Tangential or Shearing

Size: px
Start display at page:

Download "Tangential or Shearing"

Transcription

1 UNIT-II PROPERTIES OF MATTER INTRODUCTION Elasticity is a branch of Physics which deals with the elastic property of materials. When an external force is applied to a body, there will be some change in its length,shape and volume. When this external force is removed, and if the body regains its original shape and size, then the body is said to be a Perfectly Elastic body. If the body does not regain its originai shape or size after removal of the applied force, then it is said to be Perfectly Plastic body. STRESS AND STRAIN: A body is said to be rigid body, if the distance between any two points in a body is unaltered due to application of the force. In practice no body is perfectly rigid. When a body is subjected to some external forces the body will offer some resistance to the deforming forces, as a result some work is done on the body and this work is stored as the elastic potential energy. Now if the deforming forces reremoved the energy stored brings back the body to its original condition. TYPESOFSTRESS Stress are classified into three types namely, Stress Tensile (or) Longitudinal Tangential or Shearing Hydrostatic i. Tensile or Longitudinal Stress Whentheforceisappliedparallel tothesurfaceofthebody,thenthestressis calledaslongitudinal stress or tensile stress. ii.tangential or Shearing stress Whentheforceisappliedalong thesurfaceofthebody,thenthe c o r r e s p o n d i n g stress exerted is calledastangential stress or shearing stress. iii. Hydrostatic Stress When a body is subjected to a uniform force from all sides, then the corresponding stress is called

2 hydrostatic stress. STRAIN: Strainisdefined asthe change indimension (fractional deformation)produced bythe externalforceofthe body.inother wayitcanalsobedefined asthe ration ofthechange in dimensiontotheoriginaldimension.it is a dimensionless quantity as it is a ratio between two quantities of same dimension. TYPESOFSTRESS Stress are classified into three types as follows, Strain Longitudinal Strain Volumetric Strain Shear Strain Longitudinal strain Longitudinal strain of a deformed body is defined as the ratio of the change in length of the body due to the deformation to its original length in the direction of the force. If l is the original length and dl the change in length occurred due to the deformation, the Longitudinal strain Changein Length l Longitudinal Strain original length l Linear strain may be a tensile strain, or a compressive strain according as l refers to an increase in length or a decrease in length of the body. If we consider one of these as +ve then the other should be considered as ve, as these are opposite in nature. Volumetric Strain Volumetric strain of a deformed body is defined as the ratio of the change in volume of the body to the deformation to its original volume. If V is the original volum and V the change in volume occurred due to the deformation, the volumetric strain is given by

3 Changein volume V VolumeStrain original volume V When a force is applied uniformly and normally to the entire surface of the body, then there will be a change in volume of the body, without any change in its shape. This strain is called bulk or volumetric strain. Shear strain Shear strain is defined as the strain accompanying a shearing action. It is the angle in radian measure through which the body gets distorted when subjected to an external shearing action. It is denoted by. Consider a cube ABCD subjected to equal and opposite forces Q across the top and bottom forces AB and CD. If the bottom face is taken fixed, the cube gets distorted through angle to the shape ABC D. Now strain or deformation per unit length is Shear strain () of cube = CC / CD = CC / BC = Deformation / Original length. Hooke s Law Hooke s law states that stress is proportional to strain upto elastic limit Stress α Strain Stress = E x Strain Modulus of elasticity (E) = Stress/ Strain

4 Modulus of Elasticity As there are three types of stress and strain, therefore, the modulus of elasticity is of three types 1.Young's modulus (Y).Bulk modulus or volume elasticity (k).modulus of rigidity or shear modulus (η) 1. Young's Modulus : The ratio of tensile or longitudinal stress to tensile or longitudinal strain of a material body is called Young's modulus. longitudinal stress Young ' s modulus longitudinal strain Y F / A FL L / L AL N/m Consider a wire of length L having uniform cross sectional area 'A'. One end of wire is tied to a rigid support while lower end or free end is loaded (or) stretched by a force F as shown in fig. The wi re elongates through l due to the applied force F. The longitudinal stress = F/A The longitudinal strain = i/l

