EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

Size: px
Start display at page:

Download "EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania"

Transcription

1 1 EE 560 MOS INVERTERS: DYNAMIC CHARACTERISTICS

2 C gsp V DD C sbp C gd, C gs, C gb -> Oxide Caps C db, C sb -> Juncion Caps 2 S C in -> Ineconnec Cap G B D C dbp V in C gdp V ou C gdn D C dbn G B S C in C gb C gsn C sbn C gdn + C gdp + C dbn + C dbp + C in + C gb

3 V DD 3 S V in G D B i Dp i Dp i C - V ou i Dn D i Dn i C G B S C gdn + C gdp + C dbn + C dbp + C in + C gb

4 V in DELAY DEFINITIONS 4 V OL V ou τ PHL 1-0 τ PLH 3-2 V 50% V OL V 50% V OL +0.5 [ - V OL ] 0.5 [V OL + ] Avg Prop Delay τ P τ PHL + τ PLH 2

5 OUTPUT VOLTAGE RISE & FALL TIMES 5 V ou τ fall B - A τ rise D - C V 90% V 10% V OL A B C D V 10% V OL +0.1 [ - V OL ] V 90% V OL +0.9 [ - V OL ]

6 CALCULATION OF DELAY TIMES QUICK ESTIMATES: ( ) τ PHL C V load HL C V V load OH 50% I avg,hl I avg,hl ( ) τ P LH C V load LH C V V load 50% OL I avg,lh I avg,lh I avg,hl -> approximae average curren during high-o-low V ou ransiion I avg,hl 1 2 i V C( V,V in OH ou ) + i C ( V in,v ou V 50% ) [ ] I avg,lh -> approximae average curren during low-o-high V ou ransiion I avg,lh 1 2 i V C( V,V in OL ou V OL ) + i C ( V in V OL,V ou V 50% ) V OL V ou V 50% V OL [ ] V in τ PHL 1-0 τ PLH

7 MORE ACCURATE CALCULATION OF τ PHL, τ PLH : 7 V DD G S B V in D i Dp i Dp i C - i Dn V ou G D S B i Dn i C i C dv ou d i Dp i Dn

8 1) V in -RISING CASE: V in 8 IC: V ou, V in V OL -> nmos - ON SAT V ou > V DD -V T0n p-mos OFF LIN 0 < V ou < V DD -V T0n i Dp 0 V ou V OL V in G D B i Dn i C V ou τ PHL 1-0 S - V T0n V 50% dv ou d NOTE THAT: i Dn i Dp << i Dn for all inverer ypes V OL nmos SAT nmos LIN

9 V in 0 < < 1 : 9 i Dn k n 2 (V in V T 0n )2 V OL V ou τ PHL 1-0 k n 2 (V V dv OH T 0 n )2 C ou load d - V T0n V 50% for V T 0n <V ou V OL Since i Dn is INDEP of V ou

10 V in 1 < < 1 : 10 V OL - V T0n V ou τ PHL 1-0 [ ] i Dn k n 2 2(V V )V V 2 in T 0 n ou ou [ ] dv ou k n 2 2(V V )V V 2 OH T 0n ou ou d V 50% for V ou V T 0n V OL V ou V 50% 1 d 1 1 ' Vou VOH VT 0 n i Dn dv ou V ou V 50% 1 d 2 2 Vou VOH VT 0 n k n 2( V T 0n )V ou V ou 1 1 ' 1 1 ' [ ] 2 1 k n 2( V T 0n ) ln V ou 2( V T 0 n ) V ou dv ou V ou V 50% Vou VOH VT 0n

11 1 1 ' 2 1 k n 2( V T 0n ) ln V ou 2( V T 0 n ) V ou V ou V 50% Vou VOH VT 0n 11 k n ( V T 0 n ) ln 2(V V ) V OH T 0n 50% V 50% τ PHL τ PHL 2 V T 0 n k n ( V T 0 n ) 2 + k n ( V T 0n ) ln 2(V V ) V OH T 0 n 50% V 50% k n ( V T 0 n ) 2V T 0n +ln 2(V T 0 n V ) T 0n V 50% 1

