Eigenvalues and Eigenvectors


 Jasper Higgins
 6 years ago
 Views:
Transcription
1 Eigenvalues and Eigenvectors Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
2 Introduction We define eigenvalues and eigenvectors. We discuss how to compute them. We present their main properties. We finish with two applications, each could be a final project. Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
3 Definitions Definition A scalar λ is called an eigenvalue or a characteristic value of A if there is a nontrivial solution x of Ax = λx. Such a vector x is called an eigenvector of A corresponding to the eigenvalue λ. Let us note a few things: 1 Note that the zero vector x is always a solution of Ax = λx, it is why we are looking for nontrivial vectors x. 2 An eigenvalue can be 0, but not an eigenvector. Definition The eigenspace of A corresponding to the eigenvalue λ is the set of all eigenvectors of A corresponding to λ. Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
4 Computation Recall, we are trying to solve Ax = λx. Two things can happen. Ax = λx Ax λx = 0 Ax λi x = 0 (A λi ) x = 0 1 (A λi ) is invertible that is det (A λi ) 0. The only solution is the trivial solution. This is not of interest to us since we are seeking a nontrivial solution. 2 (A λi ) is not invertible that is det (A λi ) = 0. This is the only case in which we can hope to find a solution. Definition det (A λi ) is a polynomial of degree n. It is called the characteristic polynomial. Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
5 Computation 1 det (A λi ) is a polynomial of degree n, hence it has n roots, real and/or complex. Some of which may be repeated. 2 This means that if A is an n n matrix then it will have n eigenvalues, call them λ 1, λ 2,..., λ n. Some may be repeated. 3 If an eigenvalue λ appears only once in the list, it is called simple. 4 If an eigenvalue λ appears k > 1 times in the list, we say that λ has multiplicity k. 5 If λ 1, λ 2,..., λ k (k n) are the simple eigenvalues in the list, with corresponding eigenvectors x (1), x (2),.., x (k), then the eigenvectors are linearly independent. 6 If λ is an eigenvalue with multiplicity k > 1 then λ will have anywhere from 1 to k linearly independent eigenvectors. 7 If x is an eigenvector corresponding to λ then kx is also an eigenvector corresponding to λ. This means that eigenvectors are defined up to a constant. Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
6 Computation Example Find the eigenvalues and eigenvectors of A = Example Find the eigenvalues and eigenvectors of A = ( ) Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
7 Eigenvalues and MATLAB The MATLAB function to get the eigenvalues of a matrix is eig. It can be used different ways; we only show a few here. For a complete list, type help eig within MATLAB. 1 Given an n n matrix A, eig (A) will display the eigenvalues of A. Each eigenvalue will be printed as many times as its multiplicity. 2 Given an n n matrix A, s = eig (A) will find the eigenvalues of A and store them into the n 1 vector s. As above, each eigenvalue will appear as many times as its multiplicity. 3 Given an n n matrix A, [V D] = eig (A) will find the eigenvalues and eigenvectors of A. The eigenvectors of A will be stored in V as column vectors. So, V is in fact a matrix. The eigenvalues of A will be stored on the diagonal of D, the remaining entries of D being zeros. The eigenvalues will appear in the same order as the eigenvectors. Note that MATLAB will find eigenvectors which are unit vectors (magnitude 1). Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
8 Eigenvalues and MATLAB Example Test the eig function with A = Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
9 Properties of Eigenvalues and Eigenvectors We list some important properties. Their proof can be found in any linear algebra book. It will be useful to remember some properties of determinants. det ( A 1) 1 = det (A) det (AB) = det (A) det (B) det ( A ) T = det (A) det (ca) = c n det (A) Powers of a matrix: If Ax = λx then A 2 x = A (Ax) = A (λx) = λax = λ 2 x. In general, A n x = λ n x Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
10 Properties of Eigenvalues and Eigenvectors Eigenvalues of a triangular or diagonal matrix. Remembering that the determinant of a triangular or a diagonal matrix is the product of its entries on the diagonal, we see that the characteristic polynomial n of such a matrix is (a ii λ) hence the eigenvalues are a ii for i = 1..n. i=1 Similar Matrices: Recall that two matrices A and B are similar if there exists an invertible matrix P of the same size such that B = PAP 1. Two similar matrices have the same eigenvalues. λ is an eigenvalue of A if and only if 1 λ is an eigenvalue of A 1. If λ = a + bi is an eigenvalue of A with eigenvector v then λ = a bi is also an eigenvalue of A and its corresponding eigenvector is the conjugate of v. Symmetric Matrices always have real eigenvalues. Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
