Lecture 24: Laplace s Equation

Size: px
Start display at page:

Download "Lecture 24: Laplace s Equation"

Transcription

1 Introductory lecture notes on Prtil Differentil Equtions - c Anthony Peirce. Not to e copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 24: Lplce s Eqution (Compiled 4 August 217 In this lecture we strt our study of Lplce s eqution, which represents the stedy stte of field tht depends on two or more independent vriles, which re typiclly sptil. We demonstrte the decomposition of the inhomogeneous Dirichlet Boundry vlue prolem for the Lplcin on rectngulr domin into sequence of four oundry vlue prolems ech hving only one oundry segment tht hs inhomogeneous oundry conditions nd the reminder of the oundry is suject to homogeneous oundry conditions. These ltter prolems cn then e solved y seprtion of vriles. Key Concepts: Lplce s eqution; Stedy Stte oundry vlue prolems in two or more dimensions; Linerity; Decomposition of complex oundry vlue prolem into suprolems Reference Section: Boyce nd Di Prim Section Lplce s Eqution 24.1 Summry of the equtions we hve studied thus fr In this course we hve studied the solution of the second order liner PDE. u t = α 2 u Het eqution: Prolic T = α 2 X 2 Dispersion Reltion σ = α 2 k 2 2 u t 2 = c 2 u Wve eqution: Hyperolic T 2 c 2 X 2 = A Dispersion Reltion σ = ±ick (24.1 u = Lplce s eqution: Elliptic X 2 + Y 2 = A Dispersion Reltion σ = ±k Importnt: (1 These equtions re second order ecuse they hve t most 2nd prtil derivtives. (2 These equtions re ll liner so tht liner comintion of solutions is gin solution Stedy stte solutions in higher dimensions Lplce s Eqution rises s stedy stte prolem for the Het or Wve Equtions tht do not vry with time so tht u t = = 2 u t 2. 2D: u = 2 u x u =. (24.2 y2

2 2 3D: No initil conditions required. Only oundry conditions. The Lplcin in Polr Coordintes: u = 2 u r u r r u r 2 θ 2 =. Physicl prolems in which Lplce s eqution rises 2D Stedy-Stte Het Conduction, Sttic Deflection of Memrne, Electrosttic Potentil. u = 2 u x u y u =. (24.3 z Lplce s Eqution in two dimensions u t = α 2 (u xx + u yy u(x, y, t inside domin D. (24.4 Stedy-Stte Solution stisfies: u = u xx + u yy = (x, y D (24.5 BC: u prescried on D. (24.6 We consider domins D tht re rectngulr, circulr, pizz slices Rectngulr Domins Consider solving the Lplce s eqution on rectngulr domin (see figure 4 suject to inhomogeneous Dirichlet Boundry Conditions u = u xx + u yy = (24.7 BC: u(x, = f 1 (x, u(, y = g 2 (y, u(x, = f 2 (x, u(, y = g 1 (y (24.8 Figure 1. Inhomogeneous Dirichlet Boundry conditions on rectngulr domin s prescried in (24.8

3 Lplce s Eqution 3 Ide for solution - divide nd conquer We wnt to use seprtion of vriles so we need homogeneous oundry conditions. Since the eqution is liner we cn rek the prolem into simpler prolems which do hve sufficient homogeneous BC nd use superposition to otin the solution to (24.8. Pictorilly: Figure 2. Decomposition of the inhomogeneous Dirichlet Boundry vlue prolem for the Lplcin on rectngulr domin s prescried in (24.8 into sequence of four oundry vlue prolems ech hving only one oundry segment tht hs inhomogeneous oundry conditions nd the reminder of the oundry is suject to homogeneous oundry conditions 24.4 Solution to Prolem (1A y Seprtion of Vriles Figure 3. Boundry vlue prolem for su-solution u A (x, y (1A u xx + u yy = (24.9 u(, y = = u(, y = u(x, ; u(x, = f 1 (x. (24.1 Let u(x, y = X(xY (y. (24.11 X (xy (y + X(xY (y = (24.12 X (x X(x = Y (y Y (y = const = ±λ2 (24.13