12 k n ( V T 0 n ) 2V T 0n +ln 2(V T 0 n V ) T 0n V 50% 1 12 SUBSTITUTING V 50% 0.5 [V OL + ] τ PHL k n ( V T 0 n ) 2V T 0n +ln 4(V T 0n V ) T 0n + V OL 1 WHERE for CMOS Inverers V OL 0, V DD τ PHL k n (V DD V T 0 n ) 2V T 0n +ln 4(V V DD T 0n V DD V ) T 0n V DD 1

13 EXAMPLE 6.1 Consider a CMOS inverer wih 1.0 pf, where he IV characerisics of he nmos ransior driver are specified as follows: 13 V GSn 5 V and V DSn > 4V > I Dn I Dnsa 5 ma Assume V in is a sep pulse ha swiches insananeously from 0 o 5 V. Calculae he delay ime necessary for he inverer oupu o fall from is iniial value of 5 V o 2.5 V. V 50% 0.5 [V OL + ] 0.5 [0 + 5 V] 2.5 V FROM IV DATA: a SAT V DSn 5V - V T0n 4 V > V T0n 1 V k n 2 I Dnsa (V GS V T 0n ) 2 10mA (4V) x10 3 A/V 2

14 0 < < 1 : where i Dn I Dnsa 5mA - V T0n 4 V 5 V 14 1 < < 1 : ' 1 1 k n ( V T 0 n ) ln 2(V V ) V OH T 0n 50% 1pF (0.625x10 3 A/V 2 )(5 1)V 1x10 12 F (0.625x10 3 A/V 2 )4V V 50% 2(5 1)V 2.5V ln 2.5V 5.5 ln ns τ PHL 0.2 ns+1.26ns 1.46ns

15 EXAMPLE 6.2 Consider a CMOS inverer wih 1.0 pf and V DD 5 V, where he IV characerisics of he nmos ransior driver are specified as follows: k n µ n C ox 20 µa/v 2, (W/L) n 10, and V T0n 1.0 V Use boh he average-curren mehod and he differenial equaion mehod o calculae τ fall (ime elapased beween he ime V ou V 90% 4.5 V o he ime a which V ou V 10% 0.5 V). average-curren mehod 5V 4.5V 5V I avg,fall 1 2 i V V,V C in OH ou V 90% V [ ( ) + i C ( V in,v ou V 10% )] 1 2 k V V n in T 0 n ( ) ( ) k 2(V V )V V 2 n in T 0 n ou ou [( ) 2 + 2( V T 0n )V 10% V 2 ] 10% 1 4 k n V T 0n ( ) x10 6 (A/V 2 )(10) ( 5 1) 2 V 2 + ( 2(5 1)0.5 (0.5) 2 )V 2 [ ] mA

16 average-curren mehod con. τ fall V I avg,fall 1x10 12 F( )V x10 3 A differenial equaion mehod SAT for 4.0 V < V ou < 4.5 V dv ou d dv ou d 1 2 k V n ( V in T 0n) 2 5 V 4.05x10 9 s 4.09ns V 90% - V T0n V 10% ( ) 2 20x10 6 A/V 2 (10) k n V 2C in V T 0 n load 1.6x10 9 V/s 2(1x10 12 F) V ou SAT 0 (5 1) 2 τ fall 2-0 sa LIN 2 16 sa ns

17 differenial equaion mehod con sa ns LIN for 0.5 V < V ou < 4.0 V dv ou d 2 V 90% - V T0n 1 2 k 2(V V )V V 2 n( in T 0n ou ou ) V ou SAT dv d 2 C ou load 2 Vou 4.0 V k n 2(V in V T 0n )V ou V ou sa V ou 0.5V ( ) 2 sa 1 k n (V in V T 0 n ) ln 2(V V ) V in T 0n 10% 5 V 5 V 1x10 12 F 1 20x10 6 A/V 2 (10) (5 1)V V 10% τ fall 2-0 V 10% sa LIN 2(5 1) 0.5 ln 3.385ns ns I avg mehod