11 Properties of Eigenvalues and Eigenvectors Diagonalization. Suppose that v 1, v 2,..., v n are linearly independent vectors and λ 1, λ 2,..., λ n are their corresponding eigenvalues. Define P = [v 1 v 2... v n ] (note this is an n n matrix) and λ D = 0 λ then AP = PD that is A = PDP 1 or 0 0 λ n D = P 1 AP which means that the eigenvalues of A and D are the same. We can make the following important conclusions: If P is as defined, then P 1 AP is a diagonal matrix. det D = det ( P 1 AP ) = det ( P 1) det (A) det (P) = det (A) hence the determinant of a matrix is the product of its eigenvalues. Similarly, the trace of a matrix is the sum of its eigenvalues. The above implies that a matrix is invertible if and only if none of its eigenvalues is zero. Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
12 Properties of Eigenvalues and Eigenvectors Powers Matrix Revisited: If A = PDP 1 then A 2 = PDP 1 PDP 1 = PD 2 P 1. Similarly, A n = PD n P 1. Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
13 Applications An important application of eigenvalues and eigenvectors is with solving systems of first order differential equations. Google s page ranking algorithm uses a lot of linear algebra, including eigenvalues and eigenvectors. Here is a paper by Bryan and Leise on Google s PageRank algorithm. Eigenvalues for face recognition (eigenfaces). Here is the paper which started it all by Turk and Pentland. Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
14 Assignment 1 In the last section of this document, read and understand the paper on Google page ranking. This could be a potential project. 2 In the last section of this document, read and understand the paper on eigenfaces. This could be a potential project. Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall / 14
3.3 Eigenvalues and Eigenvectors
.. EIGENVALUES AND EIGENVECTORS 27. Eigenvalues and Eigenvectors In this section, we assume A is an n n matrix and x is an n vector... Definitions In general, the product Ax results is another n vector
More informationRecall : Eigenvalues and Eigenvectors
Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector
More informationRemark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.
Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial
More informationStudy Guide for Linear Algebra Exam 2
Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real
More informationMAT 1302B Mathematical Methods II
MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture
More informationRemark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.
Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called
More informationMath 3191 Applied Linear Algebra
Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful
More informationDiagonalization of Matrix
of Matrix King Saud University August 29, 2018 of Matrix Table of contents 1 2 of Matrix Definition If A M n (R) and λ R. We say that λ is an eigenvalue of the matrix A if there is X R n \ {0} such that
More informationLecture 15, 16: Diagonalization
Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose
More informationMAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to:
MAC Module Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to: Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors
More informationMAC Module 12 Eigenvalues and Eigenvectors
MAC 23 Module 2 Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to:. Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors
More informationDIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix
DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that
More informationMath 2331 Linear Algebra
5. Eigenvectors & Eigenvalues Math 233 Linear Algebra 5. Eigenvectors & Eigenvalues ShangHuan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ ShangHuan Chiu,
More informationand let s calculate the image of some vectors under the transformation T.
Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =
More informationEcon Slides from Lecture 7
Econ 205 Sobel Econ 205  Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for
More informationChapter 5 Eigenvalues and Eigenvectors
Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n
More informationICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors
ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 34 The powers of matrix Consider the following dynamic
More informationEigenvalues and Eigenvectors
5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS nn Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),
More information(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.
1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III
More informationAnnouncements Wednesday, November 01
Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section
More informationEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors week 2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n
More informationc c c c c c c c c c a 3x3 matrix C= has a determinant determined by
Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.
More informationDimension. Eigenvalue and eigenvector
Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, ranknullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,
More informationAMS10 HW7 Solutions. All credit is given for effort. (5 pts for any missing sections) Problem 1 (20 pts) Consider the following matrix 2 A =
AMS1 HW Solutions All credit is given for effort. ( pts for any missing sections) Problem 1 ( pts) Consider the following matrix 1 1 9 a. Calculate the eigenvalues of A. Eigenvalues are 1 1.1, 9.81,.1
More informationThe Singular Value Decomposition
The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will
More information(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).
