arxiv: v1 [math.pr] 13 Oct 2011

Size: px
Start display at page:

Download "arxiv: v1 [math.pr] 13 Oct 2011"

Transcription

1 A tail iequality for quadratic forms of subgaussia radom vectors Daiel Hsu, Sham M. Kakade,, ad Tog Zhag 3 arxiv:0.84v math.pr] 3 Oct 0 Microsoft Research New Eglad Departmet of Statistics, Wharto School, Uiversity of Pesylvaia 3 Departmet of Statistics, Rutgers Uiversity October 4, 0 Abstract We prove a expoetial probability tail iequality for positive semidefiite quadratic forms i a subgaussia radom vector. The boud is aalogous to oe that holds whe the vector has idepedet Gaussia etries. Itroductio Suppose that x = x,...,x ) is a radom vector. Let A R m be a fixed matrix. A atural quatity that arises i may settigs is the quadratic form Ax = x A A)x. Throughout v deotes the Euclidea orm of a vector v, ad M deotes the spectral operator) orm of a matrix M. We are iterested i how close Ax is to its expectatio. Cosiderthespecial casewherex,...,x areidepedetstadardgaussiaradomvariables. The followig propositio provides a upper) tail boud for Ax. Propositio. Let A R m be a matrix, ad let Σ := A A. Let x = x,...,x ) be a isotropic multivariate Gaussia radom vector with mea zero. For all t > 0, Pr Ax > trσ)+ ] trσ )t+ Σ t e t. The proof, give i Appedix A., is straightforward give the rotatioal ivariace of the multivariate Gaussia distributio, together with a tail boudfor liear combiatios of χ radom variables due to Lauret ad Massart 000). We ote that a slightly weaker form of Propositio ca be proved directly usig Gaussia cocetratio Pisier, 989). I this ote, we cosider the case where x = x,...,x ) is a subgaussia radom vector. By this, we mea that there exists a σ 0, such that for all α R, E exp α x )] exp α σ / ). We provide a sharp upper tail boud for this case aalogous to oe that holds i the Gaussia case ideed, the same as Propositio whe σ = ). dahsu@microsoft.com, skakade@wharto.upe.edu, tzhag@stat.rutgers.edu

2 Tail iequalities for sums of radom vectors Oe motivatio for our mai result comes from the followig observatios about sums of radom vectors. Let a,...,a be vectors i a Euclidea space, ad let A = a a ] be the matrix with a i as its ith colum. Cosider the squared orm of the radom sum Ax = a i x i where x := x,...,x ) is a martigale differece sequece with Ex i x,...,x i ] = 0 ad Ex i x,...,x i ] = σ. Uder mild boudedess assumptios o the x i, the probability that the squared orm i ) is much larger tha its expectatio E Ax ] = σ a i = σ tra A) falls off expoetially fast. This ca be show, for istace, usig the followig lemma by takig u i = a i x i the proof is stadard, but we give it for completeess i Appedix A.). Propositio. Let u,...,u be a martigale differece vector sequece i.e., Eu i u,...,u i ] = 0 for all i =,...,) such that E u i ] u,...,u i v ad ui b for all i =,...,, almost surely. For all t > 0, Pr u i > v + ] 8vt+4/3)bt e t. After squarig the quatities i the stated probabilistic evet, Propositio gives the boud Ax σ tra A)+σ O tra A) t+t)+ tra A)max i ) ) a i t+t 3/ )+max a i t i with probability at least e t whe the x i are almost surely bouded by or ay costat). Ufortuately, this boud obtaied from Propositio ca be suboptimal whe the x i are subgaussia. For istace, if the x i are Rademacher radom variables, so Prx i = +] = Prx i = ] = /, the it is kow that ) Ax tra A)+O tra A) )t+ A t ) with probability at least e t. A similar result holds for ay subgaussia distributio o the x i Haso ad Wright, 97). This is a improvemet over the previous boud because the deviatio terms i.e., those ivolvig t) ca be sigificatly smaller, especially for large t. I this work, we give a simple proof of ) with explicit costats that match the aalogous boud whe the x i are idepedet stadard Gaussia radom variables.

