Variational Bayesian Inference Techniques

Size: px
Start display at page:

Download "Variational Bayesian Inference Techniques"

Transcription

1 Advanced Signal Processing 2, SE Variational Bayesian Inference Techniques Johann Steiner 1

2 Outline Introduction Sparse Signal Reconstruction Sparsity Priors Benefits of Sparse Bayesian Inference Variational Sparse Bayesian Inference Gaussian Bayesian Graphical Models Algorithms for Variational Sparse Bayesian Inference Double-loop Algorithms Variational Sparse Bayesian Reconstruction Re-weighted l1 Algorithm Properties of Automatic Relevance Determination Applications Sampling Optimization of Magnetic Resonance Imaging Source Localization and Group Sparsity Penalization 2

3 Introduction Bayesian probability P H D = P D H P H P D Signal reconstruction from noisy measurements is a core problem in signal processing. Sparse signal reconstruction Compressive sensing 3

4 Sparse Signal Reconstruction (1) linear reconstruction problem measurements: y ℝ m design matrix: X ℝ m n we seek u : which minimizes the squared error: y X u u ℝ n 2 Example: MRI reconstruction Ill posed problem :many different u give zero error. 4

5 Sparse Signal Reconstruction (2) Ideally, estimation should be biased towards known properties of the signal class. Apply derivative or wavelet filters B: s= B u ℝ q The responses s exhibit statistical sparsity. 2 min y X u 2 R l u p u q R l u = B u p := s i p p i=1 p s= B u 2 0 (1) 5

6 Sparse Signal Reconstruction (3) The l1 reconstruction Problem (1) is non convex of any RIP restricted isometry property lp reconstruction view as probalistic sparse linear model (SLM) 6

7 Sparse Signal Reconstruction (4) Statistical sparsity of s : Laplace prior distribution: P u i t i si t i s i =e i s i 2 1 / 2 Student s t sparsity potentials: t i s i = 1 i / s i (2) (3) General solution of the inference problem: q P u y =Z 1 N y X u, 2 I t i s i s= B u (4) i =1 Z Partition function Z = N y X u, 2 I i t i s i 7

8 Sparsity Priors (1) Statistical and computational properties of SLM inference methods are determined by the choice of positive potentials ti(si) in the prior. P u i t i si enforce sparsity The statistical role of sparsity potentials is understood by inspecting the prior and posterior distributions they give rise to the next figure 8

9 Sparsity Priors (2) Examples: (a) prior distributions With the same var (b) corresponding posterior distr. 9

10 Benefits of Sparse Bayesian Inference Can sparse estimators with better properties than MAP estimation (1) be obtained from P (u y)? Example: A smooth nonlinear model f (.), densely sampled at n locations θi, and sources are reconstructed from sensor readings y by sparse estimation with X =[f(θi)] A Bayesian approach can alleviate these problems in many situations Convex l1 reconstruction tends to perform poorly. Nonconvex MAP reconstruction does not do well either: -log P(u y) computing the posterior mean instead of its mode integrating instead of maximizing over P (u y) the mean is not exactly sparse zero temperature limit 10

11 Variational Sparse Bayesian Inference (1) The advantages of Bayesian inference could well be offset by its computational difficulty. While there is a large and diverse body of approximate Bayesian inference technology, until recently none of these methods, applied to sparse linear models, could match the computational efficiency and theoretical characterization of MAP. Bayesian inference in SLMs, integrating over the posterior (4), is intractable for two reasons coming together: P (u y) is highly coupled (X is not block diagonal) and non-gaussian. Two major classes of inference approximations are Markov chain Monte Carlo (MCMC) and variational relaxations 11

12 Variational Sparse Bayesian Inference (2) Fit P (u y) by a Gaussian distribution Q (u y; γ) parameterized by γ minimizing a divergence measure between P and Q Exploit super Gaussanity of the prior potentials log Z max log N y X u, I e 2 T 1 s s / s h / 2 du (5) 0 s= B u :=diag 12