.(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)
More informationLecture 3 Eigenvalues and Eigenvectors
Lecture 3 Eigenvalues and Eigenvectors Eivind Eriksen BI Norwegian School of Management Department of Economics September 10, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 3 Eigenvalues and Eigenvectors
More informationEigenvalues and Eigenvectors
5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS n n Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),
More informationSummer Session Practice Final Exam
Math 2F Summer Session 25 Practice Final Exam Time Limit: Hours Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 9 problems. Check to see if any pages are missing.
More informationDefinition (T invariant subspace) Example. Example
Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin
More informationAnnouncements Monday, November 13
Announcements Monday, November 13 The third midterm is on this Friday, November 17 The exam covers 31, 32, 51, 52, 53, and 55 About half the problems will be conceptual, and the other half computational
More informationLecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues
Lecture Notes: Eigenvalues and Eigenvectors Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Definitions Let A be an n n matrix. If there
More informationAnnouncements Wednesday, November 01
Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section
More informationMath Matrix Algebra
Math 44  Matrix Algebra Review notes  4 (Alberto Bressan, Spring 27) Review of complex numbers In this chapter we shall need to work with complex numbers z C These can be written in the form z = a+ib,
More informationDiagonalization. Hungyi Lee
Diagonalization Hungyi Lee Review If Av = λv (v is a vector, λ is a scalar) v is an eigenvector of A excluding zero vector λ is an eigenvalue of A that corresponds to v Eigenvectors corresponding to λ
More informationMAT1302F Mathematical Methods II Lecture 19
MAT302F Mathematical Methods II Lecture 9 Aaron Christie 2 April 205 Eigenvectors, Eigenvalues, and Diagonalization Now that the basic theory of eigenvalues and eigenvectors is in place most importantly
More information1. In this problem, if the statement is always true, circle T; otherwise, circle F.
Math 1553, Extra Practice for Midterm 3 (sections 4565) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation
More information1. Linear systems of equations. Chapters 78: Linear Algebra. Solution(s) of a linear system of equations (continued)
1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix
More informationCity Suburbs. : population distribution after m years
Section 5.3 Diagonalization of Matrices Definition Example: stochastic matrix To City Suburbs From City Suburbs.85.03 = A.15.97 City.15.85 Suburbs.97.03 probability matrix of a sample person s residence
More informationDM554 Linear and Integer Programming. Lecture 9. Diagonalization. Marco Chiarandini
DM554 Linear and Integer Programming Lecture 9 Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. More on 2. 3. 2 Resume Linear transformations and
More information1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det
What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix
More informationLINEAR ALGEBRA 1, 2012I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS
LINEAR ALGEBRA, I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,
More informationDiagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics
Diagonalization MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Motivation Today we consider two fundamental questions: Given an n n matrix A, does there exist a basis
More informationTMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013
TMA4115  Calculus 3 Lecture 21, April 3 Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 www.ntnu.no TMA4115  Calculus 3, Lecture 21 Review of last week s lecture Last week
More informationThe Jordan Normal Form and its Applications
The and its Applications Jeremy IMPACT Brigham Young University A square matrix A is a linear operator on {R, C} n. A is diagonalizable if and only if it has n linearly independent eigenvectors. What happens
More informationComputationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity:
Diagonalization We have seen that diagonal and triangular matrices are much easier to work with than are most matrices For example, determinants and eigenvalues are easy to compute, and multiplication
More informationCS 246 Review of Linear Algebra 01/17/19
1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector
More informationQuestion: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of AcI?
Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of AcI? Property The eigenvalues
More informationLinear Algebra: Matrix Eigenvalue Problems
CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given
More informationChapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015
Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal
More informationChapter 3. Determinants and Eigenvalues
Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory
More information4. Linear transformations as a vector space 17
4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation
More informationProperties of Linear Transformations from R n to R m
Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation
More information(the matrix with b 1 and b 2 as columns). If x is a vector in R 2, then its coordinate vector [x] B relative to B satisfies the formula.