18 2) V in -FALLING CASE: IC: V ou V OL, V in -> V V DD OL nmos - OFF SAT V ou < -V T0p p-mos ON LIN -V T0p < V ou < V DD V in 18 V OL 0 τ PLH 1-0 V in G S B V GS V in - V DD V DS V ou - V DD Vou V DD D i Dp i C i Dp V 50% dv ou d i Dn 0 i D p i C V ou -V T0p V OL nmos SAT nmos LIN

19 τ PLH k p ( V OL V T 0 p ) V 50% 0.5 [V OL + ], τ PLH k p (V DD V T 0p ) 2 V T 0 p V T 0p +ln 2(V V V ) OH OL T 0 p 1 V 50% FOR CMOS INV: V OL 0, V DD 2 V T 0 p V DD V T 0p +ln 4(V V ) DD T 0p 1 V DD 19 τ PHL k n ( V T 0 n ) 2V T 0n +ln 2(V T 0 n V ) T 0n V 50% 1 FOR CMOS INV: V OL 0, V DD τ PHL k n (V DD V T 0 n ) 2V T 0n +ln 4(V V DD T 0n V DD V ) T 0n V DD 1

20 CONDITIONS FOR Balanced CMOS Inverer Propagaion Delays, i.e. τ PHL τ PLH 20 τ PLH k p (V DD V T 0p ) 2 V T 0 p V DD V T 0p +ln 4(V V ) DD T 0p 1 V DD τ PHL k n (V DD V T 0 n ) 2V T 0n +ln 4(V V DD T 0n V DD V ) T 0n V DD 1 where & FOR τ PHL τ PLH V T0n V T0p k n k p or

21 NOTE THAT: Calculaion of τ PHL, depends largely on NMOS driver, i.e. nearly same for all INV ypes. Calculaion of τ PLH, depends largely on he load device and is operaion, i.e. differen for all INV ypes. 21 CONSIDER depleion NMOS Load: dv C ou load i d D,L (V ou ) V T,L V T 0,L + γ 2φ F +V ou 2φ F ( ) SAT: V DS,L V DD - V ou > 0 - V T,L > V ou < V DD + V T,L [ ] 2 I D,L k n,l 2 V (V ) T,L ou LIN: V DS,L V DD - V ou < 0 - V T,L > V ou > V DD + V T,L [ ] I D,L k n,l 2 2( V (V ))(V V ) (V V T,L ou DD ou DD ou )2

22 22 τ PLH V ou V DD VT,L Vou V OL dv ou + i D,L (sa) Vou V 50% Vou V DD V T,L dv ou i D,L (lin) τ PLH k n,l V T,L 2( V DD V T,L V OL ) V T,L + ln 2 V (V V ) T,L DD 50% V DD V 50%

23 V DD Inpu Waveform Slope 23 V ou,v in i Dn ic V in i Dp V ou V DD V in,90% V in,10% τf τ r V in V DD i Dp i Dn i C V ou EMPERICAL DELAY CORRECTIONS FOR INPUT τ r, τ f : τ PHL (acual) τ 2 P HL (sep inpu) + τ r 2 2 τ PLH (acual) τ 2 PLH (sep inpu) + τ f 2 2

24 τ PHL INVERTER DELAY DESIGN FORMULAS k n (V DD V T 0 n ) 2V T 0n +ln 4(V V DD T 0n V DD V ) T 0n V DD 1 24 where τ PLH k p (V DD V T 0p ) where 2 V T 0 p V DD V T 0p +ln 4(V V ) DD T 0p 1 V DD

25 EXAMPLE 6.3 Design a CMOS inverer by deermining he W n and W p of he nmos and PMOS ransisors o mee he following specs: -> V h 2 V for V DD 5 V -> Delay ime of 2 ns for a V ou ransiion from 4 V o 1 V, wih 1.0 pf. The process and device parameers are specified as follows: k n µ n C ox 30 µa/v 2, k p µ p C ox 10 µa/v 2 L n L p 1.0 µm V T0n 1.0 V V T0p -1.5 V W min 2 µm (limied by design rules) 25 STEP #1: Saisfy he Delay Consrain:τ PHL from 4 V o 1 V HL > PULL-DOWN > τ PHL deermined by nmos driver NOTE V in and 1 < V ou < 4 V > nmos LIN