13 Variational Sparse Bayesian Inference (3) Relate the variational inference problem (5) to MAP estimation directly: the latter is obtained from the former by replacing the integration over u with a optimization over u. automatic relevance determination (ARD) 13

14 Variational Sparse Bayesian Inference (4) automatic relevance determination (ARD) For sparse reconstruction, ARD is an attractive alternative to convex or non convex MAP estimation. Variational sparse Bayesian inference (5) is a convex optimization problem if and only if MAP estimation is convex for the same model The variational inference relaxation (5) is solved by double-loop algorithms, scaled up to very large models by reductions to convex reconstruction and Bayesian graphical model technology. 14

15 Gaussian Bayesian Graphical Models (1) What does it take to solve the variational problem (5)? Can we use MAP estimation technology, or do we need computations of a different kind? log N y X u, I e 2 1 T 1 s s /2 du= E Q [ s i y ]2 Var Q [s i y ] / 2 Approximate means and variances by Bayesian Graphical model algorithms 15

16 Gaussian Bayesian Graphical Models (2) (undirected) graphical model (on blackboard),[2],[3] 16

17 Algorithms for Variational Sparse Bayesian Inference (1) Efficient double-loop algorithms for solving the variational relaxation (5) at large scales and characterize its convexity The following reformulation was made: 2 2 T 1 min min = u, :=log A y X u s s h 0 (6) u 17

18 Double-loop Algorithm (1) Joint minimization of (6) is difficult due to the coupled term log A concept known as concave-convex or majorize-minimize will work convert (6) into: q min min= 2 y X u 2 2 log t i z i s 2i g 1 z z 0 u (7) i =1 18

19 Double-loop Algorithm (2) The Algorithm iterates between Inner loop: minimizations of (7) over u (which involve posterior mean calculations EQ(si y) as commonly used for MAP) Outer loop: updates for z 19

20 Double-loop Algorithm (3) 20

21 Variational Sparse Bayesian Reconstruction Bayesian inference can be used for sparse point reconstruction by computing the posterior mean in a zero temperature limit, where posterior mass is concentrated on exactly sparse points. 21

22 Re-weighted l1 Algorithm ARD zero temperature limit: we can use an alternative to the double-loop algorithm above, enjoying the same global convergence property but some additional benefits: q min min= 2 y X u 2 2 Z 11 / 2 s i g 2 z z 0 u (8) i =1 22

23 Properties of Automatic Relevance Determination ARD can offer substantial advantages over separable (convex or nonconvex) MAP estimation when searching for maximally sparse solutions. n min { u 0=2 I u 0 } such that y = X u u i=1 (9) i min RVB u such that y= X u ( 10 ) u n RVB =u=min log X X u u=min 2 z 1 u i g 2 z T 1/ 2 1 z 0 0 ( 11) i=1 23

24 Applications Sampling Optimization of Magnetic Resonance Imaging Source Localization and Group Sparsity Penalization 24

25 Sampling Optimization of Magnetic Resonance Imaging (1) Setup: n = , q ~ 3n n up to (¾ n) u complex valued 25

26 Sampling Optimization of Magnetic Resonance Imaging (3) 26

27 glm-ie: The Generalised Linear Models Inference & Estimation Toolbox The glm-ie toolbox contains: scalable estimation routines for GLMs and SLMs scalable convex variational Bayesian inference relaxation. - MAP estimation - Variational Bayesian inference - Double loop algorithm - Nonlinear or group potentials - Expectation propagation inference (last visit: ) from [6] 27

28 glm-ie: The Generalised Linear Models Inference & Estimation Toolbox Problems: Only 32 bit machine support Based on C++ and Fortran 77 Code ( MEX) Additional Software needed: L-BFGS-B (solving largescale nonlinear optimization problems) Examples exist, but are not documented offline 28