5 F / A FL Y L / L AL It is different for different materials. N/m.Bulk modulus or volume elasticity (K): The ratio of volume stress to volume strain of a material body is calledbulk modulus. Not all deformations are linear. Sometimes an applied stress F/A results in a decrease of volume and the strain produced is a bulk modulus (K) of elasticity. The negative sign in the equation indicates that when pressure increases, volume decreases. Thus, the Bulk modulus can alternatively be defined as the product of volume and negative gradient of pressure with respect to volume. This property possess by solid, liquid and gases. It depends upon temperature and material. Compressibility : body. Compressibility is reciprocal of Bulk modulus. i.e. ratio of volume strain tovolume stress of a material The SI and CGS units are m /N and cm /dyne respectively. The dimensions are [M-1 L1 T].. Modulus rigidity (n) The ratio of tangential stress to shearing strain, within the elastic limits. Rigidity modulus (n) = Tangential stress / Shearing strain = F/A N/m

6 This property possesses by solids only. All three types of modulus of elasticity or elastic constants have same units and dimensions i.e. N/m and [M1 L-1 T-] respectively. Poisson's ratio: When a wire is stretched, its length increases, however at the same time its diameter decreases. The longitudinal elongation strain produced in the wire. The wire also gets contraction hence contraction strain is produced in the wire. The ratio of the lateral contraction strain to the longitudinal elongation strain is a constant and is called as the Poisson's ratio (σ) for the material. Consider a wire of length L and diameter D. If l is the increase in its length and d is decrease in its diameter, under the application of a force then, Longitudin al elongation strain l L

7 and Lateral contraction strain d D By definition of Poisson s ratio Lateral contraction strain Longitudinal elongation strain d / D l L Ld ld It is the ratio of two similar quantities, therefore it has no unit and dimensions. It is a pure number. It's maximum value is 0.5 and minimum value is -1. In most of the metals, its value is about 0.. Bending of Beams Beam: A beam is defined as a rod or bar. Circular or rectangular of uniform cross section whose length is very much greater than its other dimensions,such as breadth and thickness. It is commonly used in the construction of bridges to support roofs of the buildings etc. since the length of the beam is much greater than its other dimensions the shearing stresses are very small. Assumptions: While studying about the bending of beams, the following assumptions have to be made. 1. The length of the beam should be large compared to other dimensions.. The load(forces) applied should be large compared to the weight of the beam. The cross-section of the beam remains constant and hence the geometrical moment of inertia 1 9 also remains constant 4. The shearing stresses are negligible 5. The curvature ofthe beam is very small Bending of a Beam and neutral axis Let us consider a beam of uniform rectangular cross-section in the figure. A beam may be assumed to consist of a number of parallel longitudinal metallic fibers placed one over the other and are called as filaments as shown in the figure.

8 Let the beam be subjected to deforming forces at its ends as shown in the figure. Due to the deforming force the beam bends. We know the beam consists of many filaments. Let us consider a filament AB at the center of the beam. It is found that the filaments (layers) lying above AB gets elongated, while the filaments lying below AB gets compressed. Therefore the filament i.e. layer AB which remains u n a l t e r e d taken as the reference axis called as Neutral axis and the plane is called as neutral plane. Further, the deformation of any filament can be measured with reference to the neutral axis.