3 Positive semidefiite quadratic forms Our mai theorem, give below, is a geeralizatio of ). Theorem. Let A R m be a matrix, ad let Σ := A A. Suppose that x = x,...,x ) is a radom vector such that, for some µ R ad σ 0, )] E exp α x µ) exp α σ / ) 3) for all α R. For all t > 0, Pr Ax > σ trσ)+ ) trσ )t+ Σ t + Aµ Σ ) / ) ] / +4 trσ ) t + 4 Σ trσ ) t e t. Remark. Note that whe µ = 0 ad σ = we have: Pr Ax > trσ)+ ] trσ )t+ Σ t e t which is the same as Propositio. Remark. Our proof actually establishes the followig upper bouds o the momet geeratig fuctio of Ax for 0 η < /σ Σ ): E exp η Ax )] E exp σ A z η +µ A z )] η exp σ trσ)η + σ4 trσ )η + Aµ ) η σ Σ η where z is a vector of m idepedet stadard Gaussia radom variables. Proof of Theorem. Let z be a vector of m idepedet stadard Gaussia radom variables sampled idepedetly of x). For ay α R m, )] E exp z α = exp α / ). Thus, for ay λ R ad ε 0, )] E exp λz Ax E exp λz Ax) ] Ax > ε Pr Ax > ε ] λ ) ε exp Pr Ax > ε ]. 4) Moreover, )] E exp λz Ax = E E exp λz Ax µ)) ] ) ] z exp λz Aµ λ σ )] E exp A z +λµ A z 5) 3

4 Let USV be a sigular value decompositio of A; where U ad V are, respectively, matrices of orthoormal left ad right sigular vectors; ad S = diag ρ,..., ρ m ) is the diagoal matrix of correspodig sigular values. Note that ρ = ρ i = trσ), ρ = ρ i = trσ ), ad ρ = maxρ i = Σ. i By rotatioal ivariace, y := U z is a isotropic multivariate Gaussia radom vector with mea zero. Therefore A z = z US U z = ρ y + +ρ mym ad µ A z = ν y = ν y + +ν m y m, where ν := SV µ ote that ν = SV µ = Aµ ). Let γ := λ σ /. By Lemma, )] γ E exp γ ρ i yi + ν i y i exp ρ γ + ρ γ + ν γ/σ ) 6) σ ρ γ for 0 γ < / ρ ). Combiig 4), 5), ad 6) gives Pr Ax > ε ] exp εγ/σ + ρ γ + ρ γ + ν γ/σ ) ρ γ for 0 γ < / ρ ) ad ε 0. Choosig ε := σ ρ +τ)+ ν + ρ τ ρ ad γ := ) ρ ρ ρ + ρ, τ we have Pr Ax > σ ρ +τ)+ ν + ρ τ ρ ] exp ρ ρ + ρ τ ρ )) = exp ρ ρ h ρ τ ρ + ρ τ ρ )) where h a) := +a +a, which has the iverse fuctio h b) = b+b. The result follows by settig τ := ρ t+ ρ t = trσ )t+ Σ t. The followig lemma is a stadard estimate of the logarithmic momet geeratig fuctio of a quadratic form i stadard Gaussia radom variables, proved much alog the lies of the estimate due to Lauret ad Massart 000). Lemma. Let z be a vector of m idepedet stadard Gaussia radom variables. Fix ay o-egative vector α R m + ad ay vector β Rm. If 0 λ < / α ), the loge exp λ α i zi + )] β i z i α λ+ α λ + β /. α λ 4

5 Proof. Fix λ R such that 0 λ < / α ), ad let η i := / α i λ > 0 for i =,...,m. We have E exp λα i z i +β i z i )] = π exp z i/ ) exp λα i z i +β i z i ) dzi = η i exp β i η i ) πηi exp ηi ) zi β i ηi ) dz i so )] loge exp λ α i zi + β i z i = βiη i + logηi. The right-had side ca be bouded usig the iequalities logηi = log α i λ) = α i λ) j j= j α λ+ α λ α λ ad β iη i β / α λ. Example: fixed-desig regressio with subgaussia oise We give a simple applicatio of Theorem to fixed-desig liear regressio with the ordiary least squares estimator. Let x,...,x be fixed desig vectors i R d. Let the resposes y,...,y be radom variables for which there exists σ > 0 such that )] ) E exp α i y i Ey i ]) exp σ for ay α,...,α R. This coditio is satisfied, for istace, if y i = Ey i ]+ε i α i for idepedet subgaussia zero-mea oise variables ε,...,ε. Let Σ := x ix i we assume is ivertible without loss of geerality. Let ) β := Σ x i Ey i ] /, which be the coefficiet vector of miimum expected squared error. The ordiary least squares estimator is give by ) ˆβ := Σ x i y i. 5

