAME, CITY) City-info (CITY, STATUS) B: Supplier (S#, SNAME, CITY) Status-info (S#, STATUS) 45 So F = F supplier F city-info. So clearly F + =F In B F supplier ={S# SNAME, CITY} F Status-info = { S# STATUS} So F = F supplier F Status-info. CITY STATUS is in F + but not in F +. So F + F +. So far we have done: How do we make sure the decompositions are lossless (equivalence preserving)? Are some decompositions better than others? What if there are multiple candidate keys? 47 48

9 Generalising 2NF and 3NF: Boyce-Codd Normal Form (BCNF) For 2NF Get rid of: A B C D E F For 3NF Get rid of : What we want: D A B C D E D F A B C E F G H With 2NF and 3NF: assumed that the relation has one candidate key. Now we generalise to cater for multiple candidate keys. This more general normal form is called the Boyce- Codd Normal Form (BCNF). CK1 CK2 CK3 attribute1 attribute2 attribute1 attribute3 attribute2 attribute4 attribute

10 Definition: Determinant A determinant is any attribute, or set of attributes, on which some other attribute is fully functionally dependent. Example: R(A,B,C,D,E) AB C A B C D DE A Here A and C are determinants. There are 2 others. Can you see what they are? Definition: BCNF A relation is in Boyce-Codd Normal Form (BCNF) if and only if every determinant is a candidate key. Any relation can be nonloss decomposed into a collection of BCNF relations Example: Enrols(Student #, Subject, Teacher) Teacher Subject (student #, subject) Teacher 57 An Instance of the Relation Scheme Enrols Student # Subject Teacher 100 maths smith 101 maths jones 102 maths smith 103 maths smith 104 physics brown 101 physics brown 100 physics green 58 Each student is taught by several teachers. Each teacher teaches only one subject. Each student takes several subjects and has only one teacher for a given subject. What are the candidate keys of Enrols? What normal form is Enrols in? What problems do you see in the design of Enrols? 59 60

11 Candidate keys of Enrols are (Teacher, Student#) (Subject, Student#) Teacher Student# Subject Student# Subject Teacher Problems with Enrols We cannot insert the fact that a teacher teaches a certain subject until at least one student enrols for that subject. The fact that a teacher teaches a certain subject is recorded with a lot of redundancy, for every student to whom he teaches that subject. Teacher Student# Subject Student# Subject Teacher Solution Decompose Enrols into Courses(Teacher, Subject) Students(Student #,Teacher) In Enrols: Teacher is a determinant, but not a candidate key. In Courses(Teacher, Subject) : The only dependency is Teacher Subject. So Teacher is the only determinant. It is also the only candidate key

12 Exercise In Students(Student#,Teacher) Teacher Subject (student #, subject) Teacher No determinant. So BCNF. WHY?? Only Candidate Key: (Student#,Teacher) What are the candidate keys and the determinants of Students? Exercise Is the decomposition lossless? Is the decomposition dependency preserving? Enrols (Student #, Subject, Teacher) Courses(Teacher, Subject) Students(Student#,Teacher) Teacher Subject (student #, subject) Teacher Exercise S (S#, Sname, Status, City) with FDs S # Status, City, Sname Sname City, Status, S# Is S in BCNF? Determinants: In S: S# and Sname Exercise SSP (S#, Sname, P#, Qty) Candidate keys: S# and Sname So all determinants are candidate keys. So S is in BCNF. 71 with FDs S# Sname Sname S# S#, P# Qty Sname, P# Qty Is SSP in BCNF? 72

13 In SSP: Determinants: S# and Sname Candidate keys: (S#, P#) and (Sname, P#) SSP Decomposing SSP to BCNF relations S1(S#, Sname) S2(S#,P#,Qty) Lossless? Dependency Preserving? So there are determinants that are not candidate keys. So S is not in BCNF. SSP R1(S#, Sname) R2(Sname,P#,Qty) Lossless? Dependency Preserving? An Algorithm for BCNF Decomposition Input: A relation R, the closure, F +, of the set of functional dependencies on R. Output (result): A set of relations R i, such that each R i is in BCNF and the decomposition of R into the R i is lossless. 75 begin result : = { R } ; done : = false ; while (not done) do if (there is a scheme Ri in result that is not in end; BCNF) then begin let A B be a nontrivial ffd that holds on Ri, such that A is not a candidate key of Ri; result : = (result - Ri) (Ri - B) (A, B); end else done : = true ; 76 Same algorithm we have been using for 2NF and 3NF begin result : = { R } ; done : = false ; while (not done) do if (there is a scheme Ri in result that is not in the required normal form) then begin let A B be an fd that holds on Ri, that shows Ri is not in the required normal form; result : = (result - Ri) (Ri - B) (A, B); end else done : = true ; end; 77 Normalisation - Conclusion Objectives of normalisation: Eliminate redundancy Avoid update anomalies (From 5NF upwards) Simplify the enforcement of certain integrity constraints 78

