Session 3 Fractional Factorial Designs 4

Size: px
Start display at page:

Download "Session 3 Fractional Factorial Designs 4"

Transcription

1 Session 3 Fractional Factorial Designs 3 a Modification of a Bearing Example 3. Fractional Factorial Designs Two-level fractional factorial designs Confounding Blocking Two-Level Eight Run Orthogonal Array a b c ab ac bc abc Failure Rate run A B C D y Last column, abc estimates two : D + ABC. Factors D and ABC are confounded: l D D + ABC, and D and ABC are aliases. a BHH2e Chapter 6. E. Barrios Design and Analysis of Engineering Experiments 3 1 E. Barrios Design and Analysis of Engineering Experiments 3 3 Session 3 Fractional Factorial Designs 2 Session 3 Fractional Factorial Designs Full Factorial Design Modification of a Bearing Example I conversion We can accommodate 16 estimates: 1 mean; 4 main ; 6 two-factors interaction ; 4 three-factors interaction ; 1 four-factors interaction effect E. Barrios Design and Analysis of Engineering Experiments 3 2 E. Barrios Design and Analysis of Engineering Experiments 3 4

2 Session 3 Fractional Factorial Designs 5 Session 3 Fractional Factorial Designs 7 Modification of a Bearing Example Two-Level Eight Run Orthogonal Array a b c ab ac bc abc run A B C D Confounding pattern: l A A + (BCD) l AB AB + CD l B B + (ACD) l AC AC + BD l C C + (ABD) l BC BC + AD l D D + (ABC) Sometimes 3rd and higher order interactions are small enough to be ignored. The Anatomy of the Half Replicate If instead, we use the column ab to accommodate factor D, then AB = D and therefore I = ABD. Then, for this design, Note: A = BD, B = AD, C = ABCD, D = AB AC = BCD, BC = ACD, CD = ABC l A A + BD; l B B + AD; l D D + AB The defining relation contains three letters I = ABD, thus the design is of resolution III, III. E. Barrios Design and Analysis of Engineering Experiments 3 5 E. Barrios Design and Analysis of Engineering Experiments 3 7 Session 3 Fractional Factorial Designs 6 Session 3 Fractional Factorial Designs 8 The Anatomy of the Half Replicate Generation: A = a; B = b; C = c and D = abc. Thus D = ABC is the generating relation of the design. Note that Thus, for this design: I = D D = D 2 = ABC D I = ABCD, B = ACD, C = ABD, D = ABC AB = CD, AC = BD, AD = BC This design is resolution 4, since the length of the defining relation has four letters (factors) I = ABCD. It is denoted as IV where, the 2 means that factors of the design have 2 levels each; 4-1 because there are 4 factors and we are running only one have of the full factorial: 8 = = 16/2; and IV because the design is resolution 4. E. Barrios Design and Analysis of Engineering Experiments 3 6 Justification for the use of fractional factorials: Redundancy: When high order interactions are considered negligible lower order are arranged to be confounded with them and thus are estimable. Parsimony: Effect sparsity; vital few, trivial many; Pareto effect. Projectivity: A 3D design project onto a 2 2 factorial design in all 3 subspaces of dimension 2. Then 3D designs are of projectivity 2. Similarly, designs are of projectivity 3 since after dropping any factor a full 2 3 design is left for the remaining three factors. In general, for fractional factorials designs of resolution R, the projectivity P = R 1. Every subset of P = R 1 factors is a complete factorial (possibly replicated) in P factors. E. Barrios Design and Analysis of Engineering Experiments 3 8

3 Session 3 Fractional Factorial Designs 9 Session 3 Fractional Factorial Designs 11 3D Projectivity: Sequential Experimentation In sequential experimentation, unless the total number of runs is necessary to achieve a desired level of precision, it is usually best to start with a fractional factorial. The design could be later augmented if necessary To cover more interesting regions. To resolve ambiguities. A III design showing projections into three 2 2 factorials. E. Barrios Design and Analysis of Engineering Experiments 3 9 E. Barrios Design and Analysis of Engineering Experiments 3 11 Session 3 Fractional Factorial Designs 10 Session 3 Fractional Factorial Designs 12 Note Eight-run Designs a It is recommended to dedicate just a modest amount of the budget to the first stages of the experimentation. Find or determine which factors to consider and appropriate responses Determine proper experimental region and factor ranges. Then you can dedicate to study deeper your experiment Estimate better factor Confirmatory experimentation Optimize product or process. a BHH2e Chapter 6, BHH Chapter 10. E. Barrios Design and Analysis of Engineering Experiments 3 10 E. Barrios Design and Analysis of Engineering Experiments 3 12

4 Session 3 Fractional Factorial Designs 13 Eight-run nodal designs Session 3 Fractional Factorial Designs 15 Sign switching, Foldover and Sequential Assembly After running a fractional factorial further runs may be necessary to resolve ambiguities. Folding over (changing signs) one column (main effect, say D) provide unaliased estimates of the main effect and all two-factor interactions involving factor D. E. Barrios Design and Analysis of Engineering Experiments 3 13 E. Barrios Design and Analysis of Engineering Experiments 3 15 Session 3 Fractional Factorial Designs 14 A Bicycle Example Session 3 Fractional Factorial Designs 16 A Bicycle Example. Second fraction E. Barrios Design and Analysis of Engineering Experiments 3 14 E. Barrios Design and Analysis of Engineering Experiments 3 16