4 4 λ 2 : X + λ 2 X = Y λ 2 Y = X = A cos λx + B sin λx Y = C cosh λx + D sinh λx X( = = X( Y ( =... Y ( = Becuse sin nd cos hve n # of rel roots the choice λ 2 is good for BC s for Prolems (A nd (C. +λ 2 : X λ 2 X = Y + λ 2 Y = X = A cosh(λx + B sinh(λx Y = C cos(λy + D sin(λy X( =... X( =... Y ( = = Y (. (24.14 Agin ecuse sin nd cos hve n # of rel roots the choice +λ 2 is good for BC s for Prolems (B nd (D. Bck to Solving (1A: X( = A = (24.15 X( = B sin(λ = λ n = nπ n = 1, 2,... X n (x = sin ( nπx. (24.16 u(x, = X(xY ( = Y ( = (24.17 Y ( = C cosh(λ + D sinh(λ = c = D tn h(λ (24.18 Y (y = D tn h(λ cosh(λy + D sinh(λy (24.19 { } sinh(λy cosh(λ cosh(λy sinh(λ = D (24.2 cosh(λ D = cosh(λ sinh λ(y = D sinh λ(y. (24.21 Note: We could sve ourselves the time y uilding the BC y( = directly into the solution y letting Y n (y = D sinh λ n (y (24.22 directly. ( nπ Now the functions: u n (x, y = sin sinh (y n = 1, 2,... stisfy ll the homogeneous BC of Prolem (1A. In order to mtch the BC u(x, = f 1 (x we need to superimpose ll these solutions. ( nπ u(x, y = B n sin sinh (y (24.23 { ( } nπ f 1 (x = u(x, = B n sinh sin (24.24 }{{} n where ( nπ B n sinh = n = 2 f 1 (x sin dx. (24.25

5 Therefore Specific Exmple Let f L (x = 1 = Therefore u(x, y = 1 u(x, y = Lplce s Eqution 5 2 where B n = sinh ( nπ n sin. n = 2 nπ 2 nπ ( nπ B n sinh (y sin ; f 1 (x sin dx (24.26 [ 1 + ( 1 n+1 ] ( nπ = B n sinh. (24.27 [1 + ( 1 n+1 ] sinh ( sin nπ ( nπ sinh (y. ( Solution to Prolem (1B y Seprtion of Vriles Figure 4. Boundry vlue prolem for su-solution u A (x, y Let u = u xx + u yy = (24.29 = u(x, = u(x, = u(, y; u(, y = g 2 (y (24.3 u(x, y = X(xY (y (24.31 X (x X(x = Y (y Y (y = ±λ2. (24.32 Since we hve homogeneous BC t y = nd y = we wnt the function Y (y to ehve like sines nd cosines. X λ 2 X = Y + λ 2 Y = X = c 1 cosh λx + c 2 sinh λx Y = A cos(λx + B sin(λx (24.33

6 6 u(x, = X(xY ( = Y ( = Y ( = A = (24.34 u(x, = X(xY ( = Y ( = Y = B sin(λ =, λ n = nπ n = 1, 2,... (24.35 ( nπy Y n = sin u(, y = X(Y (y = ( X( = c 1 =. nπx Therefore X n (x = c 2 sinh. ( nπy Therefore u n (x, y = sin sinh stisfy the homogeneous BC. ( nπy Therefore u(x, y = c n sinh sin. Now to stisfy the inhomogeneous BC ( nπ ( nπy g 2 (y = u(, y = c n sinh sin }{{} n where Summrizing: u(x, y = c n sinh c n sinh sin (24.36 ( nπ = 2 ( nπy g 2 (y sin dy. (24.37 ( nπy ; c n = 2 sinh ( nπ g 2 (y sin ( nπy dy. (24.38

MA 201: Partial Differential Equations Lecture - 12

MA 201: Partial Differential Equations Lecture - 12 Two dimensionl Lplce Eqution MA 201: Prtil Differentil Equtions Lecture - 12 The Lplce Eqution (the cnonicl elliptic eqution) Two dimensionl Lplce Eqution Two dimensionl Lplce Eqution 2 u = u xx + u yy

