Le rning Regular. A Languages via Alt rn ting. A E Autom ta

Size: px
Start display at page:

Download "Le rning Regular. A Languages via Alt rn ting. A E Autom ta"

Transcription

1 1

2 Le rning Regular A Languages via Alt rn ting A E Autom ta A YALE MIT PENN IJCAI 15, Buenos Aires 2

3 4 The Problem Learn an unknown regular language L using MQ and EQ data mining neural networks geometry verification synthesis Learner membership queries w L? yes / no Equivalence queries A = L? yes / no: counterexample L Teacher

4 5 Motivation and Goal questions [Angluin, 1987] proposed L* which uses deterministic finite automata DFA [Bollig et al., 2009], proposed NL* which uses non-deterministic finite automata NFA AFA DFA NFA

5 6 Motivation and Goal questions Succinctness [Angluin, 1987] proposed L* which uses deterministic finite automata DFA [Bollig et al., 2009], proposed NL* which uses non-deterministic finite automata NFA Can we generalize this to AL* which uses alternating finite automata AFA? AFA DFA NFA AFA

6 7 Motivation and Goal questions Succinctness [Angluin, 1987] proposed L* which uses deterministic finite automata DFA [Bollig et al., 2009], proposed NL* which uses non-deterministic finite automata NFA Can we generalize this to AL* which uses alternating finite automata AFA? AFA DFA NFA AFA [Bollig et al., 2009] showed that NL* outperforms L* on random RE (concatenation, iteration, union)

7 8 Motivation and Goal questions Succinctness [Angluin, 1987] proposed L* which uses deterministic finite automata DFA [Bollig et al., 2009], proposed NL* which uses non-deterministic finite automata NFA Can we generalize this to AL* which uses alternating finite automata AFA? AFA DFA NFA AFA [Bollig et al., 2009] showed that NL* outperforms L* on random RE intersection (concatenation, iteration, union)

8 Motivation and Goal questions Succinctness [Angluin, 1987] proposed L* which uses deterministic finite automata DFA [Bollig et al., 2009], proposed NL* which uses non-deterministic finite automata NFA Can we generalize this to AL* which uses alternating finite automata AFA? AFA DFA NFA AFA Understanding [Bollig et al., 2009] showed that NL* outperforms L* on random RE intersection (concatenation, iteration, union) 9 What are the tradeoffs between L*, NL* & AL*?

9 10 Automata Types Deterministic (DFA) Non-deterministic (NFA) Universal (UFA) Alternating (AFA)

10 Transition Types Transition Type Type Non- Deterministic s1 s1 c c s3 or s4 ic Universal s1 c s3 and s4 Universal s1 c s3 and s4 Alternating s1 c (s3 or s4) and s2 from fromupon upon stat statereading reading e Deterministic s1 s1 c c s2 ic to state(s) 1 c 2 c 1 c

11 Transition Types Transition Type Type Non- Deterministic s1 s1 c c s3 or s4 ic Universal s1 c s3 and s4 Universal s1 c s3 and s4 from fromupon upon stat statereading reading e Deterministic s1 s1 c c s2 ic to state(s) 1 c 2 Alternating s1 c (s3 or s4) and s2 c c 1 c c 1 c

12 Transition Types Transition Type Type Non- Deterministic s1 s1 c c s3 or s4 ic Universal s1 c s3 and s4 Universal s1 c s3 and s4 from fromupon upon stat statereading reading e Deterministic s1 s1 c c s2 ic to state(s) 1 c 2 Alternating s1 c (s3 or s4) and s2 c 1 c

13 Transition Types Transition Type Type Non- Deterministic s1 s1 c c s3 or s4 ic Universal s1 c s3 and s4 Universal s1 c s3 and s4 from fromupon upon stat statereading reading e Deterministic s1 s1 c c s2 ic to state(s) 1 c 2 Alternating s1 c (s3 or s4) and s2 c 1 c 1 c

14 15 Σ = {a,b} Alternating Automaton Ex. a a AND b b Accepts the language Σ*aaΣ* Σ*bbΣ*

15 Succinctness Well known: [Meyer & Fischer, 1971] [Chandra & Stockmeyer, 1976] [Kozen, 1976] AFA NFA UFA DFA May be exponentially bigger than May be doubly exponentially bigger than 16

16 17 Residuality To be precise [Bollig et al.] used residual NFA (NRFA), introduced by [Denis et al.] We thus first extended the idea of residual NFA to residual AFA (ARFA) Details in the paper and poster