9 Bending moment of beam equation Q q The moment of couple due to elastic reactions (restoring couple) which balances the bending couple due to applied load is called the bending moment. Let us consider a beam under the action of deforming forces. The beam bends into a circular arc as shown in the fig. Let ABCD represent a small section of bent beam. Let PQ be the neutral axis of the beam and P Q be another filament at distance y from PQ. If R is the radius of curvature of the neutral axis of the and is the angle subtended by it at its centre of curvature C. Then we can write original length PQ = Radius x Angle = R...(1) If R+y is the radius of curvature of the filament P Q. Then we have P Q = (R+y)...() Extension Produced in the filament P Q Due to bending = P Q - PQ = (R+y)-R

10 = y...() The strain on the filament = Extensionproduced Originallength y = R y R...(4) The Young s modulus of the filament P Q Stress Y = Strain Stress Y xstrain y Yy z Y...(5) R R If A is the area of cross-section of the filament, then the force on the Filament. F Stressx Area Yy = xa R Y F xay...(6) R We know, moment of longitudinal force about the neutral axis = Force x distance = F x y = Y ay R The moment of all the forces about the Y Neutral axis ay...(7) R Here, I g = ay = AK is called as the geometrical moment of inertia. Where, A Total area of the beam K Radius of Gyration

11 Total moment of all the forces (or) YI g Internalbendingmoment...(8) R Case (i) Rectangular section Geometrical moment of inertia of rectangular section of a beam having breadth b and depth d, bd I g 1 Hence, bending moment for a rectangular section = Y bd R 1...(9) Case (ii) Circular section Geometrical moment of circular section of a beam of radius r, r I g 4 Hence bending moment for a circular section = Y r R (10) Uniform Bending Elevation at the centre of the beam loaded at both ends. Fig.a

12 Let us consider a beam AB of negligible mass, supported symmetrically on two knife edges C and D. It is loaded with equal weight W at each end. Let l be the length between the two knife edges and a be the length between the knife edge and the load. CD = l and CA =DB = a Due to the applied load the beam bends into an arc of circle and procedures an elevation y.let P be any section of the beam. At the equilibrium position of the section PA of the beam two equal forces, the applied load W at A (download) and the normal reaction W at C (upward) are acting in the opposite direction constitute a couple. The External bending moment = Wa...(1) Internalbendingmoment Where, R is the radius of curvature. At Equilibrium, YI g...() External bending moment = Internal bending moment R YI g W a...() R Since, Wa is a constant, R is also constant. Therefore the beam bends into an arc of a circle of radius R. Hence the bending in this case is said to be uniform. From the figure (b), we have R y l l y Fig. b

13 If, R>>>y then R-y = R then l R 8 y Ry l 4...(4) Substituting (4) in () Y I g Wa l 8y The Elevation Wal y 8 YI g...(5) When, the Elevation h is measured, Young s modulus of the material of the beam can be calculated as, Y Wal 8yI g...(6) Case (i) Rectangular Section In the case of rectangular section beam. bd I g 1, where b is the breadth and d is the thickness of the Hence the elevation of the beam of rectangular section. Wal 1 y 8Y bd W al y...(7) Ybd Case (ii): Circular Section In the case of circular section where r I g 4 4, r is the radius of the beam.

14 Hence, the elevationh of the beam of circular section Wal 4 y 8Y r y Wal Y r...(8) Experiment 4 4 Construction: A rectangular beam AB of uniform section is supported horizontally on two knife edges A and B as shown in Figure. Two weight hangers of equal masses are suspended from the ends of the beam. A pin is arranged vertically at the mid-point of the beam. A microscope is focused on the tip of the pin. Procedure A dead loads are attached to the hangers. The microscope is adjusted such that the horizontal cross-wire coincides with the tip of the image of the pin and the readings on the vertical scale are taken. Equal weights i n s t e p s o f 5 0 g are added to both hangers simultaneously and the reading of the microscope in the vertical scale in noted. The experiment is repeated for decreasing order of magnitude of the equal masses. The observations are then tabulated and the mean elevation (y) at the mid point of the bar is determined. Observation