More information

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5 The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle

More information

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises Differentil Equtions Homework Solutions to the Assigned Exercises, # 3 Consider the dmped string prolem u tt + 3u t = u xx, < x , u, t = u, t =, t >, ux, = fx, u t x, = gx. In the exm you were supposed

More information

10 Elliptic equations

10 Elliptic equations 1 Elliptic equtions Sections 7.1, 7.2, 7.3, 7.7.1, An Introduction to Prtil Differentil Equtions, Pinchover nd Ruinstein We consider the two-dimensionl Lplce eqution on the domin D, More generl eqution

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Module 9: The Method of Green s Functions

Module 9: The Method of Green s Functions Module 9: The Method of Green s Functions The method of Green s functions is n importnt technique for solving oundry vlue nd, initil nd oundry vlue prolems for prtil differentil equtions. In this module,

More information

u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that

u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that Seprtion of Vriles for Higher Dimensionl Wve Eqution 1. Virting Memrne: 2-D Wve Eqution nd Eigenfunctions of the Lplcin Ojective: Let Ω e plnr region with oundry curve Γ. Consider the wve eqution in Ω

More information

1 E3102: a study guide and review, Version 1.0

1 E3102: a study guide and review, Version 1.0 1 E3102: study guide nd review, Version 1.0 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in very

More information

M344 - ADVANCED ENGINEERING MATHEMATICS

M344 - ADVANCED ENGINEERING MATHEMATICS M3 - ADVANCED ENGINEERING MATHEMATICS Lecture 18: Lplce s Eqution, Anltic nd Numericl Solution Our emple of n elliptic prtil differentil eqution is Lplce s eqution, lso clled the Diffusion Eqution. If

More information

(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω.

(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω. Seprtion of Vriles for Higher Dimensionl Het Eqution 1. Het Eqution nd Eigenfunctions of the Lplcin: An 2-D Exmple Ojective: Let Ω e plnr region with oundry curve Γ. Consider het conduction in Ω with fixed

More information

APM346H1 Differential Equations. = u x, u = u. y, and u x, y =?. = 2 u t and u xx= 2 u. x,t, where u t. x, y, z,t u zz. x, y, z,t u yy.

APM346H1 Differential Equations. = u x, u = u. y, and u x, y =?. = 2 u t and u xx= 2 u. x,t, where u t. x, y, z,t u zz. x, y, z,t u yy. INTRODUCTION Types of Prtil Differentil Equtions Trnsport eqution: u x x, yu y x, y=, where u x = u x, u = u y, nd u x, y=?. y Shockwve eqution: u x x, yu x, yu y x, y=. The virting string eqution: u tt

More information

1 2-D Second Order Equations: Separation of Variables

1 2-D Second Order Equations: Separation of Variables Chpter 12 PDEs in Rectngles 1 2-D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +

More information

PHYSICS 116C Homework 4 Solutions

PHYSICS 116C Homework 4 Solutions PHYSICS 116C Homework 4 Solutions 1. ( Simple hrmonic oscilltor. Clerly the eqution is of the Sturm-Liouville (SL form with λ = n 2, A(x = 1, B(x =, w(x = 1. Legendre s eqution. Clerly the eqution is of

More information

LECTURE 1. Introduction. 1. Rough Classiæcation of Partial Diæerential Equations

LECTURE 1. Introduction. 1. Rough Classiæcation of Partial Diæerential Equations LECTURE 1 Introduction 1. Rough Clssiction of Prtil Dierentil Equtions A prtil dierentil eqution is eqution relting function of n vribles x 1 ;::: ;x n, its prtil derivtives, nd the coordintes x =èx 1

More information

Wave Equation on a Two Dimensional Rectangle

Wave Equation on a Two Dimensional Rectangle Wve Eqution on Two Dimensionl Rectngle In these notes we re concerned with ppliction of the method of seprtion of vriles pplied to the wve eqution in two dimensionl rectngle. Thus we consider u tt = c

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822).