6 The excess loss Rˆβ) of ˆβ is the differece betwee the expected squared error of ˆβ ad that of β: ] Rˆβ) := E x i ˆβ y i ) ] E x i β y i ). It is easy to see that By Theorem, Rˆβ) = Σ / ˆβ β) = Pr Σ / ) x i yi Ey i ]). Rˆβ) > σ d+ dt+t ) ] Note that i the case that Ey i Ey i ]) ] = σ for each i, the ERˆβ)] = σ d ; e t. so the tail iequality above is essetially tight whe the y i are idepedet Gaussia radom variables. Refereces D. L. Haso ad F. T. Wright. A boud o tail probabilities for quadratic forms i idepedet radom variables. The Aals of Mathematical Statistics, 43): , 97. B. Lauret ad P. Massart. Adaptive estimatio of a quadratic fuctioal by model selectio. The Aals of Statistics, 85):30 338, 000. G. Pisier. The volume of covex bodies ad Baach space geometry. Cambridge Uiversity Press, 989. A Stadard tail iequalities A. Martigale tail iequalities The followig is a stadard form of Berstei s iequality stated for martigale differece sequeces. Lemma Berstei s iequality for martigales). Let d,...,d be a martigale differece sequece with respect to radom variables x,...,x i.e., Ed i x,...,x i ] = 0 for all i =,...,) such that d i b ad Ed i x,...,x i ] v. For all t > 0, Pr d i > ] vt+/3)bt e t. The proof of Propositio, which is etirely stadard, is a immediate cosequece of the followig two lemmas together with Jese s iequality. 6

7 Lemma 3. Let u,...,u be radom vectors such that E u i ] u,...,u i v ad ui b. for all i =,...,, almost surely. For all t > 0, ] Pr u i E u i > ] 8vt+4/3)bt e t. Proof. Let s := u + +u. Defie the Doob martigale d i := E s u,...,u i ] E s u,...,u i ] for i =,...,, so d + +d = s E s ]. First, clearly, Ed i u,...,u i ] = 0. Next, the triagle iequality implies d i = E s u i )+u i u,...,u i ] E s u i )+u i u,...,u i ] E s u i + u i u,...,u i ] E s u i u i u,...,u i ] = u i +E u i u,...,u i ], ad similarly, d i u i E u i u,...,u i ]. Therefore, Moreover, so d i u i +E u i u,...,u i ] b almost surely. E d i u,...,u i ] E u i + u i E u i u,...,u i ] +E u i u,...,u i ] u,...,u i ] = E u i u,...,u i ] +3 E ui u,...,u i ] 4 E u i ] u,...,u i, E d i u ],...,u i 4v almost surely. The claim ow follows from Berstei s iequality Lemma ). Lemma 4. If u,...,u is a martigale differece vector sequece i.e., Eu i u,...,u i ] = 0 for all i =,...,), the ] E u i = E u i ]. Proof. Let s i := u + +u i for i =,...,; we have E s ] = E E u +s ]] u,...,u ]] = E E u +u s + s u,...,u so the claim follows by iductio. = E u ] +E s ] 7

8 A. Gaussia quadratic forms ad χ tail iequalities It is well-kow that if z N0,) is a stadard Gaussia radom variable, the z follows a χ distributio with oe degree of freedom. The followig iequality due to Lauret ad Massart 000) gives a boud o liear combiatios of χ radom variables. Lemma 5 χ tailiequality; Lauret ad Massart,000). Let q,...,q be idepedet χ radom variables, each with oe degree of freedom. For ay vector γ = γ,...,γ ) R + with o-egative etries, ad ay t > 0, ] Pr γ i q i > γ + γ t+ γ t e t. Proof of Propositio. Let VΛV be a eige-decompositio of A A, where V is a matrix of orthoormal eigevectors, ad Λ := diagρ,...,ρ ) is the diagoal matrix of correspodig eigevalues ρ,...,ρ. By the rotatioal ivariace of the distributio, z := V x is a isotropic multivariate Gaussia radom vector with mea zero. Thus, Ax = z Λz = ρ z + +ρ z, ad the zi are idepedet χ radom variables, each with oe degree of freedom. The claim ow follows from a tail boud for χ radom variables Lemma 5, due to Lauret ad Massart, 000). 8