14 Some Limitations of Normalisation Full normalisation not always desirable. Example: Customer(Name,Street,City, Postcode) Postcode City, Street So Customer is not in 3NF. Normalisation often facilitates update, but tends to have an adverse effect on query evaluation. Related data which may have been retrievable from one relation in an unnormalised schema may have to be retrieved from several relations in the normalised form Decomposition into normal forms is not always unique. But there is not much guidance which decomposition to choose. 81

Database Design and Normalization

Database Design and Normalization Database Design and Normalization Chapter 11 (Week 12) EE562 Slides and Modified Slides from Database Management Systems, R. Ramakrishnan 1 1NF FIRST S# Status City P# Qty S1 20 London P1 300 S1 20 London

More information

Lossless Joins, Third Normal Form

Lossless Joins, Third Normal Form Lossless Joins, Third Normal Form FCDB 3.4 3.5 Dr. Chris Mayfield Department of Computer Science James Madison University Mar 19, 2018 Decomposition wish list 1. Eliminate redundancy and anomalies 2. Recover

More information

Constraints: Functional Dependencies

Constraints: Functional Dependencies Constraints: Functional Dependencies Fall 2017 School of Computer Science University of Waterloo Databases CS348 (University of Waterloo) Functional Dependencies 1 / 42 Schema Design When we get a relational

More information

Constraints: Functional Dependencies

Constraints: Functional Dependencies Constraints: Functional Dependencies Spring 2018 School of Computer Science University of Waterloo Databases CS348 (University of Waterloo) Functional Dependencies 1 / 32 Schema Design When we get a relational

More information

Relational Design: Characteristics of Well-designed DB

Relational Design: Characteristics of Well-designed DB Relational Design: Characteristics of Well-designed DB 1. Minimal duplication Consider table newfaculty (Result of F aculty T each Course) Id Lname Off Bldg Phone Salary Numb Dept Lvl MaxSz 20000 Cotts

More information

INF1383 -Bancos de Dados

INF1383 -Bancos de Dados INF1383 -Bancos de Dados Prof. Sérgio Lifschitz DI PUC-Rio Eng. Computação, Sistemas de Informação e Ciência da Computação Projeto de BD e Formas Normais Alguns slides são baseados ou modificados dos originais

More information

CS122A: Introduction to Data Management. Lecture #13: Relational DB Design Theory (II) Instructor: Chen Li

CS122A: Introduction to Data Management. Lecture #13: Relational DB Design Theory (II) Instructor: Chen Li CS122A: Introduction to Data Management Lecture #13: Relational DB Design Theory (II) Instructor: Chen Li 1 Third Normal Form (3NF) v Relation R is in 3NF if it is in 2NF and it has no transitive dependencies

More information

UVA UVA UVA UVA. Database Design. Relational Database Design. Functional Dependency. Loss of Information

UVA UVA UVA UVA. Database Design. Relational Database Design. Functional Dependency. Loss of Information Relational Database Design Database Design To generate a set of relation schemas that allows - to store information without unnecessary redundancy - to retrieve desired information easily Approach - design

More information

Functional Dependency Theory II. Winter Lecture 21

Functional Dependency Theory II. Winter Lecture 21 Functional Dependency Theory II Winter 2006-2007 Lecture 21 Last Time Introduced Third Normal Form A weakened version of BCNF that preserves more functional dependencies Allows non-trivial dependencies

More information

DECOMPOSITION & SCHEMA NORMALIZATION

DECOMPOSITION & SCHEMA NORMALIZATION DECOMPOSITION & SCHEMA NORMALIZATION CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? Bad schemas lead to redundancy To correct bad schemas: decompose relations

More information

Relational Database Design

Relational Database Design Relational Database Design Jan Chomicki University at Buffalo Jan Chomicki () Relational database design 1 / 16 Outline 1 Functional dependencies 2 Normal forms 3 Multivalued dependencies Jan Chomicki

More information

Chapter 3 Design Theory for Relational Databases

Chapter 3 Design Theory for Relational Databases 1 Chapter 3 Design Theory for Relational Databases Contents Functional Dependencies Decompositions Normal Forms (BCNF, 3NF) Multivalued Dependencies (and 4NF) Reasoning About FD s + MVD s 2 Remember our

More information

CSC 261/461 Database Systems Lecture 13. Spring 2018

CSC 261/461 Database Systems Lecture 13. Spring 2018 CSC 261/461 Database Systems Lecture 13 Spring 2018 BCNF Decomposition Algorithm BCNFDecomp(R): Find X s.t.: X + X and X + [all attributes] if (not found) then Return R let Y = X + - X, Z = (X + ) C decompose

More information

Introduction to Data Management. Lecture #7 (Relational DB Design Theory II)

Introduction to Data Management. Lecture #7 (Relational DB Design Theory II) Introduction to Data Management Lecture #7 (Relational DB Design Theory II) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements v Homework

More information

Introduction. Normalization. Example. Redundancy. What problems are caused by redundancy? What are functional dependencies?