5 Session 3 Fractional Factorial Designs 17 A Bicycle Example. Resulting 16-run design Main effect D and two-factor interactions involving D are free of aliasing. Session 3 Fractional Factorial Designs 19 Filtration Example For any given fraction one-column foldover will dealias a particular main effect and all its interactions E. Barrios Design and Analysis of Engineering Experiments 3 17 E. Barrios Design and Analysis of Engineering Experiments 3 19 Session 3 Fractional Factorial Designs 18 An Investigation Using Multiple-Column Foldover Filtration Example Session 3 Fractional Factorial Designs 20 Filtration Example E. Barrios Design and Analysis of Engineering Experiments 3 18 E. Barrios Design and Analysis of Engineering Experiments 3 20

6 Session 3 Fractional Factorial Designs 21 Session 3 Fractional Factorial Designs 23 Second Fraction: a 2III 7 3. (foldover all columns [mirror image]) 2D Projection over the [AE] subspace. A 2 2 design replicated 4 times E. Barrios Design and Analysis of Engineering Experiments 3 21 E. Barrios Design and Analysis of Engineering Experiments 3 23 Session 3 Fractional Factorial Designs 22 Session 3 Fractional Factorial Designs 24 Analysis of the resulting sixteen-run design: a IV fractional factorial Increasing Design Resolution from III to IV by Foldover In general, any design of resolution III plus its mirror image becomes a design of resolution IV. Consider for example, the III (= 1 8 : III ) design and its mirror image. Their generation relations are respectively: and then, combining (1) and (2) I 8 = 8 = 124 = 135 = 236 = 1237 (1) I 8 = 8 = 124 = 135 = 236 = 1237 (2) I 16 = 1237 Also, from (1), I 8 = (8)(124) = 1248, and from (2), I 8 = ( 8)( 124) = Thus, I 16 = The four generators for this III design are: I 16 = 1237 = 1248 = 1358 = 2368 E. Barrios Design and Analysis of Engineering Experiments 3 22 E. Barrios Design and Analysis of Engineering Experiments 3 24

7 Session 3 Fractional Factorial Designs 25 Sixteen-Run Designs Nodal Designs: Session 3 Fractional Factorial Designs 27 The V Nodal Design. Reactor Example E. Barrios Design and Analysis of Engineering Experiments 3 25 E. Barrios Design and Analysis of Engineering Experiments 3 27 Session 3 Fractional Factorial Designs 26 Design Matrix and Alias Patterns Session 3 Fractional Factorial Designs 28 Alias Pattern E. Barrios Design and Analysis of Engineering Experiments 3 26 E. Barrios Design and Analysis of Engineering Experiments 3 28

8 Session 3 Fractional Factorial Designs 29 Normal plots for full and half fraction factorial designs. Session 3 Fractional Factorial Designs 31 The IV Nodal Design. Paint Trial Example normal score D:E E Full Factorial C:D B:E A:B:C A:B:C:E A:B:D A:B B:C A:C:D:E B:C:D A:C C:E A:D:E C:D:E A:B:D:E A:E B:C:E B:D:E A:B:C:D C A:B:C:D:E B:C:D:E A:C:D A:D A A:B:E A:C:E B:D D B normal score Fractional Factorial B D B:D C:E A:B B:C A:E B:E A:C C:D C A:D A E D:E E. Barrios Design and Analysis of Engineering Experiments 3 29 E. Barrios Design and Analysis of Engineering Experiments 3 31 Session 3 Fractional Factorial Designs 30 3D Projectivity of V design. Session 3 Fractional Factorial Designs 32 Normal plot of for glossiness and abrasion. E. Barrios Design and Analysis of Engineering Experiments 3 30 E. Barrios Design and Analysis of Engineering Experiments 3 32

9 Session 3 Fractional Factorial Designs 33 Contour plots for glossiness and abrasion. Session 3 Fractional Factorial Designs 35 Normal plot of for location and dispersion responses. Location Effects Dispersion Effects J H K O normal score H N D A B G M E L P F normal score B J E K G F N C D L P C A O Location Effects M Dispersion Effects 20 ME 1.5 ME ME 1.5 ME A C E G J L N P factors A C E G J L N P factors E. Barrios Design and Analysis of Engineering Experiments 3 33 E. Barrios Design and Analysis of Engineering Experiments 3 35 Session 3 Fractional Factorial Designs 34 The III Nodal Design. Shrinkage of Speedometer Example a. Session 3 Fractional Factorial Designs 36 Elimination of Block Effects Boys Shoes Example Two sample Comparison Paired Comparison wear wear difference material A material B boys boys a Quinlan (1985) observations 2 sample means 18 degrees of freedom 10 differences 1 sample mean 9 degrees of freedom E. Barrios Design and Analysis of Engineering Experiments 3 34 E. Barrios Design and Analysis of Engineering Experiments 3 36