17 Succinctness & Residuality AFA ARFA NFA UFA NRFA [ ] [ ] [ ] URFA [Denis et al. 2001] [Duality] DFA DRFA May be exponentially bigger than May be doubly exponentially bigger than 18

18 19 Residuality L*, NL*, UL*, AL* Observation tables Closed and minimal tables Monotone, union and intersection bases Finding an adequate basis

19 An Observation Table Strings: experiments to distinguish states Strings: candidate state representatives M s 1 s 2 s 3 s 4 s 5 e 1 e 2 e 3 e 4 e 5 e M i j = 1 if s i e j 2 L 0 otherwise 20

20 The Complete Observation Table Enumeration of all strings 21 ε a b aa ab aaa aab aba abb baa ε a b aa ab ab bb aaa aab aba abb baa By Myhill-Nerode the ba number Enumeration of distinct rows is of finite. all strings bb We call it the row index

21 The Complete Observation Table 22 The number of distinct columns is also finite. We call it the column index. Enumeration of all strings ε a b aa ab ba bb aaa aab aba abb baa Enumeration of all strings ε a b aa ab ab bb aaa aab aba abb baa

22 Closed Table An observation table T = (S,E,M) is closed w.r.t a subset B S B S ε a b ab aa aaa aab e 1 e 2 e 3 e 4 e 5 e If it satisfies 1) Initialization: ε B 2) Consecution: BΣ S 3) Coverage: all rows not in B are covered by B 23

23 Closed Table An observation table T = (S,E,M) is closed w.r.t a subset B S B S ε a b ab aa aaa aab e 1 e 2 e 3 e 4 e 5 e If it satisfies 1) Initialization: ε B 2) Consecution: BΣ S 3) Coverage: all rows not in B are x-covered by B x {D,N,U,A} That is, the definition differs for L*, NL*, UL* and AL*. 24

24 D-Covered According to L* i.e. when using DFAs S ε a b ab aa aaa aab e 1 e 2 e 3 e 4 e 5 e

25 26 N-Covered According to NL* i.e. when using NFAs S ε a b ab aa aaa aab e 1 e 2 e 3 e 4 e 5 e b = (ε a)

26 27 U-Covered According to UL* i.e. when using UFAs S ε a b ab aa aaa aab e 1 e 2 e 3 e 4 e 5 e b = (ε a)

27 A-Covered According to AL* i.e. when using AFAs S ε a b ab aa aaa aab e 1 e 2 e 3 e 4 e 5 e b = (ε a) ab = (ε a) aa 28

28 29 Minimal Table S ε a b ab aa aaa aab closed e 1 e 2 e 3 e 4 e 5 e S ε a b ab aa aaa aab trivially closed e 1 e 2 e 3 e 4 e 5 e Let T be closed w.r.t. B. T is x-minimal w.r.t. B if forall b B, b is not x- covered by any subset of B\{b}.

29 30 From Tables to Automata Closed and Minimal S ε a b ab aa aaa aab ε e 2 e 3 e 4 e 5 e = (ε a) = (ε a) aa = ε = a b a b a a b

30 31 Need to solve How to decide Is row s a union of rows in B? Poly time [Bollig et al.] Is row s an intersection of rows in B? Poly time [Duality] Is s a monotone combination of rows in B? Poly time [new] Given a set of Boolean vectors S, find a minimal union basis Poly time [Bollig et al.] intersection basis Poly time [Duality] monotone basis NP-complete [new]

31 32 The Learning Alg. Start with table : ε ε 0

32 33 The Learning Alg. Start with basis: ε

33 34 The Learning Alg. If the table is not closed, e.g. s 1 is missing, then add it. Until the table is closed.

34 35 The Learning Alg. If the table is not minimal, e.g. s 2 is redundant, then remove it. Until the table is minimal.

35 36 The Learning Alg. The table is now closed and minimal. Extract the respective AFA.

36 The Learning Alg. 37 Ask an equivalence query. If true, return. Otherwise, use the given counterexample to find some columns to add, and add them.

