Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016

Size: px
Start display at page:

Download "Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016"

Transcription

1 Forces, Momentum, & Gravity (Chapter 3) Force and Motion Cause and Effect In chapter 2 we studied motion but not its cause. In this chapter we will look at both force and motion the cause and effect. We will consider Newton s: Newton s three laws of motion Newton s law of universal gravitation Buoyancy and momentum Intro Student Learning Objectives Recall and apply each of Newton s Laws Relate momentum to impact force Use conservation of momentum to analyze motion Describe gravity and its applications. 1

2 Sir Isaac Newton ( ) Only 25 when he formulated most of his discoveries in math and physics His book Mathematical Principles of Natural Philosophy is considered to be the most important publication in the history of Physics. Intro What is a force & when are forces balanced? A force is the amount of push or pull on an object. Forces can cause a change in motion; a net force results in acceleration. An object in mechanical equilibrium maintains its motion. There is no change. F net = 0 Forces are balanced F net = F Balanced (equal) forces, therefore no motion. Equal in magnitude but in opposite directions. Section 3.1 2

3 Unbalanced forces result in motion Net force to the right Section 3.1 Practice 1) A 150 lb person is standing still on the floor. What is the net force? 2) If a car engine provides 700 Newtons of push, and there is 200 Newtons of opposing friction, what is the net force on the car? 3) When the car engine continues to provide 700 Newtons of push, but the friction force is increased to 700 Newtons, what is the net force on the car? Would this cause the car to stop? 4) Is a car with a constant velocity of 30 mph in mechanical equilibrium? Why must you keep pressure on the accelerator? What are Newton s Laws of Motion & how do they apply? All objects have the same motion within a specific reference frame. Newton s 1 st Law of Motion: Inertia An object will remain at rest or maintain a constant velocity unless an unbalanced force causes the object s motion to change. Inertia is the tendency of an object to maintain its motion. Quick stops Cornering Something sliding across your dash as you turn The tablecloth trick 3

4 A spacecraft keeps going because no forces act to stop it Photo Source: Copyright Bobby H. Bammel. All rights reserved. Section 3.2 A large rock in Yellowstone N.P. stays put until a large enough force acts on it. Photo Source: Copyright Bobby H. Bammel. All rights reserved. Section Mass Inertia depends on mass. more mass more inertia harder to change motion Mass is the amount of material contained in an object. Empty 747 Jet 160,000 kg Average Man 73 kg 5 coin kg Mass is a fundamental quantity. 4

5 Mass and Inertia The large man has more inertia more force is necessary to start him swinging and also to stop him due to his greater inertia Section 3.2 Mass and Inertia Quickly pull the paper and the stack of quarters tend to stay in place due to inertia. Section 3.2 Practice: Mass is often defined in elementary school as the amount of space an object takes up. Why is this not correct? Newton s 2 nd Law of Motion: F = ma An unbalanced force acting on a mass gives the mass an acceleration in the same direction as the unbalanced force. Example: Soccer ball F = ma 5

6 Force, Mass, Acceleration a) Original situation a F m b) If we double the force we double the acceleration. c) If we double the mass we half the acceleration. Section 3.3 When an object is in motion, friction is always in the opposite direction of the motion. F f Big Box Motion Practice 1) If the force on a 5 kg mass is tripled, what will happen to the rate of acceleration? 2) A 2000 kg car engine provides 9800 N of push southward. The opposing frictional force is 1200 N. What is the average acceleration? Weight is a force; it is the gravitational force acting on a mass. W = mg 1 kg of mass weighs 9.8 Newtons or 2.2 pounds on Earth. Practice 1) Does weight depend on volume? 2) Would 1 kg of mass weigh 2.2 pounds on the Moon? 3) If you were instantly transported to Mars, what would change? a. Mass? b. Weight? c. Inertia? 4) What would a person weigh on Mars if the person weighs150 lb (667 N) on Earth? The acceleration due to gravity on Mars is 3.72 m/s 2. 6

7 Vectors Forces are vectors, and vector addition is the addition of both the size and direction of each quantity. The resultant vector shows the result of two or more vectors acting simultaneously. Practice An airplane s speedometer reads 500 mph North. What is the net velocity of the airplane in each case? a) Wind is blowing North at 50 mph. b) Wind is blowing South at 50 mph. c) Wind is blowing East at 50 mph. Newton s 3 rd Law of Motion: Action-Reaction When two objects interact, they create equal and opposite forces on each other. F 1 = F 2 To every action force there is an equal (in magnitude) and opposite (in direction) reaction force when two objects are in contact. Examples: Pushing on a wall, Bat & Ball, Rockets 7