26 dv ou d µ n C ox 2 W n L n 2 [ 2( V T 0n )V ou V ou ] 26 τ delay 2.0x10 9 s µ n C ox W n L n W µ n C n ox L n 1 V ou 1 Vou 4 dv ou 2 [ 2( V T 0n )V ou V ou ] 2( V T 0n ) ln V ou 2( V T 0 n ) V ou V ou 1 Vou 4 W n L n 1x10 12 F (2.0 x10 9 s)(30x10 6 A/V 2 )(4) ln(7) 1 ln(7) (2.0)(0.03)(4)

27 W n 8.108, L L n 1µm > W n (1 µm) 8.1 µm n From τ delay spec. STEP #2: Saisfy he V h consrain, where: 1 V T 0 n + ( V k DD + V ) 1 T 0 p 1.0V+ ( 5 + ( 1.5))V V h R k R V+ 1+ k R 1 ( 3.5)V k R 1 k R k R 2V > k R (1.5) k R µ C ( W/L) n ox n 30W n µ p C ox ( W/L) p 10W p 3 W n W p 9 4 > W p 4 9 (3)W n wih L p 1 µm W p 4 (3)8.1µ m 10.8µ m 9

28 CMOS RING OSCILLATOR 28 1 V V 2 V 3,1,2,3,1,2,3 and INV1 INV2 INV3 V 1 V 2 V 3 V 50% V OL τ PHL2τPLH3 τ PHL1τPHL2 τ PLH3τPHL1

29 V 1 V 2 V 3 29 V 50% V OL τ PHL2 τ PHL1 τ PLH3τPHL1 τ PLH3 τ PHL2 T,1,2,3 and INV1 INV2 INV3 T τ PHL2 + τ PLH3 + τ PHL1 + τ PHL2 + τ PLH3 + τ PHL1 6τ P f 1 T 1 2(3)τ P 1 6τ P For n INVERTERS: Oscillaion FREQ f 1 T 1 or τ 2nτ P 1 P 2nf

30 ESTIMATION OF INTERCONECT PARASITICS 30 L W MET Curren Flow h SIO 2 SUB PARASITIC RESISTANCE: R meal ρ L W R shee L W

31 fringing fields W 31 h C PP FF C oal /C PP -> FRINGING-FIELD FACTOR FF -> INC as /h -> INC, W/h <- DEC, and W/L -> INC (SEE PLOT FF in FIG of TEXT) W C oal ε 2 2π + h ln 1+ 2 h + 2h 2h + 2 pf/µm L for W > /2 C oal ε W π h + 2h ln 1+ 2 h + 2h pf/µm L 2h + 2 for W < /2

32 W L 32 C in W in oxf p-sub C oxf C oxf C pa Double-meal double-poly n-well CMOS process C mm C meal-o-meal 2.5 nf/cm 2 C oxm C meal-o-subsrae 5.2 nf/cm 2 C oxp C poly-o-subsrae 6.5 nf/cm 2 C mm C meal-o-poly 12.0 nf/cm 2

33 B C D E passivaion A m2 m2 m2 m2 m1 m1 field ox poly poly poly field ox field ox F m2 m1 G m2 field ox field ox 33 A B C D E E F G subsrae Layer Poly-subsrae Meal2-sub Poly-meal2 Meal1-sub Meal1-poly Meal1-meal2 Meal1-diffusion Meal2-diffusion Cap Ox Thickness Typ Value C p 3000 Å 50 af/µm 2 C m Å 20 af/µm 2 C m2p 6000 Å 30 af/µm 2 C m Å 30 af/µm 2 C m1p 3000 Å 60 af/µm 2 C m2m Å 50 af/µm 2 C m1d 3000 Å 60 af/µm 2 Passivaion 6000 Å 30 af/µm 2 field ox 1 µm CMOS Capaciances ox 200Å C g 1800 af/µm 2 af F

34 A B 32 Z ou Z c RLCG Transmission Line C V A τ delay Z ou << Z c τ buffer + τ fligh τ rise τ sele

35 ROUTE-LENGTH DESIGN GUIDE Node: a region of conneced pahs where he delay associaed wih signal prop is small compared o gae delays. 35 To ignore he RC delay of inerconnec, τ W << τ Pgae L lengh of roue r shee resisance c cap per uni lengh EXAMPLE: Consider a minimum widh meal1 roue o a node wih an associaed gae delay of 200 ps. Conservaively, L W < 5000λ λ design rule parameer GUIDELINES FOR IGNORING RC DELAYS (Wese, pp 205) Layer Max Lengh (L W ) meal3 10,000 meal meal silicide 600 poly 200 diffusion 60