37 Find Columns to Add Closed and Minimal Counter example w = abcde ε a b ab aa bb ba aaa aab ε e 2 e 3 e 4 e 5 e 6 abcde bcde cde de e B = {ε, a, aa } BΣ = {b, ab, aaa,, aab }

38 Find Columns to Add Closed and Minimal Counter example w = abcde ε a b ab aa bb ba aaa aab ε e 2 e 3 e 4 e 5 e 6 abcde bcde cde de e B = {ε, a, aa } BΣ = {b, ab, aaa,, aab }

39 Find Columns to Add Closed and Minimal Counter example w = abcde ε a b ab aa bb ba aaa aab ε e 2 e 3 e 4 e 5 e 6 bcde cde de e B = {ε, a, aa } BΣ = {b, ab, aaa,, aab }

40 Find Columns to Add Closed and Minimal Counter example w = abcde ε a b ab aa bb ba aaa aab ε e 2 e 3 e 4 e 5 e 6 bcde cde e B = {ε, a, aa } BΣ = {b, ab, aaa,, aab }

41 42 The Learning Alg. Theorem Every counterexample yields at least one new column

42 43 The Learning Alg. Theorem The algorithm AL* returns an AFA for the unknown language after at most m equivalence queries O( Σ mnc) membership queries poly(m, n, c, Σ ) time L* NL* AL* EQ n O(n 2 ) m MQ O( Σ cn 2 ) O( Σ cn 3 ) O( Σ cnm) where n = row index m = column index c = length of longest c.e.

43 44 Residuality Empirical results Comparison of L*, NL*, UL*, AL* in learning random DFAs, NFAs, UFAs, AFAs along # states # MQ # EQ

44 45 Empirical Results

45 46 Rough Summary: Empirical Results In terms of #states generated, AL* is always preferable In terms of #MQ, xl* outperforms the others when targets are xfas In terms of #EQ, L* is always preferable

46 47 Future Work Generalization to Boolean Automata ( ) Heuristics combining xl* s Understanding of Residual AFAs Theorem: The algorithm AL* returns an AFA for the unknown language Conjecture: The algorithm AL* returns an ARFA for the unknown language

47 48 The End Thank you for your attention!

48 # of membership queries Random DFA targets Random NFA targets L*, NL*, L*, NL*, 51

49 # of equivalence queries Random DFA targets Random NFA targets L*, NL*, L*, NL*, 52

50 Resulting # of states Random AFA targets Random UFA targets L*, NL*, UL*, AL* 300 L*, NL*, UL*, AL*

51 # of membership queries Random AFA targets Random UFA targets L*, NL*, UL*, AL* L*, NL*, UL*, AL* 54

52 # of equivalence queries Random AFA targets Random UFA targets L*, NL*, UL*, AL* L*, NL*, UL*, AL*

CS 133 : Automata Theory and Computability

CS 133 : Automata Theory and Computability CS 133 : Automata Theory and Computability Lecture Slides 1 Regular Languages and Finite Automata Nestine Hope S. Hernandez Algorithms and Complexity Laboratory Department of Computer Science University

More information

Learning Regular Sets

Learning Regular Sets Learning Regular Sets Author: Dana Angluin Presented by: M. Andreína Francisco Department of Computer Science Uppsala University February 3, 2014 Minimally Adequate Teachers A Minimally Adequate Teacher

More information

Theory of Computation

Theory of Computation Fall 2002 (YEN) Theory of Computation Midterm Exam. Name:... I.D.#:... 1. (30 pts) True or false (mark O for true ; X for false ). (Score=Max{0, Right- 1 2 Wrong}.) (1) X... If L 1 is regular and L 2 L

More information

Learning Residual Finite-State Automata Using Observation Tables

Learning Residual Finite-State Automata Using Observation Tables Learning Residual Finite-State Automata Using Observation Tables Anna Kasprzik kasprzik@informatik.uni-trier.de September 16, 2009 Keywords: Algorithmic learning theory, grammatical inference, observation

More information

Click to edit. Master title. style

Click to edit. Master title. style Query Learning of Derived ω-tree Languages in Polynomial Time Dana Angluin, Tımos Antonopoulos & Dana 1 Query Learning a set of possile concepts Question Answer tc Learner Teacher Tries to identify a target

More information

A practical introduction to active automata learning

A practical introduction to active automata learning A practical introduction to active automata learning Bernhard Steffen, Falk Howar, Maik Merten TU Dortmund SFM2011 Maik Merten, learning technology 1 Overview Motivation Introduction to active automata

More information

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission.