10 Session 3 Fractional Factorial Designs 37 Session 3 Fractional Factorial Designs 39 Elimination of Block Effects Design Matrix V Elimination of Block Effects Block what you can, randomize what you cannot Identify important extraneous factors within blocks and eliminate them. Representative variation between blocks should be encourage E. Barrios Design and Analysis of Engineering Experiments 3 37 E. Barrios Design and Analysis of Engineering Experiments 3 39 Session 3 Fractional Factorial Designs 38 Session 3 Fractional Factorial Designs 40 Two-Level Factorial Designs Blocking Arrangements for 2 k Factorial Designs a Number of Number of Block Variables Runs Size Block Interactions Confounded with Blocks B 1 = B 1 = 12,B 2 = 13 12, 13, B 1 = B 1 = 124,B 2 = , 134, 23 2 B 1 = 12,B 2 = 23, 12, 23, 34, 13, 1234,24, 14 B 3 = B 1 = B, = 123,B 2 = , 345, B 1 = 125,B 2 = 235, 125, 235, 345, 13,1234,24, 145 B 3 = B 1 = 12,B 2 = 13, 12, 13, 34, 45, 23,1234, 1245,14, B 3 = 34,B 4 = , 35, 24, 2345,1235, 15,25, i.e., all 2fi and 4fi B 1 = B 1 = 1236,B 2 = , 3456, B 1 = 135,B 2 = 1256, 135, 1256, 1234,236,245,3456, 146B 3 = B 1 = 126,B 2 = 136, 126, 136, 346, 456,23,1234,1245, B 3 = 346,B 4 = , 1345, 35, 246,23456, 12356, 156, 25 2 B 1 = 12,B 2 = 23, All 2fi, 4fi, and 6fi B 3 = 34,B 4 = 45, B 5 = 56 a BHH2e Table 5A.1 Minimal Aberration Two-Level Fractional Factorial Design for k Variables and N Runs a (Number in Parentheses Represent Replication). a BHH2e Table 6.22 E. Barrios Design and Analysis of Engineering Experiments 3 38 E. Barrios Design and Analysis of Engineering Experiments 3 40

ST3232: Design and Analysis of Experiments

ST3232: Design and Analysis of Experiments Department of Statistics & Applied Probability 2:00-4:00 pm, Monday, April 8, 2013 Lecture 21: Fractional 2 p factorial designs The general principles A full 2 p factorial experiment might not be efficient

More information

Strategy of Experimentation III

Strategy of Experimentation III LECTURE 3 Strategy of Experimentation III Comments: Homework 1. Design Resolution A design is of resolution R if no p factor effect is confounded with any other effect containing less than R p factors.

More information

Fractional Replications

Fractional Replications Chapter 11 Fractional Replications Consider the set up of complete factorial experiment, say k. If there are four factors, then the total number of plots needed to conduct the experiment is 4 = 1. When

More information

Fractional Factorial Designs

Fractional Factorial Designs Fractional Factorial Designs ST 516 Each replicate of a 2 k design requires 2 k runs. E.g. 64 runs for k = 6, or 1024 runs for k = 10. When this is infeasible, we use a fraction of the runs. As a result,

More information

TWO-LEVEL FACTORIAL EXPERIMENTS: REGULAR FRACTIONAL FACTORIALS

TWO-LEVEL FACTORIAL EXPERIMENTS: REGULAR FRACTIONAL FACTORIALS STAT 512 2-Level Factorial Experiments: Regular Fractions 1 TWO-LEVEL FACTORIAL EXPERIMENTS: REGULAR FRACTIONAL FACTORIALS Bottom Line: A regular fractional factorial design consists of the treatments

More information

STAT451/551 Homework#11 Due: April 22, 2014

STAT451/551 Homework#11 Due: April 22, 2014 STAT451/551 Homework#11 Due: April 22, 2014 1. Read Chapter 8.3 8.9. 2. 8.4. SAS code is provided. 3. 8.18. 4. 8.24. 5. 8.45. 376 Chapter 8 Two-Level Fractional Factorial Designs more detail. Sequential

More information

The One-Quarter Fraction

The One-Quarter Fraction The One-Quarter Fraction ST 516 Need two generating relations. E.g. a 2 6 2 design, with generating relations I = ABCE and I = BCDF. Product of these is ADEF. Complete defining relation is I = ABCE = BCDF

More information

Experimental design (DOE) - Design

Experimental design (DOE) - Design Experimental design (DOE) - Design Menu: QCExpert Experimental Design Design Full Factorial Fract Factorial This module designs a two-level multifactorial orthogonal plan 2 n k and perform its analysis.

More information

Two-Level Fractional Factorial Design

Two-Level Fractional Factorial Design Two-Level Fractional Factorial Design Reference DeVor, Statistical Quality Design and Control, Ch. 19, 0 1 Andy Guo Types of Experimental Design Parallel-type approach Sequential-type approach One-factor

More information

Unit 5: Fractional Factorial Experiments at Two Levels

Unit 5: Fractional Factorial Experiments at Two Levels Unit 5: Fractional Factorial Experiments at Two Levels Source : Chapter 4 (sections 4.1-4.3, 4.4.1, 4.4.3, 4.5, part of 4.6). Effect aliasing, resolution, minimum aberration criteria. Analysis. Techniques

More information

MATH602: APPLIED STATISTICS

MATH602: APPLIED STATISTICS MATH602: APPLIED STATISTICS Dr. Srinivas R. Chakravarthy Department of Science and Mathematics KETTERING UNIVERSITY Flint, MI 48504-4898 Lecture 10 1 FRACTIONAL FACTORIAL DESIGNS Complete factorial designs

More information

Reference: Chapter 8 of Montgomery (8e)

Reference: Chapter 8 of Montgomery (8e) Reference: Chapter 8 of Montgomery (8e) 69 Maghsoodloo Fractional Factorials (or Replicates) For Base 2 Designs As the number of factors in a 2 k factorial experiment increases, the number of runs (or

More information

Fractional Factorials

Fractional Factorials Fractional Factorials Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 26 1 Fractional Factorials Number of runs required for full factorial grows quickly A 2 7 design requires 128