Introduction. Normalization. Example. Redundancy. What problems are caused by redundancy? What are functional dependencies? Normalization Introduction What problems are caused by redundancy? UVic C SC 370 Dr. Daniel M. German Department of Computer Science What are functional dependencies? What are normal forms? What are the

More information

Normal Forms (ii) ICS 321 Fall Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa

Normal Forms (ii) ICS 321 Fall Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa ICS 321 Fall 2012 Normal Forms (ii) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 9/12/2012 Lipyeow Lim -- University of Hawaii at Manoa 1 Hourly_Emps

More information

Normal Forms 1. ICS 321 Fall Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa

Normal Forms 1. ICS 321 Fall Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa ICS 321 Fall 2013 Normal Forms 1 Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 9/16/2013 Lipyeow Lim -- University of Hawaii at Manoa 1 The Problem with

More information

Chapter 10. Normalization Ext (from E&N and my editing)

Chapter 10. Normalization Ext (from E&N and my editing) Chapter 10 Normalization Ext (from E&N and my editing) Outline BCNF Multivalued Dependencies and Fourth Normal Form 2 BCNF A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever an FD X ->

More information

Normalization. October 5, Chapter 19. CS445 Pacific University 1 10/05/17

Normalization. October 5, Chapter 19. CS445 Pacific University 1 10/05/17 Normalization October 5, 2017 Chapter 19 Pacific University 1 Description A Real Estate agent wants to track offers made on properties. Each customer has a first and last name. Each property has a size,

More information

Chapter 7: Relational Database Design

Chapter 7: Relational Database Design Chapter 7: Relational Database Design Chapter 7: Relational Database Design! First Normal Form! Pitfalls in Relational Database Design! Functional Dependencies! Decomposition! Boyce-Codd Normal Form! Third

More information

Database Design and Implementation

Database Design and Implementation Database Design and Implementation CS 645 Schema Refinement First Normal Form (1NF) A schema is in 1NF if all tables are flat Student Name GPA Course Student Name GPA Alice 3.8 Bob 3.7 Carol 3.9 Alice

More information

CSC 261/461 Database Systems Lecture 11

CSC 261/461 Database Systems Lecture 11 CSC 261/461 Database Systems Lecture 11 Fall 2017 Announcement Read the textbook! Chapter 8: Will cover later; But self-study the chapter Everything except Section 8.4 Chapter 14: Section 14.1 14.5 Chapter

More information

Chapter 7: Relational Database Design. Chapter 7: Relational Database Design

Chapter 7: Relational Database Design. Chapter 7: Relational Database Design Chapter 7: Relational Database Design Chapter 7: Relational Database Design First Normal Form Pitfalls in Relational Database Design Functional Dependencies Decomposition Boyce-Codd Normal Form Third Normal

More information

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) CIS 330, Spring 2004 Lecture 11 March 2, 2004

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) CIS 330, Spring 2004 Lecture 11 March 2, 2004 Schema Refinement and Normal Forms CIS 330, Spring 2004 Lecture 11 March 2, 2004 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational schemas: redundant storage,

More information

COSC 430 Advanced Database Topics. Lecture 2: Relational Theory Haibo Zhang Computer Science, University of Otago

COSC 430 Advanced Database Topics. Lecture 2: Relational Theory Haibo Zhang Computer Science, University of Otago COSC 430 Advanced Database Topics Lecture 2: Relational Theory Haibo Zhang Computer Science, University of Otago Learning objectives and references You should be able to: define the elements of the relational

More information

Databases 2012 Normalization

Databases 2012 Normalization Databases 2012 Christian S. Jensen Computer Science, Aarhus University Overview Review of redundancy anomalies and decomposition Boyce-Codd Normal Form Motivation for Third Normal Form Third Normal Form

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Yanlei Diao UMass Amherst April 10 & 15, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Case Study: The Internet Shop DBDudes Inc.: a well-known database consulting

More information

CMPT 354: Database System I. Lecture 9. Design Theory

CMPT 354: Database System I. Lecture 9. Design Theory CMPT 354: Database System I Lecture 9. Design Theory 1 Design Theory Design theory is about how to represent your data to avoid anomalies. Design 1 Design 2 Student Course Room Mike 354 AQ3149 Mary 354