2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822). mpc2w4.tex Week 4. 2.11.2011 2. THE HEAT EQUATION (Joseph FOURIER (1768-1830) in 1807; Théorie nlytique de l chleur, 1822). One dimension. Consider uniform br (of some mteril, sy metl, tht conducts het),

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

Lecture 19: Heat conduction with distributed sources/sinks

Lecture 19: Heat conduction with distributed sources/sinks Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without explicit written permission from the copyright owner. 1 ecture 19: Heat conduction

More information

Lecture 4 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell

Lecture 4 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell Lecture 4 Notes, Electromgnetic Theory I Dr. Christopher S. Bird University of Msschusetts Lowell 1. Orthogonl Functions nd Expnsions - In the intervl (, ) of the vrile x, set of rel or complex functions

More information

AMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i

AMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i AMS A Applied Mthemticl Methods I Lecture 6 Copyright y Hongyun Wng, UCSC Recp of Lecture 5 Clssifiction of oundry conditions Dirichlet eumnn Mixed Adjoint opertor, self-djoint opertor Sturm-Liouville

More information

Elliptic Equations. Laplace equation on bounded domains Circular Domains

Elliptic Equations. Laplace equation on bounded domains Circular Domains Elliptic Equtions Lplce eqution on bounded domins Sections 7.7.2, 7.7.3, An Introduction to Prtil Differentil Equtions, Pinchover nd Rubinstein 1.2 Circulr Domins We study the two-dimensionl Lplce eqution

More information

1 E3102: A study guide and review, Version 1.2

1 E3102: A study guide and review, Version 1.2 1 E3102: A study guide nd review, Version 1.2 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

3 Mathematics of the Poisson Equation

3 Mathematics of the Poisson Equation 3 Mthemtics of the Poisson Eqution 3. Green functions nd the Poisson eqution () The Dirichlet Green function stisfies the Poisson eqution with delt-function chrge 2 G D (r, r o ) = δ 3 (r r o ) (3.) nd

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 213 1: (Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

The General Dirichlet Problem on a Rectangle

The General Dirichlet Problem on a Rectangle The General Dirichlet Problem on a Rectangle Ryan C. Trinity University Partial Differential Equations March 7, 0 Goal: Solve the general (inhomogeneous) Dirichlet problem u = 0, 0 < x < a, 0 < y < b,

More information

A Brief Note on Quasi Static Thermal Stresses In A Thin Rectangular Plate With Internal Heat Generation

A Brief Note on Quasi Static Thermal Stresses In A Thin Rectangular Plate With Internal Heat Generation Americn Journl of Engineering Reserch (AJER) 13 Americn Journl of Engineering Reserch (AJER) e-issn : 3-847 p-issn : 3-936 Volume-, Issue-1, pp-388-393 www.jer.org Reserch Pper Open Access A Brief Note

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

Waveguide Guide: A and V. Ross L. Spencer

Waveguide Guide: A and V. Ross L. Spencer Wveguide Guide: A nd V Ross L. Spencer I relly think tht wveguide fields re esier to understnd using the potentils A nd V thn they re using the electric nd mgnetic fields. Since Griffiths doesn t do it

More information

Patch Antennas. Chapter Resonant Cavity Analysis

Patch Antennas. Chapter Resonant Cavity Analysis Chpter 4 Ptch Antenns A ptch ntenn is low-profile ntenn consisting of metl lyer over dielectric sustrte nd ground plne. Typiclly, ptch ntenn is fed y microstrip trnsmission line, ut other feed lines such

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Green function and Eigenfunctions

Green function and Eigenfunctions Green function nd Eigenfunctions Let L e regulr Sturm-Liouville opertor on n intervl (, ) together with regulr oundry conditions. We denote y, φ ( n, x ) the eigenvlues nd corresponding normlized eigenfunctions

More information

Candidates must show on each answer book the type of calculator used.