36 POWER DISSIPATION 36 P s Saic power dissipaion due o leakage curren or oher curren drawn coninuously from he power supply. P d dynamic power dissipaion due o charging and discharging load capaciances (v in assumed o be square-like) P sc shor circui power dissipaion due o charging and discharging load capaciances during he inie rise and fall imes of v in.

37 V DD DYNAMIC POWER DISSAPATION V in, V ou 37 G S B V in D i Dp i Dp i C - i Dn G D B S i Dn T V ou i C P d 1 T v()i()d 0 V OL i C nmos ON T/2 T pmos ON nmos ON P d 1 T T/ 2 V ()i ()d ou Dn T T ( V DD V ou ())i Dp ()d T/ 2 where dv i Dn () C ou load d i Dp () dv ou d

38 P d 1 T T/ 2 0 V ou () dv C ou load d d + 1 T T T/ 2 ( V DD V ou ()) dv C ou load d d 38 V in, V ou V OL i C 0 nmos ON T/2 T pmos ON VDD nmos ON P d 1 T C V ()dv load ou ou + 1 VDD T C V V load( () DD ou )dv ou T C V ou V ou 0 load + C 2 V ou VDD load V DD V ou V 2 ou V ou V DD 2 V ou 0

39 P d 1 2 T C V ou load V ou 0 2 V ou VDD + V DD V ou V 2 ou V ou V DD 2 V ou T C V 2 load DD 2 P d V DD f APPLIES TO GENERAL CMOS LOGIC CIRCUITS V DD pmos Logic nmos Logic i Dp i Dn i C V ou

40 POWER-DELAY PRODUCT 40 where P * average swiching power dissipaion a max avg operaing frequency f max. & AVERAGE ENERGY required for a gae o swich is oupu from LOW o HIGH and from HIGH o LOW FUNDAMENTAL PARAMETER used o for measuring qualiy and performance of a CMOS process and gae design

41 POWER METER SIMULATION 41 V DD i DD + V s 0 + i βi C s R y y s V y Periodic Inpu T Period DEVICE or CIRCUIT C y dv y d βi S V y R y IF R y C y >> T SET C β V y DD T 1 T V y (T) V DD T i DD(τ)d τ > P d 0

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 15, 2018 MOS Inverter: Dynamic Characteristics Penn ESE 570 Spring 2018 Khanna Lecture Outline! Inverter Power! Dynamic Characteristics

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 10: February 16, 2016 MOS Inverter: Dynamic Characteristics Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

Chapter 4. Circuit Characterization and Performance Estimation

Chapter 4. Circuit Characterization and Performance Estimation VLSI Design Chaper 4 Circui Characerizaion and Performance Esimaion Jin-Fu Li Chaper 4 Circui Characerizaion and Performance Esimaion Resisance & Capaciance Esimaion Swiching Characerisics Transisor Sizing

More information

Introduction to Digital Circuits

Introduction to Digital Circuits The NMOS nerer The NMOS Depleion oad 50 [ D ] µ A GS.0 + 40 30 0 0 Resisance characerisic of Q 3 4 5 6 GS 0.5 GS 0 GS 0.5 GS.0 GS.5 [ ] DS GS i 0 Q Q Depleion load Enhancemen drier Drain characerisic of

More information

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC ESE 570: Digital Integrated Circuits and LSI Fundamentals Lec 0: February 4, 207 MOS Inverter: Dynamic Characteristics Lecture Outline! Review: Symmetric CMOS Inverter Design! Inverter Power! Dynamic Characteristics

More information

! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:

! Inverter Power. ! Dynamic Characteristics.  Delay ! P = I V. ! Tricky part:  Understanding I.  (pairing with correct V) ! Dynamic current flow: ESE 570: Digital Integrated ircuits and LSI Fundamentals Lecture Outline! Inverter Power! Dynamic haracteristics Lec 10: February 15, 2018 MOS Inverter: Dynamic haracteristics " Delay 3 Power Inverter