More information

10/12/10. Outline. Schema Refinements = Normal Forms. First Normal Form (1NF) Data Anomalies. Relational Schema Design

10/12/10. Outline. Schema Refinements = Normal Forms. First Normal Form (1NF) Data Anomalies. Relational Schema Design Outline Introduction to Database Systems CSE 444 Design theory: 3.1-3.4 [Old edition: 3.4-3.6] Lectures 6-7: Database Design 1 2 Schema Refinements = Normal Forms 1st Normal Form = all tables are flat

More information

Schema Refinement and Normal Forms. Chapter 19

Schema Refinement and Normal Forms. Chapter 19 Schema Refinement and Normal Forms Chapter 19 1 Review: Database Design Requirements Analysis user needs; what must the database do? Conceptual Design high level descr. (often done w/er model) Logical

More information

The Evils of Redundancy. Schema Refinement and Normal Forms. Functional Dependencies (FDs) Example: Constraints on Entity Set. Example (Contd.

The Evils of Redundancy. Schema Refinement and Normal Forms. Functional Dependencies (FDs) Example: Constraints on Entity Set. Example (Contd. The Evils of Redundancy Schema Refinement and Normal Forms INFO 330, Fall 2006 1 Redundancy is at the root of several problems associated with relational schemas: redundant storage, insert/delete/update

More information

Schema Refinement & Normalization Theory

Schema Refinement & Normalization Theory Schema Refinement & Normalization Theory Functional Dependencies Week 13 1 What s the Problem Consider relation obtained (call it SNLRHW) Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked) What

More information

Schema Refinement and Normal Forms. Case Study: The Internet Shop. Redundant Storage! Yanlei Diao UMass Amherst November 1 & 6, 2007

Schema Refinement and Normal Forms. Case Study: The Internet Shop. Redundant Storage! Yanlei Diao UMass Amherst November 1 & 6, 2007 Schema Refinement and Normal Forms Yanlei Diao UMass Amherst November 1 & 6, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Case Study: The Internet Shop DBDudes Inc.: a well-known database consulting

More information

Database Systems SQL. A.R. Hurson 323 CS Building

Database Systems SQL. A.R. Hurson 323 CS Building SQL A.R. Hurson 323 CS Building Structured Query Language (SQL) The SQL language has the following features as well: Embedded and Dynamic facilities to allow SQL code to be called from a host language

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms UMass Amherst Feb 14, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke, Dan Suciu 1 Relational Schema Design Conceptual Design name Product buys Person price name

More information

CSE 132B Database Systems Applications

CSE 132B Database Systems Applications CSE 132B Database Systems Applications Alin Deutsch Database Design and Normal Forms Some slides are based or modified from originals by Sergio Lifschitz @ PUC Rio, Brazil and Victor Vianu @ CSE UCSD and

More information

SCHEMA NORMALIZATION. CS 564- Fall 2015

SCHEMA NORMALIZATION. CS 564- Fall 2015 SCHEMA NORMALIZATION CS 564- Fall 2015 HOW TO BUILD A DB APPLICATION Pick an application Figure out what to model (ER model) Output: ER diagram Transform the ER diagram to a relational schema Refine the

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Chapter 19 Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational

More information

Lecture #7 (Relational Design Theory, cont d.)

Lecture #7 (Relational Design Theory, cont d.) Introduction to Data Management Lecture #7 (Relational Design Theory, cont d.) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements

More information

Schema Refinement & Normalization Theory: Functional Dependencies INFS-614 INFS614, GMU 1

Schema Refinement & Normalization Theory: Functional Dependencies INFS-614 INFS614, GMU 1 Schema Refinement & Normalization Theory: Functional Dependencies INFS-614 INFS614, GMU 1 Background We started with schema design ER model translation into a relational schema Then we studied relational

More information

Schema Refinement and Normal Forms Chapter 19

Schema Refinement and Normal Forms Chapter 19 Schema Refinement and Normal Forms Chapter 19 Instructor: Vladimir Zadorozhny vladimir@sis.pitt.edu Information Science Program School of Information Sciences, University of Pittsburgh Database Management

More information

Schema Refinement and Normal Forms. The Evils of Redundancy. Schema Refinement. Yanlei Diao UMass Amherst April 10, 2007

Schema Refinement and Normal Forms. The Evils of Redundancy. Schema Refinement. Yanlei Diao UMass Amherst April 10, 2007 Schema Refinement and Normal Forms Yanlei Diao UMass Amherst April 10, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 The Evils of Redundancy Redundancy is at the root of several problems associated

More information

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) [R&G] Chapter 19

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) [R&G] Chapter 19 Schema Refinement and Normal Forms [R&G] Chapter 19 CS432 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational schemas: redundant storage, insert/delete/update