8 Newton's Laws in Action Friction on the tires provides necessary centripetal acceleration. Passengers continue straight ahead in original direction and as car turns the door comes toward passenger 1 st Law As car turns you push against door and the door equally pushes against you 3 rd Law Section Practice If I give the chair a good push, it goes from rest to having a velocity, and then stops. How do each of Newton s laws apply to this system? What is momentum? Linear momentum is the combination of mass (inertia) and velocity. p= mv The greater the momentum, the harder it is to stop an object! 8

9 Momentum If we have a system of masses, the linear momentum is the sum of all individual momentum vectors. P f = P i (final = initial) P = p 1 + p 2 + p 3 + (sum of the individual momentum vectors) Law of Conservation of Linear Momentum Law of Conservation of Linear Momentum - the total linear momentum of an isolated system remains the same if there is no external, unbalanced force acting on the system Linear Momentum is conserved as long as there are no external unbalance forces. It does not change with time. Conservation of Linear Momentum P i = P f = 0 (for man and boat) When the man jumps out of the boat he has momentum in one direction and, therefore, so does the boat. Their momentums must cancel out! (= 0) 9

10 Applying the Conservation of Linear Momentum Two masses at rest on a frictionless surface. When the string (weightless) is burned the two masses fly apart due to the release of the compressed (internal) spring (v 1 = 1.8 m/s). Applying the Conservation of Linear Momentum Two masses at rest on a frictionless surface. When the string (weightless) is burned the two masses fly apart due to the release of the compressed (internal) spring (v 1 = 1.8 m/s). GIVEN: P f = P i = 0 m 1 = 1.0 kg P f =p 1 + p 2 = 0 m 2 = 2.0 kg p 1 = -p 2 v 1 = 1.8 m/s, v 2 =? m 1 v 1 = -m 2 v 2 Applying the Conservation of Linear Momentum m 1 v 1 = -m 2 v 2 v 2 = - m 1v 1 = - (1.0 kg) (1.8 m/s) = m/s m kg 10

11 Jet Propulsion Jet Propulsion can be explained in terms of both Newton s 3 rd Law & Linear Momentum p 1 = -p 2 m 1 v 1 =-m 2 v 2 The exhaust gas molecules have small m and large v. The rocket has large m and smaller v. BUT m 1 v 1 = -m 2 v 2 (momentum is conserved) Practice 1) What is an example of a moving object that could have a large momentum because it has a large mass? 2) What is an example of a small object that could have a large momentum because it has a large velocity? 3) Which has the most momentum? a) 10,000 lb (4535 kg) 18-wheeler parked at the curb b) 300 lb (136 kg) football player running 10 mph (4.46 m/s) c) 150 lb (68 kg) sprinter running 22 mph (9.83 m/s) d) 1200 kg car moving at 1 m/s Torque Torque the twisting effect caused by one or more forces As we have learned, the linear momentum of a system can be changed by the introduction of an external unbalanced force. Similarly, angular momentum can be changed by an external unbalanced torque. 11

12 Torque Torque is a twisting action that produces rotational motion or a change in rotational motion. Torque and Lever Arm Torque varies with the length of the lever arm. As the length of the lever arm is doubled, the torque is doubled, for a given force. Law of Conservation of Angular Momentum Law of Conservation of Angular Momentum - the angular momentum of an object remains constant if there is no external, unbalanced torque (a force about an axis) acting on it Concerns objects that go in paths around a fixed point, for example a satellite orbiting the earth 12

13 Angular Momentum L = mvr L = angular momentum, m = mass, v = velocity, and r = distance to center of motion L 1 = L 2 m 1 v 1 r 1 = m 2 v 2 r 2 Angular Momentum - Example Mass (m) is constant. As r changes so must v. When r decreases, v must increase so that m 1 v 1 r 1 = m 2 v 2 r 2 Angular Momentum in our Solar System In our solar system the planet s orbit paths are slightly elliptical, therefore both r and v will slightly vary during a complete orbit. 13