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

A Risk Comparison of Ordinary Least Squares vs Ridge Regression

A Risk Comparison of Ordinary Least Squares vs Ridge Regression Joural of Machie Learig Research 14 (2013) 1505-1511 Submitted 5/12; Revised 3/13; Published 6/13 A Risk Compariso of Ordiary Least Squares vs Ridge Regressio Paramveer S. Dhillo Departmet of Computer

More information

The random version of Dvoretzky s theorem in l n

The random version of Dvoretzky s theorem in l n The radom versio of Dvoretzky s theorem i l Gideo Schechtma Abstract We show that with high probability a sectio of the l ball of dimesio k cε log c > 0 a uiversal costat) is ε close to a multiple of the

More information

arxiv: v1 [math.pr] 4 Dec 2013

arxiv: v1 [math.pr] 4 Dec 2013 Squared-Norm Empirical Process i Baach Space arxiv:32005v [mathpr] 4 Dec 203 Vicet Q Vu Departmet of Statistics The Ohio State Uiversity Columbus, OH vqv@statosuedu Abstract Jig Lei Departmet of Statistics

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

Random Design Analysis of Ridge Regression

Random Design Analysis of Ridge Regression JMLR: Workshop ad Coferece Proceedigs vol 23 202) 9. 9.24 25th Aual Coferece o Learig Theory Radom Desig Aalysis of Ridge Regressio Daiel Hsu Microsoft Research Sham M. Kakade Microsoft Research Tog Zhag

More information

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices A Hadamard-type lower boud for symmetric diagoally domiat positive matrices Christopher J. Hillar, Adre Wibisoo Uiversity of Califoria, Berkeley Jauary 7, 205 Abstract We prove a ew lower-boud form of

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition 6. Kalma filter implemetatio for liear algebraic equatios. Karhue-Loeve decompositio 6.1. Solvable liear algebraic systems. Probabilistic iterpretatio. Let A be a quadratic matrix (ot obligatory osigular.

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

A survey on penalized empirical risk minimization Sara A. van de Geer

A survey on penalized empirical risk minimization Sara A. van de Geer A survey o pealized empirical risk miimizatio Sara A. va de Geer We address the questio how to choose the pealty i empirical risk miimizatio. Roughly speakig, this pealty should be a good boud for the

More information

Matrix Representation of Data in Experiment

Matrix Representation of Data in Experiment Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

More information

On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities

On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities O Equivalece of Martigale Tail Bouds ad Determiistic Regret Iequalities Sasha Rakhli Departmet of Statistics, The Wharto School Uiversity of Pesylvaia Dec 16, 2015 Joit work with K. Sridhara arxiv:1510.03925

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

Lecture 8: October 20, Applications of SVD: least squares approximation

Lecture 8: October 20, Applications of SVD: least squares approximation Mathematical Toolkit Autum 2016 Lecturer: Madhur Tulsiai Lecture 8: October 20, 2016 1 Applicatios of SVD: least squares approximatio We discuss aother applicatio of sigular value decompositio (SVD) of

More information

Lecture 19. sup y 1,..., yn B d n

Lecture 19. sup y 1,..., yn B d n STAT 06A: Polyomials of adom Variables Lecture date: Nov Lecture 19 Grothedieck s Iequality Scribe: Be Hough The scribes are based o a guest lecture by ya O Doell. I this lecture we prove Grothedieck s

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Notes 27 : Brownian motion: path properties

Notes 27 : Brownian motion: path properties Notes 27 : Browia motio: path properties Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces:[Dur10, Sectio 8.1], [MP10, Sectio 1.1, 1.2, 1.3]. Recall: DEF 27.1 (Covariace) Let X = (X

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Asymptotic distribution of products of sums of independent random variables

Asymptotic distribution of products of sums of independent random variables Proc. Idia Acad. Sci. Math. Sci. Vol. 3, No., May 03, pp. 83 9. c Idia Academy of Scieces Asymptotic distributio of products of sums of idepedet radom variables YANLING WANG, SUXIA YAO ad HONGXIA DU ollege