More information

Information Systems (Informationssysteme)

Information Systems (Informationssysteme) Information Systems (Informationssysteme) Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Summer 2015 c Jens Teubner Information Systems Summer 2015 1 Part VII Schema Normalization c Jens Teubner

More information

Functional Dependency and Algorithmic Decomposition

Functional Dependency and Algorithmic Decomposition Functional Dependency and Algorithmic Decomposition In this section we introduce some new mathematical concepts relating to functional dependency and, along the way, show their practical use in relational

More information

Functional Dependencies. Applied Databases. Not all designs are equally good! An example of the bad design

Functional Dependencies. Applied Databases. Not all designs are equally good! An example of the bad design Applied Databases Handout 2a. Functional Dependencies and Normal Forms 20 Oct 2008 Functional Dependencies This is the most mathematical part of the course. Functional dependencies provide an alternative

More information

Design Theory for Relational Databases. Spring 2011 Instructor: Hassan Khosravi

Design Theory for Relational Databases. Spring 2011 Instructor: Hassan Khosravi Design Theory for Relational Databases Spring 2011 Instructor: Hassan Khosravi Chapter 3: Design Theory for Relational Database 3.1 Functional Dependencies 3.2 Rules About Functional Dependencies 3.3 Design

More information

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Example (Contd.

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Example (Contd. The Evils of Redundancy Schema Refinement and Normal Forms Chapter 19 Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 Redundancy is at the root of several problems associated with relational

More information

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Refining an ER Diagram

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Refining an ER Diagram Schema Refinement and Normal Forms Chapter 19 Database Management Systems, R. Ramakrishnan and J. Gehrke 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational

More information

DESIGN THEORY FOR RELATIONAL DATABASES. csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Meraji Winter 2018

DESIGN THEORY FOR RELATIONAL DATABASES. csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Meraji Winter 2018 DESIGN THEORY FOR RELATIONAL DATABASES csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Meraji Winter 2018 1 Introduction There are always many different schemas for a given

More information

CAS CS 460/660 Introduction to Database Systems. Functional Dependencies and Normal Forms 1.1

CAS CS 460/660 Introduction to Database Systems. Functional Dependencies and Normal Forms 1.1 CAS CS 460/660 Introduction to Database Systems Functional Dependencies and Normal Forms 1.1 Review: Database Design Requirements Analysis user needs; what must database do? Conceptual Design high level

More information

CS 186, Fall 2002, Lecture 6 R&G Chapter 15

CS 186, Fall 2002, Lecture 6 R&G Chapter 15 Schema Refinement and Normalization CS 186, Fall 2002, Lecture 6 R&G Chapter 15 Nobody realizes that some people expend tremendous energy merely to be normal. Albert Camus Functional Dependencies (Review)

More information

Schema Refinement: Other Dependencies and Higher Normal Forms

Schema Refinement: Other Dependencies and Higher Normal Forms Schema Refinement: Other Dependencies and Higher Normal Forms Spring 2018 School of Computer Science University of Waterloo Databases CS348 (University of Waterloo) Higher Normal Forms 1 / 14 Outline 1

More information

Functional Dependencies and Normalization

Functional Dependencies and Normalization Functional Dependencies and Normalization There are many forms of constraints on relational database schemata other than key dependencies. Undoubtedly most important is the functional dependency. A functional

More information

Chapter 8: Relational Database Design

Chapter 8: Relational Database Design Chapter 8: Relational Database Design Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 8: Relational Database Design Features of Good Relational Design Atomic Domains

More information

Design Theory. Design Theory I. 1. Normal forms & functional dependencies. Today s Lecture. 1. Normal forms & functional dependencies

Design Theory. Design Theory I. 1. Normal forms & functional dependencies. Today s Lecture. 1. Normal forms & functional dependencies Design Theory BBM471 Database Management Systems Dr. Fuat Akal akal@hacettepe.edu.tr Design Theory I 2 Today s Lecture 1. Normal forms & functional dependencies 2. Finding functional dependencies 3. Closures,

More information

Lecture 6 Relational Database Design

Lecture 6 Relational Database Design Lecture 6 Relational Database Design Shuigeng Zhou October 21/27, 2009 School of Computer Science Fudan University Relational Database Design First Normal Form Pitfalls in Relational Database Design Functional

More information

CSC 261/461 Database Systems Lecture 12. Spring 2018

CSC 261/461 Database Systems Lecture 12. Spring 2018 CSC 261/461 Database Systems Lecture 12 Spring 2018 Announcement Project 1 Milestone 2 due tonight! Read the textbook! Chapter 8: Will cover later; But self-study the chapter Chapter 14: Section 14.1 14.5