4 Diagonalization 4 Change of basis Let B (b,b ) be an ordered basis for R and let B b b (the matrix with b and b as columns) If x is a vector in R, then its coordinate vector x B relative to B satisfies
More informationAnnouncements Monday, November 06
Announcements Monday, November 06 This week s quiz: covers Sections 5 and 52 Midterm 3, on November 7th (next Friday) Exam covers: Sections 3,32,5,52,53 and 55 Section 53 Diagonalization Motivation: Difference
More informationLU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU
LU Factorization A m n matri A admits an LU factorization if it can be written in the form of Where, A = LU L : is a m m lower triangular matri with s on the diagonal. The matri L is invertible and is
More information1 Last time: leastsquares problems
MATH Linear algebra (Fall 07) Lecture Last time: leastsquares problems Definition. If A is an m n matrix and b R m, then a leastsquares solution to the linear system Ax = b is a vector x R n such that
More informationftuiowamath2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST
me me ftuiowamath2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST 1. (1 pt) local/library/ui/eigentf.pg A is n n an matrices.. There are an infinite number
More informationAnnouncements Monday, November 13
Announcements Monday, November 13 The third midterm is on this Friday, November 17. The exam covers 3.1, 3.2, 5.1, 5.2, 5.3, and 5.5. About half the problems will be conceptual, and the other half computational.
More informationSolving Linear Systems
Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 207 Philippe B. Laval (KSU) Linear Systems Fall 207 / 2 Introduction We continue looking how to solve linear systems of the
More informationChapter 5. Eigenvalues and Eigenvectors
Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the
More informationMATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)
MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m
More informationWhat is on this week. 1 Vector spaces (continued) 1.1 Null space and Column Space of a matrix
Professor Joana Amorim, jamorim@bu.edu What is on this week Vector spaces (continued). Null space and Column Space of a matrix............................. Null Space...........................................2
More informationTherefore, A and B have the same characteristic polynomial and hence, the same eigenvalues.
Similar Matrices and Diagonalization Page 1 Theorem If A and B are n n matrices, which are similar, then they have the same characteristic equation and hence the same eigenvalues. Proof Let A and B be
More informationChapter 4 & 5: Vector Spaces & Linear Transformations
Chapter 4 & 5: Vector Spaces & Linear Transformations Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapters 4 & 5 1 / 40 Objective The purpose of Chapter 4 is to think
More information4. Determinants.
4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.
More informationMath 205, Summer I, Week 4b:
Math 205, Summer I, 2016 Week 4b: Chapter 5, Sections 6, 7 and 8 (5.5 is NOT on the syllabus) 5.6 Eigenvalues and Eigenvectors 5.7 Eigenspaces, nondefective matrices 5.8 Diagonalization [*** See next slide
More informationEigenvalues and Eigenvectors. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Eigenvalues and Eigenvectors Consider the equation A x = λ x, where A is an nxn matrix. We call x (must be nonzero) an eigenvector of A if this equation can be solved for some value of λ. We call λ an
More informationFinal Exam Practice Problems Answers Math 24 Winter 2012
Final Exam Practice Problems Answers Math 4 Winter 0 () The Jordan product of two n n matrices is defined as A B = (AB + BA), where the products inside the parentheses are standard matrix product. Is the
More informationReview problems for MA 54, Fall 2004.
Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on
More informationMTH 464: Computational Linear Algebra
MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)
More informationEigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization
Eigenvalues for Triangular Matrices ENGI 78: Linear Algebra Review Finding Eigenvalues and Diagonalization Adapted from Notes Developed by Martin Scharlemann The eigenvalues for a triangular matrix are
More informationAN ITERATION. In part as motivation, we consider an iteration method for solving a system of linear equations which has the form x Ax = b
AN ITERATION In part as motivation, we consider an iteration method for solving a system of linear equations which has the form x Ax = b In this, A is an n n matrix and b R n.systemsof this form arise
More informationMath 315: Linear Algebra Solutions to Assignment 7
Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are
More informationEigenvalues and Eigenvectors 7.1 Eigenvalues and Eigenvecto
7.1 November 6 7.1 Eigenvalues and Eigenvecto Goals Suppose A is square matrix of order n. Eigenvalues of A will be defined. Eigenvectors of A, corresponding to each eigenvalue, will be defined. Eigenspaces
More informationMA 265 FINAL EXAM Fall 2012
MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators
More informationEigenvalues, Eigenvectors, and Diagonalization
Math 240 TA: Shuyi Weng Winter 207 February 23, 207 Eigenvalues, Eigenvectors, and Diagonalization The concepts of eigenvalues, eigenvectors, and diagonalization are best studied with examples. We will
More information5.3.5 The eigenvalues are 3, 2, 3 (i.e., the diagonal entries of D) with corresponding eigenvalues. Null(A 3I) = Null( ), 0 0
535 The eigenvalues are 3,, 3 (ie, the diagonal entries of D) with corresponding eigenvalues,, 538 The matrix is upper triangular so the eigenvalues are simply the diagonal entries, namely 3, 3 The corresponding
More informationLinear Algebra Primer
Linear Algebra Primer D.S. Stutts November 8, 995 Introduction This primer was written to provide a brief overview of the main concepts and methods in elementary linear algebra. It was not intended to
More informationMath Camp Notes: Linear Algebra II
Math Camp Notes: Linear Algebra II Eigenvalues Let A be a square matrix. An eigenvalue is a number λ which when subtracted from the diagonal elements of the matrix A creates a singular matrix. In other
More informationA matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and
Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.