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes The 22 d Aual Meetig i Mathematics (AMM 207) Departmet of Mathematics, Faculty of Sciece Chiag Mai Uiversity, Chiag Mai, Thailad Compariso of Miimum Iitial Capital with Ivestmet ad -ivestmet Discrete Time

More information

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox Poits: 00+ pts total for the assigmet 36-755, Fall 07 Homework 5 Solutio Due Wed Nov 5 by 5:00pm i Jisu s mailbox We first review some basic relatios with orms ad the sigular value decompositio o matrices

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Central limit theorem and almost sure central limit theorem for the product of some partial sums

Central limit theorem and almost sure central limit theorem for the product of some partial sums Proc. Idia Acad. Sci. Math. Sci. Vol. 8, No. 2, May 2008, pp. 289 294. Prited i Idia Cetral it theorem ad almost sure cetral it theorem for the product of some partial sums YU MIAO College of Mathematics

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Regression with an Evaporating Logarithmic Trend

Regression with an Evaporating Logarithmic Trend Regressio with a Evaporatig Logarithmic Tred Peter C. B. Phillips Cowles Foudatio, Yale Uiversity, Uiversity of Aucklad & Uiversity of York ad Yixiao Su Departmet of Ecoomics Yale Uiversity October 5,

More information

Berry-Esseen bounds for self-normalized martingales

Berry-Esseen bounds for self-normalized martingales Berry-Essee bouds for self-ormalized martigales Xiequa Fa a, Qi-Ma Shao b a Ceter for Applied Mathematics, Tiaji Uiversity, Tiaji 30007, Chia b Departmet of Statistics, The Chiese Uiversity of Hog Kog,

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 4 Scribe: Cheg Mao Sep., 05 I this lecture, we cotiue to discuss the effect of oise o the rate of the excess risk E(h) = R(h) R(h

More information

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices Radom Matrices with Blocks of Itermediate Scale Strogly Correlated Bad Matrices Jiayi Tog Advisor: Dr. Todd Kemp May 30, 07 Departmet of Mathematics Uiversity of Califoria, Sa Diego Cotets Itroductio Notatio

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

arxiv: v1 [math.fa] 3 Apr 2016

arxiv: v1 [math.fa] 3 Apr 2016 Aticommutator Norm Formula for Proectio Operators arxiv:164.699v1 math.fa] 3 Apr 16 Sam Walters Uiversity of Norther British Columbia ABSTRACT. We prove that for ay two proectio operators f, g o Hilbert

More information

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences Commuicatios of the Korea Statistical Society 29, Vol. 16, No. 5, 841 849 Precise Rates i Complete Momet Covergece for Negatively Associated Sequeces Dae-Hee Ryu 1,a a Departmet of Computer Sciece, ChugWoo

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013 Large Deviatios for i.i.d. Radom Variables Cotet. Cheroff boud usig expoetial momet geeratig fuctios. Properties of a momet

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector Summary ad Discussio o Simultaeous Aalysis of Lasso ad Datzig Selector STAT732, Sprig 28 Duzhe Wag May 4, 28 Abstract This is a discussio o the work i Bickel, Ritov ad Tsybakov (29). We begi with a short

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate Supplemetary Material for Fast Stochastic AUC Maximizatio with O/-Covergece Rate Migrui Liu Xiaoxua Zhag Zaiyi Che Xiaoyu Wag 3 iabao Yag echical Lemmas ized versio of Hoeffdig s iequality, ote that We

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

Moment-entropy inequalities for a random vector

Moment-entropy inequalities for a random vector 1 Momet-etropy iequalities for a radom vector Erwi Lutwak, Deae ag, ad Gaoyog Zhag Abstract The p-th momet matrix is defied for a real radom vector, geeralizig the classical covariace matrix. Sharp iequalities

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

ECE534, Spring 2018: Solutions for Problem Set #2

ECE534, Spring 2018: Solutions for Problem Set #2 ECE534, Srig 08: s for roblem Set #. Rademacher Radom Variables ad Symmetrizatio a) Let X be a Rademacher radom variable, i.e., X = ±) = /. Show that E e λx e λ /. E e λx = e λ + e λ = + k= k=0 λ k k k!