More information

Design of Engineering Experiments Chapter 8 The 2 k-p Fractional Factorial Design

Design of Engineering Experiments Chapter 8 The 2 k-p Fractional Factorial Design Design of Engineering Experiments Chapter 8 The 2 k-p Fractional Factorial Design Text reference, Chapter 8 Motivation for fractional factorials is obvious; as the number of factors becomes large enough

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: 1.0 ial Experiment Design by Block... 3 1.1 ial Experiment in Incomplete Block... 3 1. ial Experiment with Two Blocks... 3 1.3 ial Experiment with Four Blocks... 5 Example 1... 6.0 Fractional ial Experiment....1

More information

Chapter 11: Factorial Designs

Chapter 11: Factorial Designs Chapter : Factorial Designs. Two factor factorial designs ( levels factors ) This situation is similar to the randomized block design from the previous chapter. However, in addition to the effects within

More information

CS 5014: Research Methods in Computer Science

CS 5014: Research Methods in Computer Science Computer Science Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Fall 2010 Copyright c 2010 by Clifford A. Shaffer Computer Science Fall 2010 1 / 254 Experimental

More information

Lec 10: Fractions of 2 k Factorial Design

Lec 10: Fractions of 2 k Factorial Design December 5, 2011 Fraction of 2 k experiments Screening: Some of the factors may influence the results. We want to figure out which. The number of combinations, 2 k, is too large for a complete investigation.

More information

FRACTIONAL FACTORIAL

FRACTIONAL FACTORIAL FRACTIONAL FACTORIAL NURNABI MEHERUL ALAM M.Sc. (Agricultural Statistics), Roll No. 443 I.A.S.R.I, Library Avenue, New Delhi- Chairperson: Dr. P.K. Batra Abstract: Fractional replication can be defined

More information

23. Fractional factorials - introduction

23. Fractional factorials - introduction 173 3. Fractional factorials - introduction Consider a 5 factorial. Even without replicates, there are 5 = 3 obs ns required to estimate the effects - 5 main effects, 10 two factor interactions, 10 three

More information

Design of Experiments SUTD - 21/4/2015 1

Design of Experiments SUTD - 21/4/2015 1 Design of Experiments SUTD - 21/4/2015 1 Outline 1. Introduction 2. 2 k Factorial Design Exercise 3. Choice of Sample Size Exercise 4. 2 k p Fractional Factorial Design Exercise 5. Follow-up experimentation

More information

3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value.

3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. 3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. One-way ANOVA Source DF SS MS F P Factor 3 36.15??? Error??? Total 19 196.04 Completed table is: One-way

More information

Unit 6: Fractional Factorial Experiments at Three Levels

Unit 6: Fractional Factorial Experiments at Three Levels Unit 6: Fractional Factorial Experiments at Three Levels Larger-the-better and smaller-the-better problems. Basic concepts for 3 k full factorial designs. Analysis of 3 k designs using orthogonal components

More information

Design and Analysis of Experiments

Design and Analysis of Experiments Design and Analysis of Experiments Part VII: Fractional Factorial Designs Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br anselmo.disciplinas@gmail.com 2 k : increasing k the number of runs required

More information

20g g g Analyze the residuals from this experiment and comment on the model adequacy.

20g g g Analyze the residuals from this experiment and comment on the model adequacy. 3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. One-way ANOVA Source DF SS MS F P Factor 3 36.15??? Error??? Total 19 196.04 3.11. A pharmaceutical

More information

Lecture 12: 2 k p Fractional Factorial Design

Lecture 12: 2 k p Fractional Factorial Design Lecture 12: 2 k p Fractional Factorial Design Montgomery: Chapter 8 Page 1 Fundamental Principles Regarding Factorial Effects Suppose there are k factors (A,B,...,J,K) in an experiment. All possible factorial

More information

TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS

TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS STAT 512 2-Level Factorial Experiments: Irregular Fractions 1 TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS A major practical weakness of regular fractional factorial designs is that N must be a

More information

Construction of Mixed-Level Orthogonal Arrays for Testing in Digital Marketing

Construction of Mixed-Level Orthogonal Arrays for Testing in Digital Marketing Construction of Mixed-Level Orthogonal Arrays for Testing in Digital Marketing Vladimir Brayman Webtrends October 19, 2012 Advantages of Conducting Designed Experiments in Digital Marketing Availability

More information

FRACTIONAL REPLICATION

FRACTIONAL REPLICATION FRACTIONAL REPLICATION M.L.Agarwal Department of Statistics, University of Delhi, Delhi -. In a factorial experiment, when the number of treatment combinations is very large, it will be beyond the resources

More information

Minimum Aberration and Related Criteria for Fractional Factorial Designs

Minimum Aberration and Related Criteria for Fractional Factorial Designs Minimum Aberration and Related Criteria for Fractional Factorial Designs Hegang Chen Division of Biostatistics and Bioinformatics 660 West Redwood Street University of Maryland School of Medicine Baltimore,

More information

Design of Experiments SUTD 06/04/2016 1

Design of Experiments SUTD 06/04/2016 1 Design of Experiments SUTD 06/04/2016 1 Outline 1. Introduction 2. 2 k Factorial Design 3. Choice of Sample Size 4. 2 k p Fractional Factorial Design 5. Follow-up experimentation (folding over) with factorial

More information

Design and Analysis of Multi-Factored Experiments

Design and Analysis of Multi-Factored Experiments Design and Analysis of Multi-Factored Experiments Fractional Factorial Designs L. M. Lye DOE Course 1 Design of Engineering Experiments The 2 k-p Fractional Factorial Design Motivation for fractional factorials

More information

CS 5014: Research Methods in Computer Science. Experimental Design. Potential Pitfalls. One-Factor (Again) Clifford A. Shaffer.