Candidates must show on each answer book the type of calculator used. UNIVERSITY OF EAST ANGLIA School of Mthemtics My/June UG Exmintion 2007 2008 ELECTRICITY AND MAGNETISM Time llowed: 3 hours Attempt FIVE questions. Cndidtes must show on ech nswer book the type of clcultor

More information

Ordinary Differential Equations- Boundary Value Problem

Ordinary Differential Equations- Boundary Value Problem Ordinry Differentil Equtions- Boundry Vlue Problem Shooting method Runge Kutt method Computer-bsed solutions o BVPFD subroutine (Fortrn IMSL subroutine tht Solves (prmeterized) system of differentil equtions

More information

Math Fall 2006 Sample problems for the final exam: Solutions

Math Fall 2006 Sample problems for the final exam: Solutions Mth 42-5 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

21.6 Green Functions for First Order Equations

21.6 Green Functions for First Order Equations 21.6 Green Functions for First Order Equtions Consider the first order inhomogeneous eqution subject to homogeneous initil condition, B[y] y() = 0. The Green function G( ξ) is defined s the solution to

More information

Brief Notes For Math 3710

Brief Notes For Math 3710 Brief Notes For Mth 371 Afshin Ghoreishi Fll 13 Contents Prefce iii -1 Hndouts 1 -.9 Hndouts.............................................. 1 Introduction 15 1 Fourier Series 18 1.1 Periodic Functions nd

More information

Laplace s Equation. Laplace s Equation. Given an open set Ω in the (x, y)-plane, Laplace s Equation for u = u(x, y) is 0 = u def

Laplace s Equation. Laplace s Equation. Given an open set Ω in the (x, y)-plane, Laplace s Equation for u = u(x, y) is 0 = u def Lplce s Eqution UBC M257/316 Lecture Notes c 2014 by Philip D. Loewen A. The Lplcin For single-vrible function u = u(x, u (x mesures slope nd u (x mesures concvity or curvture. When u = u(x, y depends

More information

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Variational Techniques for Sturm-Liouville Eigenvalue Problems Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

More information

12.8 Modeling: Membrane,

12.8 Modeling: Membrane, SEC. 1.8 Modeling: Membrne, Two-Dimensionl Wve Eqution 575 1.8 Modeling: Membrne, Two-Dimensionl Wve Eqution Since the modeling here will be similr to tht of Sec. 1., you my wnt to tke nother look t Sec.

More information

Orthogonal functions

Orthogonal functions Orthogonl functions Given rel vrible over the intervl (, b nd set of rel or complex functions U n (ξ, n =, 2,..., which re squre integrble nd orthonorml b U n(ξu m (ξdξ = δ n,m ( if the set of of functions

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx Chpter 9: Green s functions for time-independent problems Introductory emples One-dimensionl het eqution Consider the one-dimensionl het eqution with boundry conditions nd initil condition We lredy know

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Unit 5. Integration techniques

Unit 5. Integration techniques 18.01 EXERCISES Unit 5. Integrtion techniques 5A. Inverse trigonometric functions; Hyperbolic functions 5A-1 Evlute ) tn 1 3 b) sin 1 ( 3/) c) If θ = tn 1 5, then evlute sin θ, cos θ, cot θ, csc θ, nd

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

Plates on elastic foundation

Plates on elastic foundation Pltes on elstic foundtion Circulr elstic plte, xil-symmetric lod, Winkler soil (fter Timoshenko & Woinowsky-Krieger (1959) - Chpter 8) Prepred by Enzo Mrtinelli Drft version ( April 016) Introduction Winkler

More information

uv 2 c v a N D u a 2 (1

uv 2 c v a N D u a 2 (1 3 simultneous liner equtions in ( Φ xy u Φ Φ xx xy ) Φ dx dx xx u ( ) dx du u uv ( ) - dx du uv Φ c Φ xy dv dv xy v ( ( Φ v v yy Φ ) ) Φ yy N D du from (.6) dv Φ from (.5) from (.7) xy is indeterminte

More information

(9) P (x)u + Q(x)u + R(x)u =0

(9) P (x)u + Q(x)u + R(x)u =0 STURM-LIOUVILLE THEORY 7 2. Second order liner ordinry differentil equtions 2.1. Recll some sic results. A second order liner ordinry differentil eqution (ODE) hs the form (9) P (x)u + Q(x)u + R(x)u =0

More information

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware Modl Excittion Dniel S. Weile Deprtment of Electricl nd Computer Engineering University of Delwre ELEG 648 Modl Excittion in Crtesin Coordintes Outline 1 Aperture Excittion Current Excittion Outline 1

More information

Chapter 28. Fourier Series An Eigenvalue Problem.