14 Conservation of Angular Momentum Example A comet at its farthest point from the Sun is 900 million miles, traveling at 6000 mi/h. What is its speed at its closest point of 30 million miles away? EQUATION: m 1 v 1 r 1 = m 2 v 2 r 2 GIVEN: v 2, r 2, vr 1, and m 1 2 r 2 (6.0 = m 2 x 10 3 mi/h) (900 x 10 6 mi) FIND: v 1 = = 30 x 10 6 mi r x 10 5 mi/h or 180,000 mi/h Conservation of Angular Momentum Rotors on large helicopters rotate in the opposite direction Conservation of Angular Momentum Figure Skater she/he starts the spin with arms out at one angular velocity. Simply by pulling the arms in the skater spins faster, since the average radial distance of the mass decreases. m 1 v 1 r 1 = m 2 v 2 r 2 m is constant; r decreases; Therefore v increases 14

15 Angular momentum is momentum in a circular path. L = mvr The angular momentum vector is perpendicular to the plane of the circular path. L v How does momentum affect the force of impact? During an impact, the force of impact depends on how quickly the momentum is changed. F = p t Examples: Water barrels at the start of a divided highway Carpet vs. concrete Practice 1) You (75 kg) are riding in your 2000 kg car at 30 m/s (67 mph) when suddenly a squirrel runs in front of you; you swerve, and hit a tree. If the duration of the impact is 1/2 of a second, what is the impact force? 2) Two 2000 kg cars, each with a 75 kg person, are traveling toward each other with a speed of 30 m/s (67 mph); suddenly one swerves into the wrong lane and there is a head-on collision. If the duration of the impact is 1/2 of a second, what is the impact force? 3) What are some features of car design that decrease force of impact? 15

16 How is conservation of momentum applied? The total momentum of an isolated system remains constant. p f = p i L f = L i Examples: Collisions & Ice Skaters Practice Always assume momentum is conserved. 1)Two cars of equal mass collide. One is traveling West at 30 m/s, the other is at rest. Then there is an inelastic collision between the two cars. If linear momentum is conserved, what is the final velocity of each car? 2) An ice skater spins 5 m/s with outstretched arms. The radius of the circular path traced by her arms is 1 meter. Then she pulls her arms in, changing the radius of the circular path to 1/3 m. If angular momentum is conserved, what is her new spinning speed? Newton s Law of Gravitation Gravity is a fundamental force of nature We do not know what causes it We can only describe it Law of Universal Gravitation Every particle in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them Section

17 What is Newton s description of gravity? Newton s Universal Law of Gravitation F g = GMm Mutual force of attraction d 2 All masses pull the same on each other! Causes acceleration due to gravity, g = 9.81 m/s 2 G is the universal gravitational constant G = 6.67 x N. m 2 /kg 2 G: is a very small quantity thought to be valid throughout the universe was measured by Cavendish 70 years after Newton s death not equal to g and not a force Newton s Law of Gravitation The forces that attract particles together are equal and opposite F 1 = -F 2 or m 1 a 1 = -m 2 a 2 Section 3.5 Newton's Law of Gravitation F = Gm 1 m 2 r 2 For a homogeneous sphere the gravitational force acts as if all the mass of the sphere were at its center Section

18 Applying Newton s Law of Gravitation Two objects with masses of 1.0 kg and 2.0 kg are 1.0 m apart. What is the magnitude of the gravitational force between the masses? Section 3.5 Applying Newton s Law of Gravitation Example Two objects with masses of 1.0 kg and 2.0 kg are 1.0 m apart. What is the magnitude of the gravitational force between the masses? Gm 1 m 2 F = r 2 F = (6.67 x N-m 2/kg 2)(1.0 kg)(2.0 kg) F = 1.3 x N (1.0 m) 2 Section 3.5 Practice 1) Would the acceleration due to gravity (9.81 m/s 2 ) be different for an object dropped from a high mountain top than it is at sea level? 2) If Earth had twice as much mass, would this change our weight? Would it change our mass? 3) What is the gravitational attraction between Earth and a 75 kg person standing on the surface, at sea level (M E = 6 x kg, r E = 6.4 x 10 6 m)? What do we normally call this? 4) How would the gravitational force change if the distance doubled? 5) Is the gravitational force zero in space? 18

19 What are some effects of gravity? The feeling of weightlessness occurs when an object and its reference frame accelerate at the same rate. Airplane drops Large, rolling dip in the road Freefall ride If there is no support force, then objects will fall together. ke Practice If you were standing on a scale in the elevator that measured your weight, how would the scale reading change as the elevator a) Accelerates up b) Accelerates down c) Free falls Gravity Effects Orbits Tides Atmospheres Changing Earth-Moon System Changing Earth-Moon system: Earth s rotation is slowing ( seconds/century) Our Moon is drifting away (3.8 cm/year) The synchronous orbit of the Moon (same face) 19