CS 5014: Research Methods in Computer Science. Experimental Design. Potential Pitfalls. One-Factor (Again) Clifford A. Shaffer. Department of Computer Science Virginia Tech Blacksburg, Virginia Copyright c 2015 by Clifford A. Shaffer Computer Science Title page Computer Science Clifford A. Shaffer Fall 2015 Clifford A. Shaffer

More information

Fractional Replication of The 2 k Design

Fractional Replication of The 2 k Design Fractional Replication of The 2 k Design Experiments with many factors involve a large number of possible treatments, even when all factors are used at only two levels. Often the available resources are

More information

a) Prepare a normal probability plot of the effects. Which effects seem active?

a) Prepare a normal probability plot of the effects. Which effects seem active? Problema 8.6: R.D. Snee ( Experimenting with a large number of variables, in experiments in Industry: Design, Analysis and Interpretation of Results, by R. D. Snee, L.B. Hare, and J. B. Trout, Editors,

More information

Karnaugh Maps Objectives

Karnaugh Maps Objectives Karnaugh Maps Objectives For Karnaugh Maps of up to 5 variables Plot a function from algebraic, minterm or maxterm form Obtain minimum Sum of Products and Product of Sums Understand the relationship between

More information

2 k, 2 k r and 2 k-p Factorial Designs

2 k, 2 k r and 2 k-p Factorial Designs 2 k, 2 k r and 2 k-p Factorial Designs 1 Types of Experimental Designs! Full Factorial Design: " Uses all possible combinations of all levels of all factors. n=3*2*2=12 Too costly! 2 Types of Experimental

More information

19. Blocking & confounding

19. Blocking & confounding 146 19. Blocking & confounding Importance of blocking to control nuisance factors - day of week, batch of raw material, etc. Complete Blocks. This is the easy case. Suppose we run a 2 2 factorial experiment,

More information

CHAPTER 5 KARNAUGH MAPS

CHAPTER 5 KARNAUGH MAPS CHAPTER 5 1/36 KARNAUGH MAPS This chapter in the book includes: Objectives Study Guide 5.1 Minimum Forms of Switching Functions 5.2 Two- and Three-Variable Karnaugh Maps 5.3 Four-Variable Karnaugh Maps

More information

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks.

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. 58 2. 2 factorials in 2 blocks Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. Some more algebra: If two effects are confounded with

More information

5. Blocking and Confounding

5. Blocking and Confounding 5. Blocking and Confounding Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University 1 Why Blocking? Blocking is a technique for dealing with controllable nuisance variables Sometimes, it is

More information

CSCI 688 Homework 6. Megan Rose Bryant Department of Mathematics William and Mary

CSCI 688 Homework 6. Megan Rose Bryant Department of Mathematics William and Mary CSCI 688 Homework 6 Megan Rose Bryant Department of Mathematics William and Mary November 12, 2014 7.1 Consider the experiment described in Problem 6.1. Analyze this experiment assuming that each replicate

More information

Confounding and fractional replication in 2 n factorial systems

Confounding and fractional replication in 2 n factorial systems Chapter 20 Confounding and fractional replication in 2 n factorial systems Confounding is a method of designing a factorial experiment that allows incomplete blocks, i.e., blocks of smaller size than the

More information

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3 Contents TAMS38 - Lecture 8 2 k p fractional factorial design Lecturer: Zhenxia Liu Department of Mathematics - Mathematical Statistics Example 0 2 k factorial design with blocking Example 1 2 k p fractional

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

ESTIMATION METHODS FOR MISSING DATA IN UN-REPLICATED 2 FACTORIAL AND 2 FRACTIONAL FACTORIAL DESIGNS

ESTIMATION METHODS FOR MISSING DATA IN UN-REPLICATED 2 FACTORIAL AND 2 FRACTIONAL FACTORIAL DESIGNS Journal of Statistics: Advances in Theory and Applications Volume 5, Number 2, 2011, Pages 131-147 ESTIMATION METHODS FOR MISSING DATA IN k k p UN-REPLICATED 2 FACTORIAL AND 2 FRACTIONAL FACTORIAL DESIGNS

More information

UNIT 3 BOOLEAN ALGEBRA (CONT D)

UNIT 3 BOOLEAN ALGEBRA (CONT D) UNIT 3 BOOLEAN ALGEBRA (CONT D) Spring 2011 Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2006 EXAM-II FALL 2006 EXAM-II EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2006 EXAM-II FALL 2006 EXAM-II EXAMINATION COVER PAGE Professor Moseley MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2006 EXAM-II FALL 2006 EXAM-II EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID #

More information

Design theory for relational databases

Design theory for relational databases Design theory for relational databases 1. Consider a relation with schema R(A,B,C,D) and FD s AB C, C D and D A. a. What are all the nontrivial FD s that follow from the given FD s? You should restrict

More information

LECTURE 10: LINEAR MODEL SELECTION PT. 1. October 16, 2017 SDS 293: Machine Learning