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Chapter 19 Quiz #2 Next Thursday Comp 521 Files and Databases Fall 2012 1 The Evils of Redundancy v Redundancy is at the root of several problems associated with relational

More information

FUNCTIONAL DEPENDENCY THEORY II. CS121: Relational Databases Fall 2018 Lecture 20

FUNCTIONAL DEPENDENCY THEORY II. CS121: Relational Databases Fall 2018 Lecture 20 FUNCTIONAL DEPENDENCY THEORY II CS121: Relational Databases Fall 2018 Lecture 20 Canonical Cover 2 A canonical cover F c for F is a set of functional dependencies such that: F logically implies all dependencies

More information

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #15: BCNF, 3NF and Normaliza:on

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #15: BCNF, 3NF and Normaliza:on CS 4604: Introduc0on to Database Management Systems B. Aditya Prakash Lecture #15: BCNF, 3NF and Normaliza:on Overview - detailed DB design and normaliza:on pi?alls of bad design decomposi:on normal forms

More information

Schema Refinement. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke

Schema Refinement. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke Schema Refinement Yanlei Diao UMass Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Revisit a Previous Example ssn name Lot Employees rating hourly_wages hours_worked ISA contractid Hourly_Emps

More information

Practice and Applications of Data Management CMPSCI 345. Lecture 16: Schema Design and Normalization

Practice and Applications of Data Management CMPSCI 345. Lecture 16: Schema Design and Normalization Practice and Applications of Data Management CMPSCI 345 Lecture 16: Schema Design and Normalization Keys } A superkey is a set of a/ributes A 1,..., A n s.t. for any other a/ribute B, we have A 1,...,

More information

Normal Forms. Dr Paolo Guagliardo. University of Edinburgh. Fall 2016

Normal Forms. Dr Paolo Guagliardo. University of Edinburgh. Fall 2016 Normal Forms Dr Paolo Guagliardo University of Edinburgh Fall 2016 Example of bad design BAD Title Director Theatre Address Time Price Inferno Ron Howard Vue Omni Centre 20:00 11.50 Inferno Ron Howard

More information

CS322: Database Systems Normalization

CS322: Database Systems Normalization CS322: Database Systems Normalization Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Introduction The normalization process takes a relation schema through

More information

Introduction to Data Management. Lecture #6 (Relational DB Design Theory)

Introduction to Data Management. Lecture #6 (Relational DB Design Theory) Introduction to Data Management Lecture #6 (Relational DB Design Theory) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements v Homework

More information

Functional Dependencies

Functional Dependencies Functional Dependencies Functional Dependencies Framework for systematic design and optimization of relational schemas Generalization over the notion of Keys Crucial in obtaining correct normalized schemas

More information

Information Systems for Engineers. Exercise 8. ETH Zurich, Fall Semester Hand-out Due

Information Systems for Engineers. Exercise 8. ETH Zurich, Fall Semester Hand-out Due Information Systems for Engineers Exercise 8 ETH Zurich, Fall Semester 2017 Hand-out 24.11.2017 Due 01.12.2017 1. (Exercise 3.3.1 in [1]) For each of the following relation schemas and sets of FD s, i)

More information

The Evils of Redundancy. Schema Refinement and Normalization. Functional Dependencies (FDs) Example: Constraints on Entity Set. Refining an ER Diagram

The Evils of Redundancy. Schema Refinement and Normalization. Functional Dependencies (FDs) Example: Constraints on Entity Set. Refining an ER Diagram The Evils of Redundancy Schema Refinement and Normalization Chapter 1 Nobody realizes that some people expend tremendous energy merely to be normal. Albert Camus Redundancy is at the root of several problems

More information

Design Theory for Relational Databases

Design Theory for Relational Databases Design Theory for Relational Databases FUNCTIONAL DEPENDENCIES DECOMPOSITIONS NORMAL FORMS 1 Functional Dependencies X ->Y is an assertion about a relation R that whenever two tuples of R agree on all

More information

Introduction to Data Management CSE 344

Introduction to Data Management CSE 344 Introduction to Data Management CSE 344 Lectures 18: BCNF 1 What makes good schemas? 2 Review: Relation Decomposition Break the relation into two: Name SSN PhoneNumber City Fred 123-45-6789 206-555-1234

More information

Database Design: Normal Forms as Quality Criteria. Functional Dependencies Normal Forms Design and Normal forms

Database Design: Normal Forms as Quality Criteria. Functional Dependencies Normal Forms Design and Normal forms Database Design: Normal Forms as Quality Criteria Functional Dependencies Normal Forms Design and Normal forms Design Quality: Introduction Good conceptual model: - Many alternatives - Informal guidelines

More information

Schema Refinement and Normal Forms. Why schema refinement?