15 s.no Load Microscope reading mean (M/y) 1 W Loading Unloading Elevation(y) MSR VSC div TR div MSR VSC div TR div X10 - m metre Kg/m Cm Cm W+50 W W W+00 The mean elevation y produced by an addition of M say 50 gm is found by the formula. Wal y 8 YI g... (1) If the given beam is rectangular in shape bd I g 1... () Where b is the breadth and d is the thickness of the beam. Also, the weight W = Mg... () Substitute () and () in (1) we have, Mgal 1 y 8Y bd Mgal y Ybd The length of the bar between the knife edges l is measured. The distance of one of the weight hangers from the nearest knife edge a is measured. The breadth (b) and thickness (d) of the bar are measured by using vernier calipers and screw gauge. The young s modulus of the material of the beam is determined by the relation

16 Mgal Y ybd N m gal Y bd M y N m Graphical method (or) Dynamical method A graph is drawn between load (M) along x axis and elevation (y) along y axis.it is found to be a straight line as shown in fig. The slope of the straight line gives the value of y/m. Hence Young s modulus can be calculated as 1/slope = AC/BC = M/y gal bd 1 Slope N m Y DEPRESSIONOFACANTILEVER orpa Cantilever: It is a beam fixed horizontally at one end and loaded at the other end.

17 Theory Let us consider a beam fixed at one end and loaded at its other free end as shown in fig. Let AB is the neutral axis of a cantilever (a beam or rod)of length l is fixed at the end A and loaded at the free end B by a weight W.The end B is depressed to B. BB represents the vertical depression at the free end. Due to the load applied at the free end, a couple is created between the two forces. (i.e) (i) (ii) Force (load W ) applied at the free end towards downward direction and Reaction (R) acting in the upward direction at the supporting end. This external bending couple tends to bend the beam in the clockwise direction. But, since one end of the beam is fixed, the beam cannot rotate. Therefore the external bending couple must be balanced by another equal and opposite couple, created due to the elastic nature of the body called as internal bending moment. Consider the section of the cantilever P at a distance x from the fixed end A. Q is an other point at a distance dx form P i.e., PQ = dx. It is a distance (l-x) from the loaded end B.Considering the equilibrium of the portion PB,there is a force of reaction Wof P. The external bending moment=w xpb =W(l-x) (1) Internal bending moment of the cantilever = YI R Where Y Young s modulus of the cantilever. I- Geometricalmomentofinertia of its cross-section.r- Radius of the curvature of the neutralaxis at P. In the equilibrium position, External bending moment = Internal bending moment

18 YI g w( l x) R YI R w l g x..() Since P and Q are very near, we can assume that the radius of curvature R is practically the same. The tangents are drawn at P and Q meeting the vertical line BB at C and D. Let d be the angle between the tangents at P and Q. Length dx = radius x angle = Rd Then the angle POQ = dx d R.() Substituting the value of R from () in (), we have dxw ( l x) d.(4) YI g If dy is the depression due to the curvature at PQ dy l xd (5) Substituting value of d, dxw l x dy l x YI g W l x = Yi g dx (7) Total depression at the free end of the cantilever y l dy l 0 0 W ( l x) YI g dx W YI g l l x 0 dx

19 W YI l g 0 l x xl dx W YI g l x x xl l 0 W YI g l l l Depression of the cantilever at free end, y w YI g l If the depression y is meadured, Young s modulus of the material of the beam can be calculated as Wl Y yi Mgl g yi g Case (i) Rectangular Section In the case of rectangular section, bd I g, where b is the breadth and d is the thickness of the beam. 1 Hence, the depression of a cantilever of rectangular section

20 Case (ii) Circular section Wl 1 y Y bd 4wl y Ybd In the case of circular section, r I g 4 4, where r is the radius Hence, the depression of a cantilever of circular section, Wl 4 y Y r 4Wl y Yr 4 4 Experimental determination of Young s modulus by Cantilever Depression Construction: One end of the beam is rigidly clamped at one end to the edge of the tableusing G- clamp. A tall pin P is fixed vertically to the free end of the bar. A loop of cotton string or a hook is attached to this end of the bar and a weight hanger is suspended from it. A travelling microscope is focused on the tip of the pin as shown in fig. Procedure: A dead load without any slotted weights is attached to the hook. The microscope is adjusted such that the horizontal cross wire coincides with the tip of the image of the pin and the reading on the vertical scale is taken. Loads are added to the hanger in steps of 50g and every time, the readings are noted on the vertical scale.