LECTURE 10: LINEAR MODEL SELECTION PT. 1. October 16, 2017 SDS 293: Machine Learning LECTURE 10: LINEAR MODEL SELECTION PT. 1 October 16, 2017 SDS 293: Machine Learning Outline Model selection: alternatives to least-squares Subset selection - Best subset - Stepwise selection (forward and

More information

Homework 04. , not a , not a 27 3 III III

Homework 04. , not a , not a 27 3 III III Response Surface Methodology, Stat 579 Fall 2014 Homework 04 Name: Answer Key Prof. Erik B. Erhardt Part I. (130 points) I recommend reading through all the parts of the HW (with my adjustments) before

More information

CS 484 Data Mining. Association Rule Mining 2

CS 484 Data Mining. Association Rule Mining 2 CS 484 Data Mining Association Rule Mining 2 Review: Reducing Number of Candidates Apriori principle: If an itemset is frequent, then all of its subsets must also be frequent Apriori principle holds due

More information

Unreplicated 2 k Factorial Designs

Unreplicated 2 k Factorial Designs Unreplicated 2 k Factorial Designs These are 2 k factorial designs with one observation at each corner of the cube An unreplicated 2 k factorial design is also sometimes called a single replicate of the

More information

6. Fractional Factorial Designs (Ch.8. Two-Level Fractional Factorial Designs)

6. Fractional Factorial Designs (Ch.8. Two-Level Fractional Factorial Designs) 6. Fractional Factorial Designs (Ch.8. Two-Level Fractional Factorial Designs) Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University 1 Introduction to The 2 k-p Fractional Factorial Design

More information

Institutionen för matematik och matematisk statistik Umeå universitet November 7, Inlämningsuppgift 3. Mariam Shirdel

Institutionen för matematik och matematisk statistik Umeå universitet November 7, Inlämningsuppgift 3. Mariam Shirdel Institutionen för matematik och matematisk statistik Umeå universitet November 7, 2011 Inlämningsuppgift 3 Mariam Shirdel (mash0007@student.umu.se) Kvalitetsteknik och försöksplanering, 7.5 hp 1 Uppgift

More information

Optimize Your Process-Optimization Efforts

Optimize Your Process-Optimization Efforts 1 Optimize Your Process-Optimization Efforts Highly efficient, statistically based methods can identify the vital few factors that affect process efficiency and product quality. Mark J. Anderson and Patrick

More information

Construction of row column factorial designs

Construction of row column factorial designs J. R. Statist. Soc. B (2019) Construction of row column factorial designs J. D. Godolphin University of Surrey, Guildford, UK [Received February 2018. Final revision October 2018] Summary. The arrangement

More information

UNIT 5 KARNAUGH MAPS Spring 2011

UNIT 5 KARNAUGH MAPS Spring 2011 UNIT 5 KRNUGH MPS Spring 2 Karnaugh Maps 2 Contents Minimum forms of switching functions Two- and three-variable Four-variable Determination of minimum expressions using essential prime implicants Five-variable

More information

Florida State University Libraries

Florida State University Libraries Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2006 Efficient Mixed-Level Fractional Factorial Designs: Evaluation, Augmentation and Application Yong

More information

A Comparison of Factor Based Methods for Analysing Some Non-regular Designs

A Comparison of Factor Based Methods for Analysing Some Non-regular Designs A Comparison of Factor Based Methods for Analysing Some Non-regular Designs Ebenezer Afrifa-Yamoah Master of Science in Mathematics (for international students) Submission date: June 2016 Supervisor: John

More information

Projection properties of certain three level orthogonal arrays

Projection properties of certain three level orthogonal arrays Metrika (2005) 62: 241 257 DOI 10.1007/s00184-005-0409-9 ORIGINAL ARTICLE H. Evangelaras C. Koukouvinos A. M. Dean C. A. Dingus Projection properties of certain three level orthogonal arrays Springer-Verlag

More information

Geometry Problem Solving Drill 08: Congruent Triangles

Geometry Problem Solving Drill 08: Congruent Triangles Geometry Problem Solving Drill 08: Congruent Triangles Question No. 1 of 10 Question 1. The following triangles are congruent. What is the value of x? Question #01 (A) 13.33 (B) 10 (C) 31 (D) 18 You set

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-I FALL 2005 EXAM-I EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-I FALL 2005 EXAM-I EXAMINATION COVER PAGE Professor Moseley MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-I FALL 2005 EXAM-I EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM

More information

Solutions to Exercises

Solutions to Exercises 1 c Atkinson et al 2007, Optimum Experimental Designs, with SAS Solutions to Exercises 1. and 2. Certainly, the solutions to these questions will be different for every reader. Examples of the techniques

More information

Design and Analysis of

Design and Analysis of Design and Analysis of Multi-Factored Experiments Module Engineering 7928-2 Two-level Factorial Designs L. M. Lye DOE Course 1 The 2 k Factorial Design Special case of the general factorial design; k factors,

More information

Design and Analysis of Experiments 8E 2012 Montgomery

Design and Analysis of Experiments 8E 2012 Montgomery 1 Why do Fractional Factorial Designs Work? The sparsity of effects principle There may be lots of factors, but few are important System is dominated by main effects, low-order interactions The projection

More information

TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING. Upper-case letters are associated with factors, or regressors of factorial effects, e.g.

TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING. Upper-case letters are associated with factors, or regressors of factorial effects, e.g. STAT 512 2-Level Factorial Experiments: Blocking 1 TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING Some Traditional Notation: Upper-case letters are associated with factors, or regressors of factorial effects,

More information

Designing Two-level Fractional Factorial Experiments in Blocks of Size Two

Designing Two-level Fractional Factorial Experiments in Blocks of Size Two Sankhyā : The Indian Journal of Statistics 2004, Volume 66, Part 2, pp 325-340 c 2004, Indian Statistical Institute Designing Two-level Fractional Factorial Experiments in Blocks of Size Two P.C. Wang

More information

Karnaugh Map & Boolean Expression Simplification

Karnaugh Map & Boolean Expression Simplification Karnaugh Map & Boolean Expression Simplification Mapping a Standard POS Expression For a Standard POS expression, a 0 is placed in the cell corresponding to the product term (maxterm) present in the expression.

More information

Math Treibergs. Peanut Oil Data: 2 5 Factorial design with 1/2 Replication. Name: Example April 22, Data File Used in this Analysis:

Math Treibergs. Peanut Oil Data: 2 5 Factorial design with 1/2 Replication. Name: Example April 22, Data File Used in this Analysis: Math 3080 1. Treibergs Peanut Oil Data: 2 5 Factorial design with 1/2 Replication. Name: Example April 22, 2010 Data File Used in this Analysis: # Math 3080-1 Peanut Oil Data April 22, 2010 # Treibergs

More information

USE OF COMPUTER EXPERIMENTS TO STUDY THE QUALITATIVE BEHAVIOR OF SOLUTIONS OF SECOND ORDER NEUTRAL DIFFERENTIAL EQUATIONS

USE OF COMPUTER EXPERIMENTS TO STUDY THE QUALITATIVE BEHAVIOR OF SOLUTIONS OF SECOND ORDER NEUTRAL DIFFERENTIAL EQUATIONS USE OF COMPUTER EXPERIMENTS TO STUDY THE QUALITATIVE BEHAVIOR OF SOLUTIONS OF SECOND ORDER NEUTRAL DIFFERENTIAL EQUATIONS Seshadev Padhi, Manish Trivedi and Soubhik Chakraborty* Department of Applied Mathematics

More information

APPENDIX 1. Binodal Curve calculations

APPENDIX 1. Binodal Curve calculations APPENDIX 1 Binodal Curve calculations The weight of salt solution necessary for the mixture to cloud and the final concentrations of the phase components were calculated based on the method given by Hatti-Kaul,

More information

Semifolding 2 k-p Designs

Semifolding 2 k-p Designs Semifolding 2 k-p Designs Robert W. Mee and Marta Peralta Department of Statistics University of Tennessee Knoxville, TN 37996-0532 rmee@utk.edu Abstract This article addresses the varied possibilities

More information

IE 361 Exam 3 (Form A)

IE 361 Exam 3 (Form A) December 15, 005 IE 361 Exam 3 (Form A) Prof. Vardeman This exam consists of 0 multiple choice questions. Write (in pencil) the letter for the single best response for each question in the corresponding

More information

Math 2030 Assignment 5 Solutions

Math 2030 Assignment 5 Solutions Math 030 Assignment 5 Solutions Question 1: Which of the following sets of vectors are linearly independent? If the set is linear dependent, find a linear dependence relation for the vectors (a) {(1, 0,

More information

The 2 k Factorial Design. Dr. Mohammad Abuhaiba 1

The 2 k Factorial Design. Dr. Mohammad Abuhaiba 1 The 2 k Factorial Design Dr. Mohammad Abuhaiba 1 HoweWork Assignment Due Tuesday 1/6/2010 6.1, 6.2, 6.17, 6.18, 6.19 Dr. Mohammad Abuhaiba 2 Design of Engineering Experiments The 2 k Factorial Design Special

More information

Unit 9: Confounding and Fractional Factorial Designs

Unit 9: Confounding and Fractional Factorial Designs Unit 9: Confounding and Fractional Factorial Designs STA 643: Advanced Experimental Design Derek S. Young 1 Learning Objectives Understand what it means for a treatment to be confounded with blocks Know

More information

CHAPTER 3 BOOLEAN ALGEBRA

CHAPTER 3 BOOLEAN ALGEBRA CHAPTER 3 BOOLEAN ALGEBRA (continued) This chapter in the book includes: Objectives Study Guide 3.1 Multiplying Out and Factoring Expressions 3.2 Exclusive-OR and Equivalence Operations 3.3 The Consensus

More information

Confounding and Fractional Replication in Factorial Design

Confounding and Fractional Replication in Factorial Design ISSN -580 (Paper) ISSN 5-05 (Online) Vol.6, No.3, 016 onfounding and Fractional Replication in Factorial esign Layla. hmed epartment of Mathematics, ollege of Education, University of Garmian, Kurdistan

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-IV FALL 2005 EXAM-IV EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-IV FALL 2005 EXAM-IV EXAMINATION COVER PAGE Professor Moseley MATH 5 MATH 5: Multivariate Calculus MATH 5 FALL 5 EXAM-IV FALL 5 EXAM-IV EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE Thursday,

More information

Statistica Sinica Preprint No: SS R1

Statistica Sinica Preprint No: SS R1 Statistica Sinica Preprint No: SS-2015-0161R1 Title Generators for Nonregular $2^{k-p}$ Designs Manuscript ID SS-2015-0161R1 URL http://www.stat.sinica.edu.tw/statistica/ DOI 10.5705/ss.202015.0161 Complete

More information

Optimal Selection of Blocked Two-Level. Fractional Factorial Designs

Optimal Selection of Blocked Two-Level. Fractional Factorial Designs Applied Mathematical Sciences, Vol. 1, 2007, no. 22, 1069-1082 Optimal Selection of Blocked Two-Level Fractional Factorial Designs Weiming Ke Department of Mathematics and Statistics South Dakota State

More information

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo Reference: Chapter 6 of Montgomery(8e) Maghsoodloo 51 DOE (or DOX) FOR BASE BALANCED FACTORIALS The notation k is used to denote a factorial experiment involving k factors (A, B, C, D,..., K) each at levels.