More information

ECE321 Electronics I

ECE321 Electronics I ECE31 Electronics Lecture 1: CMOS nverter: Noise Margin & Delay Model Payman Zarkesh-Ha Office: ECE Bldg. 30B Office hours: Tuesday :00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 CMOS

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering 007 Fall: Electronic Circuits CHAPTER 10 Digital CMOS Logic Circuits Deog-Kyoon Jeong dkjeong@snu.ac.kr k School of Electrical Engineering Seoul lnational luniversity it Introduction In this chapter, we

More information

ECE 342 Solid State Devices & Circuits 4. CMOS

ECE 342 Solid State Devices & Circuits 4. CMOS ECE 34 Solid State Devices & Circuits 4. CMOS Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class -Spring 006 Digial Inegraed Circuis Lecure Design Merics Adminisraive Suff Labs and discussions sar in week Homework # is due nex hursday Everyone should have an EECS insrucional accoun hp://wwwins.eecs.berkeley.edu/~ins/newusers.hml

More information

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced

More information

EE115C Digital Electronic Circuits Homework #4

EE115C Digital Electronic Circuits Homework #4 EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

More information

EEE 421 VLSI Circuits

EEE 421 VLSI Circuits EEE 421 CMOS Properties Full rail-to-rail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time

More information

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 41 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time The Reference Inverer Reference Inverer V DD R =R PD PU = IN= 4OX WMIN LMIN V IN M 2 M 1 L VTn.2VDD

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view) CMPEN 411 VLSI Digital Circuits Lecture 04: CMOS Inverter (static view) Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 0 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time Propagaion Delay in Saic MOS Family F Propagaion hrough k levels of logic + + + + HL HLn LH(n-1)

More information

Chapter 6 MOSFET in the On-state

Chapter 6 MOSFET in the On-state Chaper 6 MOSFET in he On-sae The MOSFET (MOS Field-Effec Transisor) is he building block of Gb memory chips, GHz microprocessors, analog, and RF circuis. Mach he following MOSFET characerisics wih heir

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 6, 2017 Janakiraman, IITM

More information

ENEE 359a Digital VLSI Design

ENEE 359a Digital VLSI Design SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003 6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 14-1 Lecture 14 - Digital Circuits (III) CMOS April 1, 23 Contents: 1. Complementary MOS (CMOS) inverter: introduction 2. CMOS inverter:

More information

The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance The CMOS Inverter: A First Glance V DD S D V in V out C L D S CMOS Inverter N Well V DD V DD PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND CMOS Inverter: Steady State Response V

More information

Interconnect (2) Buffering Techniques. Logical Effort

Interconnect (2) Buffering Techniques. Logical Effort Interconnect (2) Buffering Techniques. Logical Effort Lecture 14 18-322 Fall 2002 Textbook: [Sections 4.2.1, 8.2.3] A few announcements! M1 is almost over: The check-off is due today (by 9:30PM) Students

More information

EE5311- Digital IC Design

EE5311- Digital IC Design EE5311- Digital IC Design Module 3 - The Inverter Janakiraman V Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai September 3, 2018 Janakiraman, IITM

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

Topics to be Covered. capacitance inductance transmission lines

Topics to be Covered. capacitance inductance transmission lines Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2016 Final Friday, May 6 5 Problems with point weightings shown.

More information

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday

More information

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 16: March 21, 2017 Transmission Gates, Euler Paths, Energy Basics Review Midterm! Midterm " Mean: 79.5 " Standard Dev: 14.5 2 Lecture Outline!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 15: March 15, 2018 Euler Paths, Energy Basics and Optimization Midterm! Midterm " Mean: 89.7 " Standard Dev: 8.12 2 Lecture Outline! Euler

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

PASS-TRANSISTOR LOGIC. INEL Fall 2014

PASS-TRANSISTOR LOGIC. INEL Fall 2014 PASS-TRANSISTOR LOGIC INEL 4207 - Fall 2014 Figure 15.5 Conceptual pass-transistor logic gates. (a) Two switches, controlled by the input variables B and C, when connected in series in the path between