21 These observations are also repeated while unloading in the same steps and the readings are tabulated.the mean depression y for a load M kg is found from the tabulated readings. The observations are tabulated as follows s.no Load (M) Kg 1 W Microscope reading mean (M/y) Loading Unloading Depression(y) MSR VSCdiv TRdiv MSR VSC div TR div X10 - m metre Kg/m Cm Cm W+50 W W W+00 Theoretically, we know the depression (y) produced by an addition of load Mkg (say 50g) is found by the formula. y Wl YI g (1) Where l is the length of the beam, b is the breadth of the beam and d is the thickness of the beam.,i g the geometric moment of inertia. If the given cantilever is rectangular in dimension,

22 I g bd 1 () Where b is the breadth and d is the thickness of the beam. Also, the weight W = Mg..() Substituting W and I g in (1) Mgl y 1 4Mgl Y bd Ybd 4Mgl Y bd y Young s modulus (or) N m Y 4gl bd M y N m.(4) Graphical method A graph is Plot between the load (M)and depression (y) along x and y axis respectively. The graph is a straight line as shown in fig. Equation (4) can also be written as 4gl bd 1. slope Y N m or Pa

23 By substituting the slope value from the graph in the above formula Young s modulus of the beam can be calculated. GIRDER A girder is a support beam used in construction. Girder is the term used to denote the main horizontal support of a structure, which supports smaller beams. A girder is commonly used more in the building of bridges and planes. I-Shape Girders The girders with upper and lower section broadened and the middle section tapered, so that it can withstand heavy loads over it is called as I-shape girders. The cross section of the girder takes the shape of the capital letter I as shown in fig. The vertical plate in the middle is known as the web and the top and bottom plates are referred to as flanges, steel is one of the most common material used to make I- beams, since it can withstand very heavy loads, although other materials, such as aluminium are sometimes used.

24 When a beam is used as a girder for a given load, depression must be minimum. We know that the depression at the mid point of a beam loaded at that point is given by 4Mgl y for a given load. Ybd Here, the depression can be minimised by, 1. Decreasing the load (Mg). Decreasing the length (l). Increasing the Young s modulus (Y) 4. Increasing the breadth (b) 5. Increasing the thickness of the girder (d) Since the length (l) and Young s modulus (Y) of the beam are the fixed quantity, it can not be altered. Therefore the breadth and thickness are adjusted to minimise the depression. Thus the girders are made of I shape and are called I shape girders. Applications of I- shape girders 1. Support beam for commercial and residential construction.. Support frames and coloumns for trolley ways, lifts and hoists.. Construction of platforms. 4. Trailer and truck bed framing. 5. Construction of bridges. 6. Machine bases. 7. Iron rails exclude in railway tracks. Advantages: 1. As the layers of the beam at top and bottom are subjected to maximum stress more material must be needed at these layers to withstand the strain.. As the stress around the neutral layer is small, material in these regions canbe removed without loss of efficiency. This would save cost of material of the girder.

25

26

UNIT-II. Engineering Physics-I PH Properties of Matter. Prepared by Dr.N.R.SHEELA (Asst.Prof) Dept. Of Applied Physics SVCE

UNIT-II. Engineering Physics-I PH Properties of Matter. Prepared by Dr.N.R.SHEELA (Asst.Prof) Dept. Of Applied Physics SVCE Engineering Physics-I PH 6151 UNIT-II Properties of Matter Prepared by Dr.N.R.SHEELA (Asst.Prof) Dept. Of Applied Physics SVCE Content of the UNIT-II (Properties of Matter) Elasticity-Hooke s Law- Relationship

More information

Figure 3.1 Young s modulus - Non-uniform bending

Figure 3.1 Young s modulus - Non-uniform bending Figure 3.1 Young s modulus - Non-uniform bending Figure 3.2 Model Graph Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 21 Young s Modulus - Non-uniform Bending Expt.