Schema Refinement and Normal Forms. Why schema refinement? Schema Refinement and Normal Forms Why schema refinement? Consider relation obtained from Hourly_Emps: Hourly_Emps (sin,rating,hourly_wages,hourly_worked) Problems: Update Anomaly: Can we change the wages

More information

Relational Database Design

Relational Database Design CSL 451 Introduction to Database Systems Relational Database Design Department of Computer Science and Engineering Indian Institute of Technology Ropar Narayanan (CK) Chatapuram Krishnan! Recap - Boyce-Codd

More information

Review: Keys. What is a Functional Dependency? Why use Functional Dependencies? Functional Dependency Properties

Review: Keys. What is a Functional Dependency? Why use Functional Dependencies? Functional Dependency Properties Review: Keys Superkey: set of attributes whose values are unique for each tuple Note: a superkey isn t necessarily minimal. For example, for any relation, the entire set of attributes is always a superkey.

More information

CS54100: Database Systems

CS54100: Database Systems CS54100: Database Systems Keys and Dependencies 18 January 2012 Prof. Chris Clifton Functional Dependencies X A = assertion about a relation R that whenever two tuples agree on all the attributes of X,

More information

CSE 544 Principles of Database Management Systems

CSE 544 Principles of Database Management Systems CSE 544 Principles of Database Management Systems Lecture 3 Schema Normalization CSE 544 - Winter 2018 1 Announcements Project groups due on Friday First review due on Tuesday (makeup lecture) Run git

More information

Schema Refinement and Normalization

Schema Refinement and Normalization Schema Refinement and Normalization Schema Refinements and FDs Redundancy is at the root of several problems associated with relational schemas. redundant storage, I/D/U anomalies Integrity constraints,

More information

Functional Dependencies & Normalization. Dr. Bassam Hammo

Functional Dependencies & Normalization. Dr. Bassam Hammo Functional Dependencies & Normalization Dr. Bassam Hammo Redundancy and Normalisation Redundant Data Can be determined from other data in the database Leads to various problems INSERT anomalies UPDATE

More information

Relational-Database Design

Relational-Database Design C H A P T E R 7 Relational-Database Design Exercises 7.2 Answer: A decomposition {R 1, R 2 } is a lossless-join decomposition if R 1 R 2 R 1 or R 1 R 2 R 2. Let R 1 =(A, B, C), R 2 =(A, D, E), and R 1

More information

FUNCTIONAL DEPENDENCY THEORY. CS121: Relational Databases Fall 2017 Lecture 19

FUNCTIONAL DEPENDENCY THEORY. CS121: Relational Databases Fall 2017 Lecture 19 FUNCTIONAL DEPENDENCY THEORY CS121: Relational Databases Fall 2017 Lecture 19 Last Lecture 2 Normal forms specify good schema patterns First normal form (1NF): All attributes must be atomic Easy in relational

More information

Shuigeng Zhou. April 6/13, 2016 School of Computer Science Fudan University

Shuigeng Zhou. April 6/13, 2016 School of Computer Science Fudan University Lecture 6 Relational Database Design Shuigeng Zhou April 6/13, 2016 School of Computer Science Fudan University Relational Database Design p First Normal Form p Pitfalls in Relational Database Design p

More information

CSC 261/461 Database Systems Lecture 10 (part 2) Spring 2018

CSC 261/461 Database Systems Lecture 10 (part 2) Spring 2018 CSC 261/461 Database Systems Lecture 10 (part 2) Spring 2018 Announcement Read Chapter 14 and 15 You must self-study these chapters Too huge to cover in Lectures Project 2 Part 1 due tonight Agenda 1.

More information

Design theory for relational databases

Design theory for relational databases Design theory for relational databases 1. Consider a relation with schema R(A,B,C,D) and FD s AB C, C D and D A. a. What are all the nontrivial FD s that follow from the given FD s? You should restrict

More information

CSE 344 AUGUST 6 TH LOSS AND VIEWS

CSE 344 AUGUST 6 TH LOSS AND VIEWS CSE 344 AUGUST 6 TH LOSS AND VIEWS ADMINISTRIVIA WQ6 due tonight HW7 due Wednesday DATABASE DESIGN PROCESS Conceptual Model: name product makes company price name address Relational Model: Tables + constraints

More information

Design Theory for Relational Databases

Design Theory for Relational Databases Design Theory for Relational Databases Keys: formal definition K is a superkey for relation R if K functionally determines all attributes of R K is a key for R if K is a superkey, but no proper subset

More information

L13: Normalization. CS3200 Database design (sp18 s2) 2/26/2018

L13: Normalization. CS3200 Database design (sp18 s2)   2/26/2018 L13: Normalization CS3200 Database design (sp18 s2) https://course.ccs.neu.edu/cs3200sp18s2/ 2/26/2018 274 Announcements! Keep bringing your name plates J Page Numbers now bigger (may change slightly)