More information

! Dynamic Characteristics. " Delay

! Dynamic Characteristics.  Delay EE 57: Digital Integrated ircuits and LI Fundamentals Lecture Outline! Dynamic haracteristics " Delay Lec : February, 8 MO Inverter and Interconnect Delay 3 Review: Propogation Delay Definitions Dynamic

More information

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates) EE 330 Lecture 37 Digital Circuits Other Logic Families Static Power Dissipation Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates) Review from Last Time Inverter

More information

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002 CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

More information

The CMOS Inverter: A First Glance

The CMOS Inverter: A First Glance The CMOS Inverter: A First Glance V DD V in V out C L CMOS Properties Full rail-to-rail swing Symmetrical VTC Propagation delay function of load capacitance and resistance of transistors No static power

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter Chapter 5 The Inverter V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov.12 03 Objective of This Chapter Use Inverter to know basic CMOS Circuits Operations Watch for performance Index such as Speed (Delay calculation)

More information

Properties of CMOS Gates Snapshot

Properties of CMOS Gates Snapshot MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)

More information

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view) ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]

More information

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate EE4-Fall 2008 Digital Integrated Circuits Lecture VTCs and Delay Lecture # Announcements No lab today, Mon., Tues. Labs restart next week Midterm # Tues. Oct. 7 th, 6:30-8:00pm in 05 Northgate Exam is

More information

SOTiny TM LVDS High-Speed Differential Line Receiver. Features. Description. Applications. Pinout. Logic Diagram. Function Table

SOTiny TM LVDS High-Speed Differential Line Receiver. Features. Description. Applications. Pinout. Logic Diagram. Function Table 67890678906789067890678906789067890678906789067890678906789067890 SOTiny TM LVDS High-Speed Differenial Line Receiver Feaures Mees or Exceeds he Requiremens of NSI TI/EI-6-99 Sandard Signaling raes up

More information

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI UNIT - III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large

More information

EE 434 Lecture 33. Logic Design

EE 434 Lecture 33. Logic Design EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The two-inverter loop X Y X

More information

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pull-up The inverter NMOS inverter with current-source pull-up Complementary MOS (CMOS) inverter Static analysis

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 13 The CMOS Inverter: dynamic behavior (delay) guntzel@inf.ufsc.br

More information

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1 RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermediate steps: a correct solution without an explanation will get zero

More information

High-to-Low Propagation Delay t PHL

High-to-Low Propagation Delay t PHL High-to-Low Propagation Delay t PHL V IN switches instantly from low to high. Driver transistor (n-channel) immediately switches from cutoff to saturation; the p-channel pull-up switches from triode to

More information

Practice 7: CMOS Capacitance

Practice 7: CMOS Capacitance Practice 7: CMOS Capacitance Digital Electronic Circuits Semester A 2012 MOSFET Capacitances MOSFET Capacitance Components 3 Gate to Channel Capacitance In general, the gate capacitance is similar to a

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

Lecture 12 Circuits numériques (II)

Lecture 12 Circuits numériques (II) Lecture 12 Circuits numériques (II) Circuits inverseurs MOS Outline NMOS inverter with resistor pull-up The inverter NMOS inverter with current-source pull-up Complementary MOS (CMOS) inverter Static analysis

More information

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay Estimation 2 Pass Transistors We have assumed source is grounded

More information

Lecture 5. MOS Inverter: Switching Characteristics and Interconnection Effects

Lecture 5. MOS Inverter: Switching Characteristics and Interconnection Effects Lecture 5 MOS Inverter: Switching Characteristics and Interconnection Effects Introduction C load = (C gd,n + C gd,p + C db,n + C db,p ) + (C int + C g ) Lumped linear capacitance intrinsic cap. extrinsic

More information

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003 6.012 Microelectronic Devices and Circuits Spring 2003 Lecture 131 Lecture 13 Digital Circuits (II) MOS Inverter Circuits March 20, 2003 Contents: 1. NMOS inverter with resistor pullup (cont.) 2. NMOS

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 CMOS Transistor Theory Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction MOS Device Design Equation Pass Transistor Jin-Fu Li, EE,