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

More information

Course: US01CPHY01 UNIT 1 ELASTICITY I Introduction:

Course: US01CPHY01 UNIT 1 ELASTICITY I Introduction: Course: US0CPHY0 UNIT ELASTICITY I Introduction: If the distance between any two points in a body remains invariable, the body is said to be a rigid body. In practice it is not possible to have a perfectly

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS MECHANICA PROPERTIES OF SOIDS Important Points: 1. Elasticity: The property of a body by virtue of which it regains its original size and shape when deformation force is removed is called elasticity. Ex:

More information

Class XI Chapter 9 Mechanical Properties of Solids Physics

Class XI Chapter 9 Mechanical Properties of Solids Physics Book Name: NCERT Solutions Question : A steel wire of length 4.7 m and cross-sectional area 5 3.0 0 m stretches by the same 5 amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 0 m

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS INTRODUCTION A rigid body generally means a hard solid object having a definite shape and size. But in reality, bodies can be stretched, compressed and bent. Even the appreciably rigid steel bar can be

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM

OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM EXPERIMENT Spring-Mass System and a Torsional Pendulum OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM Structure.1 Introduction Objectives. Determination of Spring Constant Static Method

More information

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions Downloaded from Class XI Physics Ch. 9: Mechanical Properties of solids NCERT Solutions Page 242 Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount

More information

Strength of Materials (15CV 32)

Strength of Materials (15CV 32) Strength of Materials (15CV 32) Module 1 : Simple Stresses and Strains Dr. H. Ananthan, Professor, VVIET,MYSURU 8/21/2017 Introduction, Definition and concept and of stress and strain. Hooke s law, Stress-Strain

More information

Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Question Figure shows the strain-stress curve for a given material. What are (a) Young s modulus and (b) approximate yield strength for this material?

Question Figure shows the strain-stress curve for a given material. What are (a) Young s modulus and (b) approximate yield strength for this material? Question. A steel wire of length 4.7 m and cross-sectional area 3.0 x 10-5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 x 10-5 m 2 under a given load.

More information

Mechanics of Structure

Mechanics of Structure S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI

More information

Question 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of cross-section of the steel wire, A 1 = m 2

Question 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of cross-section of the steel wire, A 1 = m 2 Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

More information

Mechanics of Solids notes

Mechanics of Solids notes Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

More information

Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee

Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Lecture - 28 Hi, this is Dr. S. P. Harsha from Mechanical and

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

Unit I Stress and Strain

Unit I Stress and Strain Unit I Stress and Strain Stress and strain at a point Tension, Compression, Shear Stress Hooke s Law Relationship among elastic constants Stress Strain Diagram for Mild Steel, TOR steel, Concrete Ultimate

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Chapter 13 ELASTIC PROPERTIES OF MATERIALS

Chapter 13 ELASTIC PROPERTIES OF MATERIALS Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

Reg. No. : Question Paper Code : B.Arch. DEGREE EXAMINATION, APRIL/MAY Second Semester AR 6201 MECHANICS OF STRUCTURES I

Reg. No. : Question Paper Code : B.Arch. DEGREE EXAMINATION, APRIL/MAY Second Semester AR 6201 MECHANICS OF STRUCTURES I WK 4 Reg. No. : Question Paper Code : 71387 B.Arch. DEGREE EXAMINATION, APRIL/MAY 2017. Second Semester AR 6201 MECHANICS OF STRUCTURES I (Regulations 2013) Time : Three hours Maximum : 100 marks Answer

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3. ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Unit Workbook 1 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit Workbook 1 Level 4 ENG U8 Mechanical Principles 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 8: Mechanical Principles Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Static Mechanical Systems Page 1 of 23 1.1 Shafts

More information

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR.