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission. CSE 5 Homework Due: Monday October 9, 7 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in this

More information

Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries

Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries Jose Oncina Dept. Lenguajes y Sistemas Informáticos - Universidad de Alicante oncina@dlsi.ua.es September

More information

Nondeterministic Finite Automata and Regular Expressions

Nondeterministic Finite Automata and Regular Expressions Nondeterministic Finite Automata and Regular Expressions CS 2800: Discrete Structures, Spring 2015 Sid Chaudhuri Recap: Deterministic Finite Automaton A DFA is a 5-tuple M = (Q, Σ, δ, q 0, F) Q is a finite

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

Advanced Automata Theory 11 Regular Languages and Learning Theory

Advanced Automata Theory 11 Regular Languages and Learning Theory Advanced Automata Theory 11 Regular Languages and Learning Theory Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Advanced

More information

CS 121, Section 2. Week of September 16, 2013

CS 121, Section 2. Week of September 16, 2013 CS 121, Section 2 Week of September 16, 2013 1 Concept Review 1.1 Overview In the past weeks, we have examined the finite automaton, a simple computational model with limited memory. We proved that DFAs,

More information

Learning Regular ω-languages

Learning Regular ω-languages Learning Regular ω-languages The Goal Device an algorithm for learning an unknown regular ω-language L 3 The Goal Device an algorithm for learning an unknown regular ω-language L set of infinite words

More information

A practical introduction to active automata learning

A practical introduction to active automata learning A practical introduction to active automata learning Bernhard Steffen, Falk Howar, Maik Merten TU Dortmund SFM2011 Maik Merten, learning technology 1 Overview Motivation Introduction to active automata

More information

Two-Way Automata and Descriptional Complexity

Two-Way Automata and Descriptional Complexity Two-Way Automata and Descriptional Complexity Giovanni Pighizzini Dipartimento di Informatica Università degli Studi di Milano TCS 2014 Rome, Italy September 1-3, 2014 IFIP TC1, Working Group 1.2, Descriptional

More information

CS 455/555: Finite automata

CS 455/555: Finite automata CS 455/555: Finite automata Stefan D. Bruda Winter 2019 AUTOMATA (FINITE OR NOT) Generally any automaton Has a finite-state control Scans the input one symbol at a time Takes an action based on the currently

More information

3515ICT: Theory of Computation. Regular languages

3515ICT: Theory of Computation. Regular languages 3515ICT: Theory of Computation Regular languages Notation and concepts concerning alphabets, strings and languages, and identification of languages with problems (H, 1.5). Regular expressions (H, 3.1,

More information

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed HKN CS/ECE 374 Midterm 1 Review Nathan Bleier and Mahir Morshed For the most part, all about strings! String induction (to some extent) Regular languages Regular expressions (regexps) Deterministic finite

More information

Finite Automata and Languages

Finite Automata and Languages CS62, IIT BOMBAY Finite Automata and Languages Ashutosh Trivedi Department of Computer Science and Engineering, IIT Bombay CS62: New Trends in IT: Modeling and Verification of Cyber-Physical Systems (2

More information

Angluin-Style Learning of NFA

Angluin-Style Learning of NFA Angluin-Style Learning of NFA Benedikt Bollig LSV, ENS Cachan, CNRS bollig@lsv.ens-cachan.fr Peter Habermehl LIAFA, U. Paris Diderot (Paris 7) Peter.Habermehl@liafa.jussieu.fr Carsten Kern MOVES, RWTH

More information

Formal Languages, Automata and Models of Computation

Formal Languages, Automata and Models of Computation CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 5 School of Innovation, Design and Engineering Mälardalen University 2011 1 Content - More Properties of Regular Languages (RL)

More information

Obtaining the syntactic monoid via duality

Obtaining the syntactic monoid via duality Radboud University Nijmegen MLNL Groningen May 19th, 2011 Formal languages An alphabet is a non-empty finite set of symbols. If Σ is an alphabet, then Σ denotes the set of all words over Σ. The set Σ forms

More information

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata.

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata. Code No: R09220504 R09 Set No. 2 II B.Tech II Semester Examinations,December-January, 2011-2012 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 75 Answer

More information

CS 208: Automata Theory and Logic

CS 208: Automata Theory and Logic CS 28: Automata Theory and Logic b a a start A x(la(x) y(x < y) L b (y)) B b Department of Computer Science and Engineering, Indian Institute of Technology Bombay of 32 Nondeterminism Alternation 2 of

More information

DESCRIPTIONAL COMPLEXITY OF NFA OF DIFFERENT AMBIGUITY

DESCRIPTIONAL COMPLEXITY OF NFA OF DIFFERENT AMBIGUITY International Journal of Foundations of Computer Science Vol. 16, No. 5 (2005) 975 984 c World Scientific Publishing Company DESCRIPTIONAL COMPLEXITY OF NFA OF DIFFERENT AMBIGUITY HING LEUNG Department