29 glm-ie: Example from [6] 29

30 Bibiliography [1] M.W. Seeger, D.P.Wipf: "" IEEE Signal Processing Magazine, Nov [2] T.B. Minka: "Expectation Propsgstion for Approximate Bayesian Inference" Statistics Dept., Carnegie Mellon University -Pittsburgh [3] T.B. Minka: "A family of algorithms for approximate Bayesian inference" Department of Electrical Engineering and Computer Science, MIT [4] M. J. Beal : "VARIATIONAL ALGORITHMS FOR APPROXIMATE BAYESIAN INFERENCE ", The Gatsby Computational Neuroscience Unit, University College London [6] H. Nickisch: " glm-ie : The Generalised Linear Models Inference & Estimation Toolbox, MPI for Biological Cybernetics, Saarland University Tübingen, Germany 30

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing George Papandreou and Alan Yuille Department of Statistics University of California, Los Angeles ICCV Workshop on Information

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Day 4: Expectation and Belief Propagation Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS023) p.3938 An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Vitara Pungpapong

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ Bayesian paradigm Consistent use of probability theory

More information

Approximate Inference Part 1 of 2

Approximate Inference Part 1 of 2 Approximate Inference Part 1 of 2 Tom Minka Microsoft Research, Cambridge, UK Machine Learning Summer School 2009 http://mlg.eng.cam.ac.uk/mlss09/ 1 Bayesian paradigm Consistent use of probability theory

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

The Variational Gaussian Approximation Revisited

The Variational Gaussian Approximation Revisited The Variational Gaussian Approximation Revisited Manfred Opper Cédric Archambeau March 16, 2009 Abstract The variational approximation of posterior distributions by multivariate Gaussians has been much

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ and Center for Automated Learning and

More information

Bayesian System Identification based on Hierarchical Sparse Bayesian Learning and Gibbs Sampling with Application to Structural Damage Assessment

Bayesian System Identification based on Hierarchical Sparse Bayesian Learning and Gibbs Sampling with Application to Structural Damage Assessment Bayesian System Identification based on Hierarchical Sparse Bayesian Learning and Gibbs Sampling with Application to Structural Damage Assessment Yong Huang a,b, James L. Beck b,* and Hui Li a a Key Lab

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9: Variational Inference Relaxations Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 24/10/2011 (EPFL) Graphical Models 24/10/2011 1 / 15

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models $ Technical Report, University of Toronto, CSRG-501, October 2004 Density Propagation for Continuous Temporal Chains Generative and Discriminative Models Cristian Sminchisescu and Allan Jepson Department

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

U-Likelihood and U-Updating Algorithms: Statistical Inference in Latent Variable Models

U-Likelihood and U-Updating Algorithms: Statistical Inference in Latent Variable Models U-Likelihood and U-Updating Algorithms: Statistical Inference in Latent Variable Models Jaemo Sung 1, Sung-Yang Bang 1, Seungjin Choi 1, and Zoubin Ghahramani 2 1 Department of Computer Science, POSTECH,

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Content.

Content. Content Fundamentals of Bayesian Techniques (E. Sucar) Bayesian Filters (O. Aycard) Definition & interests Implementations Hidden Markov models Discrete Bayesian Filters or Markov localization Kalman filters

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning Gaussian Processes for Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics Tübingen, Germany carl@tuebingen.mpg.de Carlos III, Madrid, May 2006 The actual science of

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Sparse Recovery Beyond Compressed Sensing

Sparse Recovery Beyond Compressed Sensing Sparse Recovery Beyond Compressed Sensing Carlos Fernandez-Granda www.cims.nyu.edu/~cfgranda Applied Math Colloquium, MIT 4/30/2018 Acknowledgements Project funded by NSF award DMS-1616340 Separable Nonlinear

More information

Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors

Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors Sean Borman and Robert L. Stevenson Department of Electrical Engineering, University of Notre Dame Notre Dame,

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Diversity-Promoting Bayesian Learning of Latent Variable Models

Diversity-Promoting Bayesian Learning of Latent Variable Models Diversity-Promoting Bayesian Learning of Latent Variable Models Pengtao Xie 1, Jun Zhu 1,2 and Eric Xing 1 1 Machine Learning Department, Carnegie Mellon University 2 Department of Computer Science and

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Introduction. Basic Probability and Bayes Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 26/9/2011 (EPFL) Graphical Models 26/9/2011 1 / 28 Outline

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Variational Learning : From exponential families to multilinear systems

Variational Learning : From exponential families to multilinear systems Variational Learning : From exponential families to multilinear systems Ananth Ranganathan th February 005 Abstract This note aims to give a general overview of variational inference on graphical models.