More informationLinear Algebra Final Exam Review
Linear Algebra Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.
More informationLinear Algebra. Rekha Santhanam. April 3, Johns Hopkins Univ. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7
Linear Algebra Rekha Santhanam Johns Hopkins Univ. April 3, 2009 Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, 2009 1 / 7 Dynamical Systems Denote owl and wood rat populations at time k
More informationWhat is A + B? What is A B? What is AB? What is BA? What is A 2? and B = QUESTION 2. What is the reduced row echelon matrix of A =
STUDENT S COMPANIONS IN BASIC MATH: THE ELEVENTH Matrix Reloaded by Block Buster Presumably you know the first part of matrix story, including its basic operations (addition and multiplication) and row
More informationA matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and
Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.
More informationLecture 12: Diagonalization
Lecture : Diagonalization A square matrix D is called diagonal if all but diagonal entries are zero: a a D a n 5 n n. () Diagonal matrices are the simplest matrices that are basically equivalent to vectors
More informationftuiowamath2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST
me me ftuiowamath255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following
More informationLinear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.
Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the
More informationBackground Mathematics (2/2) 1. David Barber
Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and
More information2 Eigenvectors and Eigenvalues in abstract spaces.
MA322 Sathaye Notes on Eigenvalues Spring 27 Introduction In these notes, we start with the definition of eigenvectors in abstract vector spaces and follow with the more common definition of eigenvectors
More informationWarmup. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions
Warmup True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be
More information1. Let A = (a) 2 (b) 3 (c) 0 (d) 4 (e) 1
. Let A =. The rank of A is (a) (b) (c) (d) (e). Let P = {a +a t+a t } where {a,a,a } range over all real numbers, and let T : P P be a linear transformation dedifined by T (a + a t + a t )=a +9a t If
More informationMath 4A Notes. Written by Victoria Kala Last updated June 11, 2017
Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...
More informationReview Notes for Linear Algebra True or False Last Updated: January 25, 2010
Review Notes for Linear Algebra True or False Last Updated: January 25, 2010 Chapter 3 [ Eigenvalues and Eigenvectors ] 31 If A is an n n matrix, then A can have at most n eigenvalues The characteristic
More informationEigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization
Eigenvalues for Triangular Matrices ENGI 78: Linear Algebra Review Finding Eigenvalues and Diagonalization Adapted from Notes Developed by Martin Scharlemann June 7, 04 The eigenvalues for a triangular
More informationFirst of all, the notion of linearity does not depend on which coordinates are used. Recall that a map T : R n R m is linear if
5 Matrices in Different Coordinates In this section we discuss finding matrices of linear maps in different coordinates Earlier in the class was the matrix that multiplied by x to give ( x) in standard
More informationMATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization.
MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. Eigenvalues and eigenvectors of an operator Definition. Let V be a vector space and L : V V be a linear operator. A number λ
More informationYORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions
YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For
More informationGlossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the
More informationProblems for M 10/26:
Math, Lesieutre Problem set # November 4, 25 Problems for M /26: 5 Is λ 2 an eigenvalue of 2? 8 Why or why not? 2 A 2I The determinant is, which means that A 2I has 6 a nullspace, and so there is an eigenvector
More information