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

Finite Automata and Regular Languages

Finite Automata and Regular Languages Finite Automata and Regular Languages Topics to be covered in Chapters 1-4 include: deterministic vs. nondeterministic FA, regular expressions, one-way vs. two-way FA, minimization, pumping lemma for regular

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 448 (2012) 41 46 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Polynomial characteristic sets

More information

Theory of Computation (I) Yijia Chen Fudan University

Theory of Computation (I) Yijia Chen Fudan University Theory of Computation (I) Yijia Chen Fudan University Instructor Yijia Chen Homepage: http://basics.sjtu.edu.cn/~chen Email: yijiachen@fudan.edu.cn Textbook Introduction to the Theory of Computation Michael

More information

Topics in Timed Automata

Topics in Timed Automata 1/32 Topics in Timed Automata B. Srivathsan RWTH-Aachen Software modeling and Verification group 2/32 Timed Automata A theory of timed automata R. Alur and D. Dill, TCS 94 2/32 Timed Automata Language

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

Learning cover context-free grammars from structural data

Learning cover context-free grammars from structural data Learning cover context-free grammars from structural data Mircea Marin Gabriel Istrate West University of Timişoara, Romania 11th International Colloquium on Theoretical Aspects of Computing ICTAC 2014

More information

Learning Context Free Grammars with the Syntactic Concept Lattice

Learning Context Free Grammars with the Syntactic Concept Lattice Learning Context Free Grammars with the Syntactic Concept Lattice Alexander Clark Department of Computer Science Royal Holloway, University of London alexc@cs.rhul.ac.uk ICGI, September 2010 Outline Introduction

More information

Constructive Formalization of Regular Languages

Constructive Formalization of Regular Languages Constructive Formalization of Regular Languages Jan-Oliver Kaiser Advisors: Christian Doczkal, Gert Smolka Supervisor: Gert Smolka UdS November 7, 2012 Jan-Oliver Kaiser (UdS) Constr. Formalization of

More information

Lecture 4 Nondeterministic Finite Accepters

Lecture 4 Nondeterministic Finite Accepters Lecture 4 Nondeterministic Finite Accepters COT 4420 Theory of Computation Section 2.2, 2.3 Nondeterminism A nondeterministic finite automaton can go to several states at once. Transitions from one state

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 11 CHAPTER 3 CONTEXT-FREE LANGUAGES 1. Context Free Grammars 2. Pushdown Automata 3. Pushdown automata and context -free

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 14 SMALL REVIEW FOR FINAL SOME Y/N QUESTIONS Q1 Given Σ =, there is L over Σ Yes: = {e} and L = {e} Σ Q2 There are uncountably

More information

Synthesis and Inductive Learning Part 3

Synthesis and Inductive Learning Part 3 Synthesis and Inductive Learning Part 3 Sanjit A. Seshia EECS Department UC Berkeley Acknowledgments: Susmit Jha, Alexandre Donze, Edward Lee NSF ExCAPE Summer School June 23-25, 2015 Questions of Interest

More information

Compiler Design. Spring Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compiler Design Spring 2011 Lexical Analysis Sample Exercises and Solutions Prof. Pedro C. Diniz USC / Information Sciences Institute 4676 Admiralty Way, Suite 1001 Marina del Rey, California 90292 pedro@isi.edu

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Lecture 4 Ana Bove March 24th 2017 Structural induction; Concepts of automata theory. Overview of today s lecture: Recap: Formal Proofs

More information

Fall, 2017 CIS 262. Automata, Computability and Complexity Jean Gallier Solutions of the Practice Final Exam

Fall, 2017 CIS 262. Automata, Computability and Complexity Jean Gallier Solutions of the Practice Final Exam Fall, 2017 CIS 262 Automata, Computability and Complexity Jean Gallier Solutions of the Practice Final Exam December 6, 2017 Problem 1 (10 pts). Let Σ be an alphabet. (1) What is an ambiguous context-free

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class CSE 105 THEORY OF COMPUTATION Spring 2018 review class Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with confidence. Identify areas to focus

More information

Closure under the Regular Operations

Closure under the Regular Operations September 7, 2013 Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have shown this closure

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2018 Fall Hakjoo Oh COSE212 2018 Fall, Lecture 1 September 5, 2018 1 / 10 Inductive Definitions Inductive definition (induction)