Chapter 28. Fourier Series An Eigenvalue Problem. Chpter 28 Fourier Series Every time I close my eyes The noise inside me mplifies I cn t escpe I relive every moment of the dy Every misstep I hve mde Finds wy it cn invde My every thought And this is why

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Pressure Wave Analysis of a Cylindrical Drum

Pressure Wave Analysis of a Cylindrical Drum Pressure Wve Anlysis of Cylindricl Drum Chris Clrk, Brin Anderson, Brin Thoms, nd Josh Symonds Deprtment of Mthemtics The University of Rochester, Rochester, NY 4627 (Dted: December, 24 In this pper, hypotheticl

More information

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Analysis III (BAUG Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Question 1 et a 0,..., a n be constants. Consider the function. Show that a 0 = 1 0 φ(xdx. φ(x = a 0 + Since the integral

More information

Aike ikx Bike ikx. = 2k. solving for. A = k iκ

Aike ikx Bike ikx. = 2k. solving for. A = k iκ LULEÅ UNIVERSITY OF TECHNOLOGY Division of Physics Solution to written exm in Quntum Physics F0047T Exmintion dte: 06-03-5 The solutions re just suggestions. They my contin severl lterntive routes.. Sme/similr

More information

( ) 2. ( ) is the Fourier transform of! ( x). ( ) ( ) ( ) = Ae i kx"#t ( ) = 1 2" ( )"( x,t) PC 3101 Quantum Mechanics Section 1

( ) 2. ( ) is the Fourier transform of! ( x). ( ) ( ) ( ) = Ae i kx#t ( ) = 1 2 ( )( x,t) PC 3101 Quantum Mechanics Section 1 1. 1D Schrödinger Eqution G chpters 3-4. 1.1 the Free Prticle V 0 "( x,t) i = 2 t 2m x,t = Ae i kxt "( x,t) x 2 where = k 2 2m. Normliztion must hppen: 2 x,t = 1 Here, however: " A 2 dx " " As this integrl

More information

MA FINAL EXAM INSTRUCTIONS

MA FINAL EXAM INSTRUCTIONS MA 33 FINAL EXAM INSTRUCTIONS NAME INSTRUCTOR. Intructor nme: Chen, Dong, Howrd, or Lundberg 2. Coure number: MA33. 3. SECTION NUMBERS: 6 for MWF :3AM-:2AM REC 33 cl by Erik Lundberg 7 for MWF :3AM-:2AM

More information

Physics 215 Quantum Mechanics 1 Assignment 2

Physics 215 Quantum Mechanics 1 Assignment 2 Physics 15 Quntum Mechnics 1 Assignment Logn A. Morrison Jnury, 16 Problem 1 Clculte p nd p on the Gussin wve pcket α whose wve function is x α = 1 ikx x 1/4 d 1 Solution Recll tht where ψx = x ψ. Additionlly,

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

CHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx

CHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx CHAPTER 0 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS 0.. PARAMETRIC FUNCTIONS A) Recll tht for prmetric equtions,. B) If the equtions x f(t), nd y g(t) define y s twice-differentile function of x, then t

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1) 3e. Introduction Lecture 3e Rectngulr wveguide So fr in rectngulr coordintes we hve delt with plne wves propgting in simple nd inhomogeneous medi. The power density of plne wve extends over ll spce. Therefore

More information

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but... Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

c n φ n (x), 0 < x < L, (1) n=1

c n φ n (x), 0 < x < L, (1) n=1 SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry

More information

Section 3.3: Fredholm Integral Equations

Section 3.3: Fredholm Integral Equations Section 3.3: Fredholm Integrl Equtions Suppose tht k : [, b] [, b] R nd g : [, b] R re given functions nd tht we wish to find n f : [, b] R tht stisfies f(x) = g(x) + k(x, y) f(y) dy. () Eqution () is

More information

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola. Stndrd Eqution of Prol with vertex ( h, k ) nd directrix y = k p is ( x h) p ( y k ) = 4. Verticl xis of symmetry Stndrd Eqution of Prol with vertex ( h, k ) nd directrix x = h p is ( y k ) p( x h) = 4.

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 4: Piecewise Cubic Interpoltion Compiled 5 September In this lecture we consider piecewise cubic interpoltion

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

Eigen Values and Eigen Vectors of a given matrix

Eigen Values and Eigen Vectors of a given matrix Engineering Mthemtics 0 SUBJECT NAME SUBJECT CODE MATERIAL NAME MATERIAL CODE : Engineering Mthemtics I : 80/MA : Prolem Mteril : JM08AM00 (Scn the ove QR code for the direct downlod of this mteril) Nme

More information

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks Edexcel GCE Core Mthemtics (C) Required Knowledge Informtion Sheet C Formule Given in Mthemticl Formule nd Sttisticl Tles Booklet Cosine Rule o = + c c cosine (A) Binomil Series o ( + ) n = n + n 1 n 1

More information

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr Lecture #1 Progrm 1. Bloch solutions. Reciprocl spce 3. Alternte derivtion of Bloch s theorem 4. Trnsforming the serch for egenfunctions nd eigenvlues from solving PDE to finding the e-vectors nd e-vlues

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

More information

The usual algebraic operations +,, (or ), on real numbers can then be extended to operations on complex numbers in a natural way: ( 2) i = 1

The usual algebraic operations +,, (or ), on real numbers can then be extended to operations on complex numbers in a natural way: ( 2) i = 1 Mth50 Introduction to Differentil Equtions Brief Review of Complex Numbers Complex Numbers No rel number stisfies the eqution x =, since the squre of ny rel number hs to be non-negtive. By introducing

More information

Problem set 1: Solutions Math 207B, Winter 2016

Problem set 1: Solutions Math 207B, Winter 2016 Problem set 1: Solutions Mth 27B, Winter 216 1. Define f : R 2 R by f(,) = nd f(x,y) = xy3 x 2 +y 6 if (x,y) (,). ()Show tht thedirectionl derivtives of f t (,)exist inevery direction. Wht is its Gâteux

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

P R O B L E M S E T

P R O B L E M S E T 52 CHAP. 2 Prtil Differentil Equtions (PDEs) The simple proof of this importnt theorem is quite similr to tht of Theorem in Sec. 2. nd is left to the student. Verifiction of solutions in Probs. 2 3 proceeds

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

SOLVING SYSTEMS OF EQUATIONS, ITERATIVE METHODS

SOLVING SYSTEMS OF EQUATIONS, ITERATIVE METHODS ELM Numericl Anlysis Dr Muhrrem Mercimek SOLVING SYSTEMS OF EQUATIONS, ITERATIVE METHODS ELM Numericl Anlysis Some of the contents re dopted from Lurene V. Fusett, Applied Numericl Anlysis using MATLAB.

More information

Lecture 2e Orthogonal Complement (pages )

Lecture 2e Orthogonal Complement (pages ) Lecture 2e Orthogonl Complement (pges -) We hve now seen tht n orthonorml sis is nice wy to descrie suspce, ut knowing tht we wnt n orthonorml sis doesn t mke one fll into our lp. In theory, the process

More information

Lecture Solution of a System of Linear Equation

Lecture Solution of a System of Linear Equation ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updted /) Lecture 8- - Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions Quntum Mechnics Qulifying Exm - August 016 Notes nd Instructions There re 6 problems. Attempt them ll s prtil credit will be given. Write on only one side of the pper for your solutions. Write your lis

More information