20 Weightlessness in space is the result of both the astronaut and the spacecraft falling to Earth at the same rate Photo Source: Standard HMCO copyright line Section Practice: The Sun's tidal affects are weak compared to the Moon. Why? What is Einstein s description of Gravity? Every object with mass creates a curvature of space-time. According to Einstein, mass does not create a force, but rather a warping of space which other objects follow. More Mass = More Curvature Objects fall independent of their mass because they all follow the same path in curved space-time. 20

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 3 Force and Motion

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 3 Force and Motion James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 3 Force and Motion Force and Motion Cause and Effect In chapter 2 we studied motion but not its cause. In this chapter we will look at both

More information

FORCE AND MOTION CHAPTER 3

FORCE AND MOTION CHAPTER 3 FORCE AND MOTION CHAPTER 3 Review: Important Equations Chapter 2 Definitions Average speed: Acceleration: v = d t v = Δd a = Δv Δt = v v 0 t t 0 Δt = d d 0 t t 0 Derived Final velocity: Distance fallen:

More information

Acceleration in Uniform Circular Motion

Acceleration in Uniform Circular Motion Acceleration in Uniform Circular Motion The object in uniform circular motion has a constant speed, but its velocity is constantly changing directions, generating a centripetal acceleration: a c v r 2

More information

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4 Martha Casquete Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum 3-2 Section 3.4 Net force/balance and unbalance forces Newton s First Law of Motion/Law of Inertia Newton s Second

More information

General Physical Science

General Physical Science General Physical Science Chapter 3 Force and Motion Force and Net Force Quantity capable of producing a change in motion (acceleration). Key word = capable Tug of War Balanced forces Unbalanced forces

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Chapter 2. Force and Newton s Laws

Chapter 2. Force and Newton s Laws Chapter 2 Force and Newton s Laws 2 1 Newton s First Law Force Force A push or pull that one body exerts on another body. Examples : 2 Categories of Forces Forces Balanced Forces Unbalanced Forces Balanced

More information

Chapter 6 Study Questions Name: Class:

Chapter 6 Study Questions Name: Class: Chapter 6 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A feather and a rock dropped at the same time from

More information

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 Summary Newton s law of gravity describes the gravitational force between A. the earth and the

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity 2014 Pearson Education, Inc. Making Sense of the Universe: Understanding

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Circular Motion PreTest

Circular Motion PreTest Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion Section 1 Circular Motion Preview Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System Section 1 Circular Motion Objectives Solve problems involving centripetal

More information

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.)

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.) Newton s Laws 1) Inertia - objects in motion stay in motion 2) F=ma 3) Equal and opposite reactions Newton's 1 st Law What is the natural state of motion of an object? An object at rest remains at rest,

More information

Circular Motion & Gravitation MC Question Database

Circular Motion & Gravitation MC Question Database (Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin

More information

A force is could described by its magnitude and by the direction in which it acts.

A force is could described by its magnitude and by the direction in which it acts. 8.2.a Forces Students know a force has both direction and magnitude. P13 A force is could described by its magnitude and by the direction in which it acts. 1. Which of the following could describe the

More information

The Laws of Motion. Newton s Second Law

The Laws of Motion. Newton s Second Law The Laws of Motion Newton s Second Law Key Concepts What is Newton s second law of motion? How does centripetal force affect circular motion? What do you think? Read the two statements below and decide

More information

8. The graph below shows a beetle s movement along a plant stem.

8. The graph below shows a beetle s movement along a plant stem. Name: Block: Date: Introductory Physics: Midyear Review 1. Motion and Forces Central Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast

More information

Broughton High School of Wake County

Broughton High School of Wake County Name: Section: 1 Section 1: Which picture describes Newton s Laws of Motion? 5. Newton s Law 1. Newton s Law 2. Newton s Law 6. Newton s Law 3. Newton s Law 7. Newton s Law 4. Newton s Law 8. Newton s

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

This Week. 3/23/2017 Physics 214 Summer

This Week. 3/23/2017 Physics 214 Summer This Week Forces on an object Newtons laws Relating force to acceleration Riding in an elevator What we feel going up and down Cars and Trains Reaction /action What makes us walk or a car move Sailing