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. IBIKUNLE ROTIMI ADEDAYO SIMPLE HARMONIC MOTION. Introduction Consider

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics)

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics) Week 7, 14 March Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics) Ki-Bok Min, PhD Assistant Professor Energy Resources Engineering i Seoul National University Shear

More information

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus PhysicsndMathsTutor.com Which of the following correctly defines the terms stress, strain and Young modulus? 97/1/M/J/ stress strain Young modulus () x (area) (extension) x (original length) (stress) /

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

TO DETERMINE YOUNG S MODULUS OF ELASTICITY OF THE MATERIAL OF A BAR BY THE METHOD OF FLEXURE

TO DETERMINE YOUNG S MODULUS OF ELASTICITY OF THE MATERIAL OF A BAR BY THE METHOD OF FLEXURE TO DETERMINE YOUNG S MODULUS OF ELASTICITY OF THE MATERIAL OF A BAR BY THE METHOD OF FLEXURE Aim: To determine the Young s modulus elasticity the given material. Apparatus: meter, screw gauge, spherometer

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

(1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc.

(1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc. PhysicsAndMathsTutor.com 1 Q1. (a) Define the density of a material....... (1) (b) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc. density of copper =

More information

2/28/2006 Statics ( F.Robilliard) 1

2/28/2006 Statics ( F.Robilliard) 1 2/28/2006 Statics (.Robilliard) 1 Extended Bodies: In our discussion so far, we have considered essentially only point masses, under the action of forces. We now broaden our considerations to extended

More information

Inclined plane with protractor and pulley, roller, weight box, spring balance, spirit level, pan and thread.

Inclined plane with protractor and pulley, roller, weight box, spring balance, spirit level, pan and thread. To find the downward force, along an inclined plane, acting on a roller due to gravity and study its relationship with the angle of inclination by plotting graph between force and sin θ. Inclined plane

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

ANALYSIS OF STRAINS CONCEPT OF STRAIN

ANALYSIS OF STRAINS CONCEPT OF STRAIN ANALYSIS OF STRAINS CONCEPT OF STRAIN Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in length. If the bar has an original length L and changes by an

More information

M15e Bending of beams

M15e Bending of beams Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M5e Bending of beams Tasks. Determine Young s modulus E for two metal rods of different material but of the same crosssectional form

More information

MANONMANIAM SUNDARANAR UNIVERSITY. B.Sc. PHYSICS - I YEAR. DJK1A - PROPERTIES OF MATTER (From the academic year )

MANONMANIAM SUNDARANAR UNIVERSITY. B.Sc. PHYSICS - I YEAR. DJK1A - PROPERTIES OF MATTER (From the academic year ) MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION TIRUNELVELI 627012, TAMIL NADU B.Sc. PHYSICS - I YEAR DJK1A - PROPERTIES OF MATTER (From the academic year 2016-17) Most

More information

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains STRENGTH OF MATERIALS-I Unit-1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

Sample Question Paper

Sample Question Paper Scheme I Sample Question Paper Program Name : Mechanical Engineering Program Group Program Code : AE/ME/PG/PT/FG Semester : Third Course Title : Strength of Materials Marks : 70 Time: 3 Hrs. Instructions:

More information

MECE 3321: Mechanics of Solids Chapter 6

MECE 3321: Mechanics of Solids Chapter 6 MECE 3321: Mechanics of Solids Chapter 6 Samantha Ramirez Beams Beams are long straight members that carry loads perpendicular to their longitudinal axis Beams are classified by the way they are supported

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70 Class XI Physics Syllabus 2013 One Paper Three Hours Max Marks: 70 Class XI Weightage Unit I Physical World & Measurement 03 Unit II Kinematics 10 Unit III Laws of Motion 10 Unit IV Work, Energy & Power

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 0 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 TIME SCHEDULE Module Topics Period Moment of forces Support reactions Centre

More information

CHAPTER 6: Shearing Stresses in Beams

CHAPTER 6: Shearing Stresses in Beams (130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.