More information

CSC 261/461 Database Systems Lecture 8. Spring 2017 MW 3:25 pm 4:40 pm January 18 May 3 Dewey 1101

CSC 261/461 Database Systems Lecture 8. Spring 2017 MW 3:25 pm 4:40 pm January 18 May 3 Dewey 1101 CSC 261/461 Database Systems Lecture 8 Spring 2017 MW 3:25 pm 4:40 pm January 18 May 3 Dewey 1101 Agenda 1. Database Design 2. Normal forms & functional dependencies 3. Finding functional dependencies

More information

Relational Design Theory

Relational Design Theory Relational Design Theory CSE462 Database Concepts Demian Lessa/Jan Chomicki Department of Computer Science and Engineering State University of New York, Buffalo Fall 2013 Overview How does one design a

More information

Desirable properties of decompositions 1. Decomposition of relational schemes. Desirable properties of decompositions 3

Desirable properties of decompositions 1. Decomposition of relational schemes. Desirable properties of decompositions 3 Desirable properties of decompositions 1 Lossless decompositions A decomposition of the relation scheme R into Decomposition of relational schemes subschemes R 1, R 2,..., R n is lossless if, given tuples

More information

Relational Database Design Theory Part II. Announcements (October 12) Review. CPS 116 Introduction to Database Systems

Relational Database Design Theory Part II. Announcements (October 12) Review. CPS 116 Introduction to Database Systems Relational Database Design Theory Part II CPS 116 Introduction to Database Systems Announcements (October 12) 2 Midterm graded; sample solution available Please verify your grades on Blackboard Project

More information

Functional Dependencies and Normalization. Instructor: Mohamed Eltabakh

Functional Dependencies and Normalization. Instructor: Mohamed Eltabakh Functional Dependencies and Normalization Instructor: Mohamed Eltabakh meltabakh@cs.wpi.edu 1 Goal Given a database schema, how do you judge whether or not the design is good? How do you ensure it does

More information

Normal Forms Lossless Join.

Normal Forms Lossless Join. Normal Forms Lossless Join http://users.encs.concordia.ca/~m_oran/ 1 Types of Normal Forms A relation schema R is in the first normal form (1NF) if the domain of its each attribute has only atomic values

More information

Functional Dependencies

Functional Dependencies Functional Dependencies P.J. M c.brien Imperial College London P.J. M c.brien (Imperial College London) Functional Dependencies 1 / 41 Problems in Schemas What is wrong with this schema? bank data no sortcode

More information

Schema Refinement. Feb 4, 2010

Schema Refinement. Feb 4, 2010 Schema Refinement Feb 4, 2010 1 Relational Schema Design Conceptual Design name Product buys Person price name ssn ER Model Logical design Relational Schema plus Integrity Constraints Schema Refinement

More information

Normaliza)on and Func)onal Dependencies

Normaliza)on and Func)onal Dependencies Normaliza)on and Func)onal Dependencies 1NF and 2NF Redundancy and Anomalies Func)onal Dependencies A9ribute Closure Keys and Super keys 3NF BCNF Minimal Cover Algorithm 3NF Synthesis Algorithm Decomposi)on

More information

CS5300 Database Systems

CS5300 Database Systems CS5300 Database Systems Relational Algebra A.R. Hurson 323 CS Building hurson@mst.edu This module is intended to introduce: relational algebra as the backbone of relational model, and set of operations

More information

Comp 5311 Database Management Systems. 5. Functional Dependencies Exercises

Comp 5311 Database Management Systems. 5. Functional Dependencies Exercises Comp 5311 Database Management Systems 5. Functional Dependencies Exercises 1 Assume the following table contains the only set of tuples that may appear in a table R. Which of the following FDs hold in

More information

Lectures 6. Lecture 6: Design Theory

Lectures 6. Lecture 6: Design Theory Lectures 6 Lecture 6: Design Theory Lecture 6 Announcements Solutions to PS1 are posted online. Grades coming soon! Project part 1 is out. Check your groups and let us know if you have any issues. We have

More information

CSE 303: Database. Outline. Lecture 10. First Normal Form (1NF) First Normal Form (1NF) 10/1/2016. Chapter 3: Design Theory of Relational Database

CSE 303: Database. Outline. Lecture 10. First Normal Form (1NF) First Normal Form (1NF) 10/1/2016. Chapter 3: Design Theory of Relational Database CSE 303: Database Lecture 10 Chapter 3: Design Theory of Relational Database Outline 1st Normal Form = all tables attributes are atomic 2nd Normal Form = obsolete Boyce Codd Normal Form = will study 3rd

More information