More information

Digital Integrated Circuits 2nd Inverter

Digital Integrated Circuits 2nd Inverter Digital Integrated Circuits The Inverter The CMOS Inverter V DD Analysis Inverter complex gate Cost V in V out complexity & Area Integrity and robustness C L Static behavior Performance Dynamic response

More information

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr. DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-604 yrpeng@uark.edu Pass Transistors We have assumed source is

More information

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6 Semiconducor Devices C. Hu: Modern Semiconducor Devices for Inegraed Circuis Chaper 6 For hose of you who are sudying a bachelor level and need he old course S-69.2111 Mikro- ja nanoelekroniikan perusee

More information

Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

More information

NDP4050L / NDB4050L N-Channel Logic Level Enhancement Mode Field Effect Transistor

NDP4050L / NDB4050L N-Channel Logic Level Enhancement Mode Field Effect Transistor April 996 NP45L / NB45L N-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion Feaures These logic level N-Channel enhancemen mode power field effec ransisors are produced using

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational

More information

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since Step 1. Finding V M Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since V DSn = V M - 0 > V M - V Tn V SDp = V DD - V M = (V DD - V M ) V Tp Equate drain

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter

More information

NDS332P P-Channel Logic Level Enhancement Mode Field Effect Transistor

NDS332P P-Channel Logic Level Enhancement Mode Field Effect Transistor June 997 NS33P P-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion Feaures These P-Channel logic level enhancemen mode power field effec ransisors are produced using Fairchild's

More information

CMOS Logic Gates. University of Connecticut 181

CMOS Logic Gates. University of Connecticut 181 CMOS Logic Gates University of Connecticut 181 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

More information

Dynamic operation 20

Dynamic operation 20 Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect H513 8-Channel Serial o Parallel Converer wih High olage Push-Pull s, POL, Hi-Z, and Shor Circui Deec Feaures HCMOS echnology Operaing oupu volage of 250 Low power level shifing from 5 o 250 Shif regiser

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

CHAP.4 Circuit Characteristics and Performance Estimation

CHAP.4 Circuit Characteristics and Performance Estimation HAP.4 ircui haracerisics and Performance Esimaion 4. Resisance esimaion R ρ l w (ohms) where ρ Resisiviy Thickness l onducor lengh w onducor widh l R Rs w where Rs Shee resisance (Ω/square) in 0.5µm o

More information

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description PI53157 OINY M Low Volage PD nalog wich 2:1 Mux/Demux Bus wich Feaures CMO echnology for Bus and nalog pplicaions Low ON Resisance: 8-ohms a 3.0V Wide Range: 1.65V o 5.5V Rail-o-Rail ignal Range Conrol

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power

More information

CMOS Logic Gates. University of Connecticut 172

CMOS Logic Gates. University of Connecticut 172 CMOS Logic Gates University of Connecticut 172 Basic CMOS Inverter Operation V IN P O N O p-channel enhancementtype MOSFET; V T < 0 n-channel enhancementtype MOSFET; V T > 0 If V IN 0, N O is cut off and

More information

Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI Contents Delay estimation Simple RC model Penfield-Rubenstein Model Logical effort Delay

More information

CMPEN 411 VLSI Digital Circuits Spring 2012

CMPEN 411 VLSI Digital Circuits Spring 2012 CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 09: Resistance & Inverter Dynamic View [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic]

More information

NDS356P P-Channel Logic Level Enhancement Mode Field Effect Transistor

NDS356P P-Channel Logic Level Enhancement Mode Field Effect Transistor March 996 NS356P P-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion These P-Channel logic level enhancemen mode power field effec ransisors are produced using Fairchild's proprieary,

More information

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics La moule: CMOS Tranior heory Thi moule: DC epone Logic Level an Noie Margin Tranien epone Delay Eimaion Tranior ehavior 1) If he wih of a ranior increae, he curren will ) If he lengh of a ranior increae,

More information

Digital Microelectronic Circuits ( )

Digital Microelectronic Circuits ( ) Digital Microelectronic ircuits (361-1-3021 ) Presented by: Dr. Alex Fish Lecture 5: Parasitic apacitance and Driving a Load 1 Motivation Thus far, we have learned how to model our essential building block,

More information