More information

CMSC 330: Organization of Programming Languages. Regular Expressions and Finite Automata

CMSC 330: Organization of Programming Languages. Regular Expressions and Finite Automata CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata CMSC330 Spring 2018 1 How do regular expressions work? What we ve learned What regular expressions are What they

More information

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar Büchi Automata and their closure properties - Ajith S and Ankit Kumar Motivation Conventional programs accept input, compute, output result, then terminate Reactive program : not expected to terminate

More information

Theory of Computation 4 Non-Deterministic Finite Automata

Theory of Computation 4 Non-Deterministic Finite Automata Theory of Computation 4 Non-Deterministic Finite Automata Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Theory of Computation

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata CMSC 330 Spring 2017 1 How do regular expressions work? What we ve learned What regular expressions are What they

More information

FABER Formal Languages, Automata. Lecture 2. Mälardalen University

FABER Formal Languages, Automata. Lecture 2. Mälardalen University CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 2 Mälardalen University 2010 1 Content Languages, g Alphabets and Strings Strings & String Operations Languages & Language Operations

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 4 Ana Bove March 23rd 2018 Recap: Formal Proofs How formal should a proof be? Depends on its purpose...... but should be convincing......

More information

Compiler Design. Spring Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro Diniz

Compiler Design. Spring Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro Diniz Compiler Design Spring 2010 Lexical Analysis Sample Exercises and Solutions Prof. Pedro Diniz USC / Information Sciences Institute 4676 Admiralty Way, Suite 1001 Marina del Rey, California 90292 pedro@isi.edu

More information

NODIA AND COMPANY. GATE SOLVED PAPER Computer Science Engineering Theory of Computation. Copyright By NODIA & COMPANY

NODIA AND COMPANY. GATE SOLVED PAPER Computer Science Engineering Theory of Computation. Copyright By NODIA & COMPANY No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author. GATE SOLVED PAPER Computer

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

Author: Vivek Kulkarni ( )

Author: Vivek Kulkarni ( ) Author: Vivek Kulkarni ( vivek_kulkarni@yahoo.com ) Chapter-3: Regular Expressions Solutions for Review Questions @ Oxford University Press 2013. All rights reserved. 1 Q.1 Define the following and give

More information

CS Automata, Computability and Formal Languages

CS Automata, Computability and Formal Languages Automata, Computability and Formal Languages Luc Longpré faculty.utep.edu/longpre 1 - Pg 1 Slides : version 3.1 version 1 A. Tapp version 2 P. McKenzie, L. Longpré version 2.1 D. Gehl version 2.2 M. Csűrös,

More information

Regular Expressions. Definitions Equivalence to Finite Automata

Regular Expressions. Definitions Equivalence to Finite Automata Regular Expressions Definitions Equivalence to Finite Automata 1 RE s: Introduction Regular expressions are an algebraic way to describe languages. They describe exactly the regular languages. If E is

More information

arxiv: v3 [cs.fl] 2 Jul 2018

arxiv: v3 [cs.fl] 2 Jul 2018 COMPLEXITY OF PREIMAGE PROBLEMS FOR DETERMINISTIC FINITE AUTOMATA MIKHAIL V. BERLINKOV arxiv:1704.08233v3 [cs.fl] 2 Jul 2018 Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg,

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #2 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 1 Lecture 2: Overview Recall some basic definitions from Automata Theory.

More information

More Properties of Regular Languages

More Properties of Regular Languages More Properties of Regular anguages 1 We have proven Regular languages are closed under: Union Concatenation Star operation Reverse 2 Namely, for regular languages 1 and 2 : Union 1 2 Concatenation Star

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

CP405 Theory of Computation

CP405 Theory of Computation CP405 Theory of Computation BB(3) q 0 q 1 q 2 0 q 1 1R q 2 0R q 2 1L 1 H1R q 1 1R q 0 1L Growing Fast BB(3) = 6 BB(4) = 13 BB(5) = 4098 BB(6) = 3.515 x 10 18267 (known) (known) (possible) (possible) Language:

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lecture 1 : Introduction

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lecture 1 : Introduction COMP-330 Theory of Computation Fall 2017 -- Prof. Claude Crépeau Lecture 1 : Introduction COMP 330 Fall 2017: Lectures Schedule 1-2. Introduction 1.5. Some basic mathematics 2-3. Deterministic finite automata