More information

Bayesian Paradigm. Maximum A Posteriori Estimation

Bayesian Paradigm. Maximum A Posteriori Estimation Bayesian Paradigm Maximum A Posteriori Estimation Simple acquisition model noise + degradation Constraint minimization or Equivalent formulation Constraint minimization Lagrangian (unconstraint minimization)

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Sparsity Regularization

Sparsity Regularization Sparsity Regularization Bangti Jin Course Inverse Problems & Imaging 1 / 41 Outline 1 Motivation: sparsity? 2 Mathematical preliminaries 3 l 1 solvers 2 / 41 problem setup finite-dimensional formulation

More information

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007 Sequential Monte Carlo and Particle Filtering Frank Wood Gatsby, November 2007 Importance Sampling Recall: Let s say that we want to compute some expectation (integral) E p [f] = p(x)f(x)dx and we remember

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Kernel Sequential Monte Carlo

Kernel Sequential Monte Carlo Kernel Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) * equal contribution April 25, 2016 1 / 37 Section

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

p L yi z n m x N n xi

p L yi z n m x N n xi y i z n x n N x i Overview Directed and undirected graphs Conditional independence Exact inference Latent variables and EM Variational inference Books statistical perspective Graphical Models, S. Lauritzen

More information

Bayesian room-acoustic modal analysis

Bayesian room-acoustic modal analysis Bayesian room-acoustic modal analysis Wesley Henderson a) Jonathan Botts b) Ning Xiang c) Graduate Program in Architectural Acoustics, School of Architecture, Rensselaer Polytechnic Institute, Troy, New

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Expectation Propagation in Factor Graphs: A Tutorial

Expectation Propagation in Factor Graphs: A Tutorial DRAFT: Version 0.1, 28 October 2005. Do not distribute. Expectation Propagation in Factor Graphs: A Tutorial Charles Sutton October 28, 2005 Abstract Expectation propagation is an important variational

More information

Inferring Sparsity: Compressed Sensing Using Generalized Restricted Boltzmann Machines. Eric W. Tramel. itwist 2016 Aalborg, DK 24 August 2016

Inferring Sparsity: Compressed Sensing Using Generalized Restricted Boltzmann Machines. Eric W. Tramel. itwist 2016 Aalborg, DK 24 August 2016 Inferring Sparsity: Compressed Sensing Using Generalized Restricted Boltzmann Machines Eric W. Tramel itwist 2016 Aalborg, DK 24 August 2016 Andre MANOEL, Francesco CALTAGIRONE, Marylou GABRIE, Florent

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

An introduction to particle filters

An introduction to particle filters An introduction to particle filters Andreas Svensson Department of Information Technology Uppsala University June 10, 2014 June 10, 2014, 1 / 16 Andreas Svensson - An introduction to particle filters Outline

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Tsuyoshi Idé ( Ide-san ), Ankush Khandelwal*, Jayant Kalagnanam IBM Research, T. J. Watson Research Center (*Currently with University

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

Lecture Notes 9: Constrained Optimization

Lecture Notes 9: Constrained Optimization Optimization-based data analysis Fall 017 Lecture Notes 9: Constrained Optimization 1 Compressed sensing 1.1 Underdetermined linear inverse problems Linear inverse problems model measurements of the form

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Expectation propagation as a way of life

Expectation propagation as a way of life Expectation propagation as a way of life Yingzhen Li Department of Engineering Feb. 2014 Yingzhen Li (Department of Engineering) Expectation propagation as a way of life Feb. 2014 1 / 9 Reference This