More information

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage). 1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

4.1 Describing Motion

4.1 Describing Motion Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

The Laws of Motion. Gravity and Friction

The Laws of Motion. Gravity and Friction CHAPTER 3 The Laws of Motion LESSON 1 Gravity and Friction What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree

More information

Chapter 12 Forces and Motion

Chapter 12 Forces and Motion Chapter 12 Forces and Motion GOAL: Students will be able to interpret and apply Newton s three laws of motion and analyze the motion of an object in terms of its position, velocity, and acceleration. Standard:

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

More information

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Based on part of Chapter 4 This material will be useful for understanding Chapters 8 and 11

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

Forces and Motion Chapter Problems

Forces and Motion Chapter Problems Forces and Motion Chapter Problems Motion & Speed 1. Define motion. 2. When you look at the ground you seem to be at rest. Using the term relative motion explain why someone in space would see you moving

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST:

Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST: Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST: This test is closed book. You may use a dictionary. You may use your own calculator

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves example: speed of

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM.

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM. !! www.clutchprep.com EXAMPLE: HOLDING WEIGHTS ON A SPINNING STOOL EXAMPLE: You stand on a stool that is free to rotate about an axis perpendicular to itself and through its center. Suppose that your combined

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity Gravity and Orbits Objectives Clarify a number of basic concepts Speed vs. velocity Acceleration, and its relation to force Momentum and angular momentum Gravity Understand its basic workings Understand

More information

Forces & Newton s Laws. Honors Physics

Forces & Newton s Laws. Honors Physics Forces & Newton s Laws Honors Physics Newton s 1 st Law An object in motion stays in motion, and an object at rest stays at rest, unless an unbalanced force acts on it. An object will maintain a constant

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0 PHYSICS 5 TEST 2 REVIEW 1. A car slows down as it travels from point A to B as it approaches an S curve shown to the right. It then travels at constant speed through the turn from point B to C. Select

More information

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully.

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully. 1 A dragster maintains a speedometer reading of 100 km/h and passes through a curve with a constant radius. Which statement is true? 1. The dragster rounded the curve at a changing speed of 100 km/h. 2.

More information

Practice Test Chapter 2 Forces and Motion

Practice Test Chapter 2 Forces and Motion Practice Test Chapter 2 Forces and Motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What happens when a moving bumper car hits a bumper car at rest?

More information

TEK 8.6C: Newton s Laws

TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction such as in vehicle

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

Why constant (or straight line) motion? Remember, if an object turns at a constant speed it is accelerating.

Why constant (or straight line) motion? Remember, if an object turns at a constant speed it is accelerating. Newton s 1st Law Newton s 1st Law of Motion - An object in constant motion will continue in constant motion or an object at rest will stay at rest unless acted upon by an unbalanced force. Unbalanced force

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves $ speed = distance!#"units

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k Name: Class: Date: Exam 2--PHYS 101-F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Practice Honors Physics Test: Newtons Laws

Practice Honors Physics Test: Newtons Laws Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

transfer of heat energy by conduction, convection, and radiation Doppler effect static electricity

transfer of heat energy by conduction, convection, and radiation Doppler effect static electricity Energy, Force, and Motion identifying energy transformations; Identifying and analyzing the transfer of heat energy by conduction, convection, and radiation interpreting a phase diagram; describing and

More information

Buoyancy Momentum/Impulse Angular Momentum Torque

Buoyancy Momentum/Impulse Angular Momentum Torque Buoyancy Momentum/Impulse Angular Momentum Torque Newton s Third Law Problem: How can a horse pull a cart if the cart is pulling back on the horse with an equal but opposite force? Aren t these balanced

More information

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d.

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d. Page 1 1. If you are driving 90 km/h along a straight road and you look to the side for 3.0 s, how far do you travel during this inattentive period? a. 30 m b. 25 m c. 50 m d. 75 m 2. A polar bear starts

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Amusement Park Forces

Amusement Park Forces Amusement Park Forces What is a Force? FORCE = Any push or pull which causes something to move or change its speed or direction What is a Force? Forces can be BALANCED or UNBALANCED Balanced forces are

More information

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

S Notre Dame 1

S Notre Dame 1 Worksheet 1 Horizontal Circular Motion 1. Will the acceleration of a car be the same if it travels Around a sharp curve at 60 km/h as when it travels around a gentle curve at the same speed? Explain. 2.

More information