More information

Lower and Upper Bound Results for Hard Problems Related to Finite Automata

Lower and Upper Bound Results for Hard Problems Related to Finite Automata Lower and Upper Bound Results for Hard Problems Related to Finite Automata Henning Fernau Universität Trier, Germany fernau@informatik.uni-trier.de Andreas Krebs Universität Tübingen, Germany krebs@informatik.uni-tuebingen.de

More information

Pranav Garg 1 Christof Löding 2 P. Madhusudan 1 Daniel Neider 2

Pranav Garg 1 Christof Löding 2 P. Madhusudan 1 Daniel Neider 2 Form Methods Syst Des (2015) 47:120 157 DOI 10.1007/s10703-015-0231-6 Quantified data automata for linear data structures: a register automaton model with applications to learning invariants of programs

More information

2.1 Solution. E T F a. E E + T T + T F + T a + T a + F a + a

2.1 Solution. E T F a. E E + T T + T F + T a + T a + F a + a . Solution E T F a E E + T T + T F + T a + T a + F a + a E E + T E + T + T T + T + T F + T + T a + T + T a + F + T a + a + T a + a + F a + a + a E T F ( E) ( T ) ( F) (( E)) (( T )) (( F)) (( a)) . Solution

More information

CS 154 Introduction to Automata and Complexity Theory

CS 154 Introduction to Automata and Complexity Theory CS 154 Introduction to Automata and Complexity Theory cs154.stanford.edu 1 INSTRUCTORS & TAs Ryan Williams Cody Murray Lera Nikolaenko Sunny Rajan 2 Textbook 3 Homework / Problem Sets Homework will be

More information

Bernhard Steffen, Falk Howar, Malte Isberner TU Dortmund /CMU. B. Steffen Summer School CPS

Bernhard Steffen, Falk Howar, Malte Isberner TU Dortmund /CMU. B. Steffen Summer School CPS Active Automata Learning: From DFA to Interface Programs and Beyond or From Languages to Program Executions or (more technically) The Power of Counterexample Analysis Bernhard Steffen, Falk Howar, Malte

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with

More information

Learning Regular ω-languages

Learning Regular ω-languages Learning Regular ω-languages 1 2 Overview Motivation Background (ω-automata) 2014 Previous work on learning regular ω-languages Why is it difficult to extend L* [Angluin] to ω- languages? L* works due

More information

Computational Models - Lecture 3 1

Computational Models - Lecture 3 1 Computational Models - Lecture 3 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. March 13/18, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Learning k-edge Deterministic Finite Automata in the Framework of Active Learning

Learning k-edge Deterministic Finite Automata in the Framework of Active Learning Learning k-edge Deterministic Finite Automata in the Framework of Active Learning Anuchit Jitpattanakul* Department of Mathematics, Faculty of Applied Science, King Mong s University of Technology North

More information

Peled, Vardi, & Yannakakis: Black Box Checking

Peled, Vardi, & Yannakakis: Black Box Checking Peled, Vardi, & Yannakakis: Black Box Checking Martin Leucker leucker@it.uu.se Department of Computer Systems,, Sweden Plan Preliminaries State identification and verification Conformance Testing Extended

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2017 Fall Hakjoo Oh COSE212 2017 Fall, Lecture 1 September 4, 2017 1 / 9 Inductive Definitions Inductive definition (induction)

More information

Homing and Synchronizing Sequences

Homing and Synchronizing Sequences Homing and Synchronizing Sequences Sven Sandberg Information Technology Department Uppsala University Sweden 1 Outline 1. Motivations 2. Definitions and Examples 3. Algorithms (a) Current State Uncertainty

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

Chapter Five: Nondeterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata Chapter Five: Nondeterministic Finite Automata From DFA to NFA A DFA has exactly one transition from every state on every symbol in the alphabet. By relaxing this requirement we get a related but more

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 6a REVIEW for Q2 Q2 covers Lecture 5 and Lecture 6 Chapter 2 - Deterministic Finite Automata DFA Chapter 2 - Nondeterministic

More information

Automata: a short introduction

Automata: a short introduction ILIAS, University of Luxembourg Discrete Mathematics II May 2012 What is a computer? Real computers are complicated; We abstract up to an essential model of computation; We begin with the simplest possible

More information

Learning to Verify Branching Time Properties

Learning to Verify Branching Time Properties Learning to Verify Branching Time Properties Abhay Vardhan and Mahesh Viswanathan Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA Abstract. We present a new model checking algorithm