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Sparse Sensing for Statistical Inference

Sparse Sensing for Statistical Inference Sparse Sensing for Statistical Inference Model-driven and data-driven paradigms Geert Leus, Sundeep Chepuri, and Georg Kail ITA 2016, 04 Feb 2016 1/17 Power networks, grid analytics Health informatics

More information

Learning Static Parameters in Stochastic Processes

Learning Static Parameters in Stochastic Processes Learning Static Parameters in Stochastic Processes Bharath Ramsundar December 14, 2012 1 Introduction Consider a Markovian stochastic process X T evolving (perhaps nonlinearly) over time variable T. We

More information

Outline. 1 Introduction. 2 Problem and solution. 3 Bayesian tracking model of group debris. 4 Simulation results. 5 Conclusions

Outline. 1 Introduction. 2 Problem and solution. 3 Bayesian tracking model of group debris. 4 Simulation results. 5 Conclusions Outline 1 Introduction 2 Problem and solution 3 Bayesian tracking model of group debris 4 Simulation results 5 Conclusions Problem The limited capability of the radar can t always satisfy the detection

More information

Sparse Covariance Selection using Semidefinite Programming

Sparse Covariance Selection using Semidefinite Programming Sparse Covariance Selection using Semidefinite Programming A. d Aspremont ORFE, Princeton University Joint work with O. Banerjee, L. El Ghaoui & G. Natsoulis, U.C. Berkeley & Iconix Pharmaceuticals Support

More information

Design of Projection Matrix for Compressive Sensing by Nonsmooth Optimization

Design of Projection Matrix for Compressive Sensing by Nonsmooth Optimization Design of Proection Matrix for Compressive Sensing by Nonsmooth Optimization W.-S. Lu T. Hinamoto Dept. of Electrical & Computer Engineering Graduate School of Engineering University of Victoria Hiroshima

More information

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets Matthias Katzfuß Advisor: Dr. Noel Cressie Department of Statistics The Ohio State University

More information

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007 Particle Filtering a brief introductory tutorial Frank Wood Gatsby, August 2007 Problem: Target Tracking A ballistic projectile has been launched in our direction and may or may not land near enough to

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Hierarchical sparse Bayesian learning for structural health monitoring. with incomplete modal data

Hierarchical sparse Bayesian learning for structural health monitoring. with incomplete modal data Hierarchical sparse Bayesian learning for structural health monitoring with incomplete modal data Yong Huang and James L. Beck* Division of Engineering and Applied Science, California Institute of Technology,

More information

Accelerated MRI Image Reconstruction

Accelerated MRI Image Reconstruction IMAGING DATA EVALUATION AND ANALYTICS LAB (IDEAL) CS5540: Computational Techniques for Analyzing Clinical Data Lecture 15: Accelerated MRI Image Reconstruction Ashish Raj, PhD Image Data Evaluation and

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models

Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models SIAM J. IMAGING SCIENCES Vol. 4, No. 1, pp. 166 199 c 2011 Society for Industrial and Applied Mathematics Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models Matthias W. Seeger

More information

Recent Advances in Bayesian Inference for Inverse Problems

Recent Advances in Bayesian Inference for Inverse Problems Recent Advances in Bayesian Inference for Inverse Problems Felix Lucka University College London, UK f.lucka@ucl.ac.uk Applied Inverse Problems Helsinki, May 25, 2015 Bayesian Inference for Inverse Problems

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

On Bayesian Computation

On Bayesian Computation On Bayesian Computation Michael I. Jordan with Elaine Angelino, Maxim Rabinovich, Martin Wainwright and Yun Yang Previous Work: Information Constraints on Inference Minimize the minimax risk under constraints