More information

CHAPTER 4. Stresses in Beams

CHAPTER 4. Stresses in Beams CHAPTER 4 Stresses in Beams Problem 1. A rolled steel joint (RSJ) of -section has top and bottom flanges 150 mm 5 mm and web of size 00 mm 1 mm. t is used as a simply supported beam over a span of 4 m

More information

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALS-I 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus

More information

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Module 3 Lecture 6 Internal Forces Today, we will see analysis of structures part

More information

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS Unit 2: Unit code: QCF Level: 4 Credit value: 15 Engineering Science L/601/1404 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS 1. Be able to determine the behavioural characteristics of elements of static engineering

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN 1 Static and dynamic forces Forces: definitions of: matter, mass, weight,

More information

Only for Reference Page 1 of 18

Only for Reference  Page 1 of 18 Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

More information

ELASTIC PROPERTIES OF SOLIDS

ELASTIC PROPERTIES OF SOLIDS Elastic Properties of Solids MODULE - 2 and luids 8 ELASTIC PROPERTIES O SOLIDS In the previous lessons you have studied the effect of force on a body to produce displacement. The force applied on an object

More information

Cornu s method for the determination of elastic constants of a Perspex beam Surjeet Singh

Cornu s method for the determination of elastic constants of a Perspex beam Surjeet Singh Cornu s method for the determination of elastic constants of a Perspex beam Surjeet Singh Indian Institute of Science Education and Research Pune surjeet.singh@iiserpune.ac.in Objective: Using Cornu s

More information

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY UNIVERSITY PHYSICS I Professor Meade Brooks, Collin College Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY Two stilt walkers in standing position. All forces acting on each stilt walker balance out; neither

More information

DECLARATION. Supervised by: Prof Stephen Mutuli

DECLARATION. Supervised by: Prof Stephen Mutuli DECLARATION The work presented in this project is the original work, which to the best of our knowledge has never been produced and presented elsewhere for academic purposes... EYSIMGOBANAY K. J F18/1857/006

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

DEPARTMENT OF CIVIL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SUBJECT: CE 2252 STRENGTH OF MATERIALS UNIT: I ENERGY METHODS 1. Define: Strain Energy When an elastic body is under the action of external

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

Q1. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod.

Q1. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod. PhysicsAndMathsTutor.com 1 Q1. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod. The rod is supported horizontally by two wires, P and Q and is in equilibrium.

More information

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure. CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

More information

Determination of Young s modulus of glass by Cornu s apparatus

Determination of Young s modulus of glass by Cornu s apparatus Determination of Young s modulus of glass b Cornu s apparatus Objective To determine Young s modulus and Poisson s ratio of a glass plate using Cornu s method. Theoretical Background Young s modulus, also

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

Direct (and Shear) Stress

Direct (and Shear) Stress 1 Direct (and Shear) Stress 3.1 Introduction Chapter 21 introduced the concepts of stress and strain. In this chapter we shall discuss direct and shear stresses. We shall also look at how to calculate

More information

Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

More information

MEASUREMENT OF THE MODULUS OF ELASTICITY OF SCALES MADEOF DIFFERENT MATERIALS USING THE CANTILEVER BEAM EXPERIMENT by

MEASUREMENT OF THE MODULUS OF ELASTICITY OF SCALES MADEOF DIFFERENT MATERIALS USING THE CANTILEVER BEAM EXPERIMENT by MEASUREMENT OF THE MODULUS OF ELASTICITY OF SCALES MADEOF DIFFERENT MATERIALS USING THE CANTILEVER BEAM EXPERIMENT by 1: Morka J.C. Department of physics, College of Education, Agbor : Esiekpe Lawrence

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.

More information