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 5 CHAPTER 2 FINITE AUTOMATA 1. Deterministic Finite Automata DFA 2. Nondeterministic Finite Automata NDFA 3. Finite Automata

More information

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy:

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy: Incorrect reasoning about RL Since L 1 = {w w=a n, n N}, L 2 = {w w = b n, n N} are regular, therefore L 1 L 2 = {w w=a n b n, n N} is regular If L 1 is a regular language, then L 2 = {w R w L 1 } is regular,

More information

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013 Q.2 a. Prove by mathematical induction n 4 4n 2 is divisible by 3 for n 0. Basic step: For n = 0, n 3 n = 0 which is divisible by 3. Induction hypothesis: Let p(n) = n 3 n is divisible by 3. Induction

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

More on Finite Automata and Regular Languages. (NTU EE) Regular Languages Fall / 41

More on Finite Automata and Regular Languages. (NTU EE) Regular Languages Fall / 41 More on Finite Automata and Regular Languages (NTU EE) Regular Languages Fall 2016 1 / 41 Pumping Lemma is not a Sufficient Condition Example 1 We know L = {b m c m m > 0} is not regular. Let us consider

More information

Nondeterministic Finite Automata. Nondeterminism Subset Construction

Nondeterministic Finite Automata. Nondeterminism Subset Construction Nondeterministic Finite Automata Nondeterminism Subset Construction 1 Nondeterminism A nondeterministic finite automaton has the ability to be in several states at once. Transitions from a state on an

More information

CDM Closure Properties

CDM Closure Properties CDM Closure Properties Klaus Sutner Carnegie Mellon Universality 15-closure 2017/12/15 23:19 1 Nondeterministic Machines 2 Determinization 3 Closure Properties Where Are We? 3 We have a definition of regular

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

Warshall s algorithm

Warshall s algorithm Regular Expressions [1] Warshall s algorithm See Floyd-Warshall algorithm on Wikipedia The Floyd-Warshall algorithm is a graph analysis algorithm for finding shortest paths in a weigthed, directed graph

More information

1 More finite deterministic automata

1 More finite deterministic automata CS 125 Section #6 Finite automata October 18, 2016 1 More finite deterministic automata Exercise. Consider the following game with two players: Repeatedly flip a coin. On heads, player 1 gets a point.

More information

UNIT-I. Strings, Alphabets, Language and Operations

UNIT-I. Strings, Alphabets, Language and Operations UNIT-I Strings, Alphabets, Language and Operations Strings of characters are fundamental building blocks in computer science. Alphabet is defined as a non empty finite set or nonempty set of symbols. The

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 3: Finite State Automata Motivation In the previous lecture we learned how to formalize

More information

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata.

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata. CMSC 330: Organization of Programming Languages Last Lecture Languages Sets of strings Operations on languages Finite Automata Regular expressions Constants Operators Precedence CMSC 330 2 Clarifications

More information

Theory Bridge Exam Example Questions

Theory Bridge Exam Example Questions Theory Bridge Exam Example Questions Annotated version with some (sometimes rather sketchy) answers and notes. This is a collection of sample theory bridge exam questions. This is just to get some idea

More information

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages Context Free Languages Automata Theory and Formal Grammars: Lecture 6 Context Free Languages Last Time Decision procedures for FAs Minimum-state DFAs Today The Myhill-Nerode Theorem The Pumping Lemma Context-free

More information

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen Pushdown automata Twan van Laarhoven Institute for Computing and Information Sciences Intelligent Systems Version: fall 2014 T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata

More information

Recap from Last Time

Recap from Last Time Regular Expressions Recap from Last Time Regular Languages A language L is a regular language if there is a DFA D such that L( D) = L. Theorem: The following are equivalent: L is a regular language. There

More information

Foreword. Grammatical inference. Examples of sequences. Sources. Example of problems expressed by sequences Switching the light

Foreword. Grammatical inference. Examples of sequences. Sources. Example of problems expressed by sequences Switching the light Foreword Vincent Claveau IRISA - CNRS Rennes, France In the course of the course supervised symbolic machine learning technique concept learning (i.e. 2 classes) INSA 4 Sources s of sequences Slides and

More information

CS 322 D: Formal languages and automata theory

CS 322 D: Formal languages and automata theory CS 322 D: Formal languages and automata theory Tutorial NFA DFA Regular Expression T. Najla Arfawi 2 nd Term - 26 Finite Automata Finite Automata. Q - States 2. S - Alphabets 3. d - Transitions 4. q -

More information