More information

CHAPTER 12 DESIGN OF EXPERIMENTS

CHAPTER 12 DESIGN OF EXPERIMENTS 1 Sections CHAPTER 12 DESIGN OF EXPERIMENTS Introduction Designs Based on Level of Process Knowledge Some Flawed Experimental Designs One-Factor Designs Two-Factor Factorial Designs Factorial Designs Involving

More information

Design and Analysis of Experiments Prof. Jhareshwar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur

Design and Analysis of Experiments Prof. Jhareshwar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur Design and Analysis of Experiments Prof. Jhareshwar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur Lecture 51 Plackett Burman Designs Hello, welcome. We

More information

Answer Keys to Homework#10

Answer Keys to Homework#10 Answer Keys to Homework#10 Problem 1 Use either restricted or unrestricted mixed models. Problem 2 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean

More information

Assignment 9 Answer Keys

Assignment 9 Answer Keys Assignment 9 Answer Keys Problem 1 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean 26.00 + 34.67 + 39.67 + + 49.33 + 42.33 + + 37.67 + + 54.67

More information

On the Compounds of Hat Matrix for Six-Factor Central Composite Design with Fractional Replicates of the Factorial Portion

On the Compounds of Hat Matrix for Six-Factor Central Composite Design with Fractional Replicates of the Factorial Portion American Journal of Computational and Applied Mathematics 017, 7(4): 95-114 DOI: 10.593/j.ajcam.0170704.0 On the Compounds of Hat Matrix for Six-Factor Central Composite Design with Fractional Replicates

More information

Higher Order Factorial Designs. Estimated Effects: Section 4.3. Main Effects: Definition 5 on page 166.

Higher Order Factorial Designs. Estimated Effects: Section 4.3. Main Effects: Definition 5 on page 166. Higher Order Factorial Designs Estimated Effects: Section 4.3 Main Effects: Definition 5 on page 166. Without A effects, we would fit values with the overall mean. The main effects are how much we need

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 SPRING 2010 EXAM-I SPRING 2010 EXAM-I EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 SPRING 2010 EXAM-I SPRING 2010 EXAM-I EXAMINATION COVER PAGE Professor Moseley MATH 51 MATH 51: Multivariate Calculus MATH 51 SPRING 010 EXAM-I SPRING 010 EXAM-I EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM

More information

Lecture 14: 2 k p Fractional Factorial Design

Lecture 14: 2 k p Fractional Factorial Design Lecture 14: 2 k p Fractional Factorial Design Montgomery: Chapter 8 1 Lecture 14 Page 1 Fundamental Principles Regarding Factorial Effects Suppose there arek factors (A,B,...,J,K) in an experiment. All

More information

Design and Analysis of Multi-Factored Experiments

Design and Analysis of Multi-Factored Experiments Design and Analysis of Multi-Factored Experiments Two-level Factorial Designs L. M. Lye DOE Course 1 The 2 k Factorial Design Special case of the general factorial design; k factors, all at two levels

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

TMA4267 Linear Statistical Models V2017 (L19)

TMA4267 Linear Statistical Models V2017 (L19) TMA4267 Linear Statistical Models V2017 (L19) Part 4: Design of Experiments Blocking Fractional factorial designs Mette Langaas Department of Mathematical Sciences, NTNU To be lectured: March 28, 2017

More information

Design of experiment ERT k-p fractional factorial. Miss Hanna Ilyani Zulhaimi

Design of experiment ERT k-p fractional factorial. Miss Hanna Ilyani Zulhaimi + Design of experiment ERT 427 2 k-p fractional factorial Miss Hanna Ilyani Zulhaimi + OUTLINE n Limitation of full factorial design n The concept of fractional factorial, 2 k-p n One-half fraction factorial

More information

Probability Distribution

Probability Distribution Probability Distribution 1. In scenario 2, the particle size distribution from the mill is: Counts 81

More information

Fractional designs and blocking.

Fractional designs and blocking. Fractional designs and blocking Petter Mostad mostad@chalmers.se Review of two-level factorial designs Goal of experiment: To find the effect on the response(s) of a set of factors each factor can be set

More information

Data Mining Concepts & Techniques

Data Mining Concepts & Techniques Data Mining Concepts & Techniques Lecture No. 04 Association Analysis Naeem Ahmed Email: naeemmahoto@gmail.com Department of Software Engineering Mehran Univeristy of Engineering and Technology Jamshoro

More information

Fractional Factorial Designs

Fractional Factorial Designs k-p Fractional Factorial Designs Fractional Factorial Designs If we have 7 factors, a 7 factorial design will require 8 experiments How much information can we obtain from fewer experiments, e.g. 7-4 =

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2009 EXAM-I FALL 2009 EXAM-I EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2009 EXAM-I FALL 2009 EXAM-I EXAMINATION COVER PAGE Professor Moseley MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2009 EXAM-I FALL 2009 EXAM-I EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM

More information