More information

State Space Gaussian Processes with Non-Gaussian Likelihoods

State Space Gaussian Processes with Non-Gaussian Likelihoods State Space Gaussian Processes with Non-Gaussian Likelihoods Hannes Nickisch 1 Arno Solin 2 Alexander Grigorievskiy 2,3 1 Philips Research, 2 Aalto University, 3 Silo.AI ICML2018 July 13, 2018 Outline

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Blind Equalization via Particle Filtering

Blind Equalization via Particle Filtering Blind Equalization via Particle Filtering Yuki Yoshida, Kazunori Hayashi, Hideaki Sakai Department of System Science, Graduate School of Informatics, Kyoto University Historical Remarks A sequential Monte

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Mike Tipping Gaussian prior Marginal prior: single α Independent α Cambridge, UK Lecture 3: Overview

More information

Markov chain Monte Carlo methods for visual tracking

Markov chain Monte Carlo methods for visual tracking Markov chain Monte Carlo methods for visual tracking Ray Luo rluo@cory.eecs.berkeley.edu Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent August 2008 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerry Friedman and Rob Tibshirani. August 2008 Trevor

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Dynamic Multipath Estimation by Sequential Monte Carlo Methods

Dynamic Multipath Estimation by Sequential Monte Carlo Methods Dynamic Multipath Estimation by Sequential Monte Carlo Methods M. Lentmaier, B. Krach, P. Robertson, and T. Thiasiriphet German Aerospace Center (DLR) Slide 1 Outline Multipath problem and signal model

More information

Uncertainty quantification for Wavefield Reconstruction Inversion

Uncertainty quantification for Wavefield Reconstruction Inversion Uncertainty quantification for Wavefield Reconstruction Inversion Zhilong Fang *, Chia Ying Lee, Curt Da Silva *, Felix J. Herrmann *, and Rachel Kuske * Seismic Laboratory for Imaging and Modeling (SLIM),

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Expectation propagation for signal detection in flat-fading channels

Expectation propagation for signal detection in flat-fading channels Expectation propagation for signal detection in flat-fading channels Yuan Qi MIT Media Lab Cambridge, MA, 02139 USA yuanqi@media.mit.edu Thomas Minka CMU Statistics Department Pittsburgh, PA 15213 USA

More information

Variational Methods in Bayesian Deconvolution

Variational Methods in Bayesian Deconvolution PHYSTAT, SLAC, Stanford, California, September 8-, Variational Methods in Bayesian Deconvolution K. Zarb Adami Cavendish Laboratory, University of Cambridge, UK This paper gives an introduction to the

More information

wissen leben WWU Münster

wissen leben WWU Münster MÜNSTER Sparsity Constraints in Bayesian Inversion Inverse Days conference in Jyväskylä, Finland. Felix Lucka 19.12.2012 MÜNSTER 2 /41 Sparsity Constraints in Inverse Problems Current trend in high dimensional

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

TRACKING SOLUTIONS OF TIME VARYING LINEAR INVERSE PROBLEMS

TRACKING SOLUTIONS OF TIME VARYING LINEAR INVERSE PROBLEMS TRACKING SOLUTIONS OF TIME VARYING LINEAR INVERSE PROBLEMS Martin Kleinsteuber and Simon Hawe Department of Electrical Engineering and Information Technology, Technische Universität München, München, Arcistraße

More information

Expectation Propagation performs smooth gradient descent GUILLAUME DEHAENE

Expectation Propagation performs smooth gradient descent GUILLAUME DEHAENE Expectation Propagation performs smooth gradient descent 1 GUILLAUME DEHAENE In a nutshell Problem: posteriors are uncomputable Solution: parametric approximations 2 But which one should we choose? Laplace?

More information

Bayesian Methods for Sparse Signal Recovery

Bayesian Methods for Sparse Signal Recovery Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Motivation Motivation Sparse Signal Recovery

More information

Bayes: All uncertainty is described using probability.

Bayes: All uncertainty is described using probability. Bayes: All uncertainty is described using probability. Let w be the data and θ be any unknown quantities. Likelihood. The probability model π(w θ) has θ fixed and w varying. The likelihood L(θ; w) is π(w

More information