More information

A remark on p-summing norms of operators

A remark on p-summing norms of operators A remark o p-summig orms of operators Artem Zvavitch Abstract. I this paper we improve a result of W. B. Johso ad G. Schechtma by provig that the p-summig orm of ay operator with -dimesioal domai ca be

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

5 Birkhoff s Ergodic Theorem

5 Birkhoff s Ergodic Theorem 5 Birkhoff s Ergodic Theorem Amog the most useful of the various geeralizatios of KolmogorovâĂŹs strog law of large umbers are the ergodic theorems of Birkhoff ad Kigma, which exted the validity of the

More information

Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector

Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector Dimesio-free PAC-Bayesia bouds for the estimatio of the mea of a radom vector Olivier Catoi CREST CNRS UMR 9194 Uiversité Paris Saclay olivier.catoi@esae.fr Ilaria Giulii Laboratoire de Probabilités et

More information

Statistics 203 Introduction to Regression and Analysis of Variance Assignment #1 Solutions January 20, 2005

Statistics 203 Introduction to Regression and Analysis of Variance Assignment #1 Solutions January 20, 2005 Statistics 203 Itroductio to Regressio ad Aalysis of Variace Assigmet #1 Solutios Jauary 20, 2005 Q. 1) (MP 2.7) (a) Let x deote the hydrocarbo percetage, ad let y deote the oxyge purity. The simple liear

More information

Weighted Approximation by Videnskii and Lupas Operators

Weighted Approximation by Videnskii and Lupas Operators Weighted Approximatio by Videsii ad Lupas Operators Aif Barbaros Dime İstabul Uiversity Departmet of Egieerig Sciece April 5, 013 Aif Barbaros Dime İstabul Uiversity Departmet Weightedof Approximatio Egieerig

More information

The inverse eigenvalue problem for symmetric doubly stochastic matrices

The inverse eigenvalue problem for symmetric doubly stochastic matrices Liear Algebra ad its Applicatios 379 (004) 77 83 www.elsevier.com/locate/laa The iverse eigevalue problem for symmetric doubly stochastic matrices Suk-Geu Hwag a,,, Sug-Soo Pyo b, a Departmet of Mathematics

More information

ON SOME INEQUALITIES IN NORMED LINEAR SPACES

ON SOME INEQUALITIES IN NORMED LINEAR SPACES ON SOME INEQUALITIES IN NORMED LINEAR SPACES S.S. DRAGOMIR Abstract. Upper ad lower bouds for the orm of a liear combiatio of vectors are give. Applicatios i obtaiig various iequalities for the quatities

More information

ECE 901 Lecture 13: Maximum Likelihood Estimation

ECE 901 Lecture 13: Maximum Likelihood Estimation ECE 90 Lecture 3: Maximum Likelihood Estimatio R. Nowak 5/7/009 The focus of this lecture is to cosider aother approach to learig based o maximum likelihood estimatio. Ulike earlier approaches cosidered

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

Quantile regression with multilayer perceptrons.

Quantile regression with multilayer perceptrons. Quatile regressio with multilayer perceptros. S.-F. Dimby ad J. Rykiewicz Uiversite Paris 1 - SAMM 90 Rue de Tolbiac, 75013 Paris - Frace Abstract. We cosider oliear quatile regressio ivolvig multilayer

More information

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X,

More information

Law of the sum of Bernoulli random variables

Law of the sum of Bernoulli random variables Law of the sum of Beroulli radom variables Nicolas Chevallier Uiversité de Haute Alsace, 4, rue des frères Lumière 68093 Mulhouse icolas.chevallier@uha.fr December 006 Abstract Let be the set of all possible

More information

Asymptotic Results for the Linear Regression Model

Asymptotic Results for the Linear Regression Model Asymptotic Results for the Liear Regressio Model C. Fli November 29, 2000 1. Asymptotic Results uder Classical Assumptios The followig results apply to the liear regressio model y = Xβ + ε, where X is

More information

A class of spectral bounds for Max k-cut

A class of spectral bounds for Max k-cut A class of spectral bouds for Max k-cut Miguel F. Ajos, José Neto December 07 Abstract Let G be a udirected ad edge-weighted simple graph. I this paper we itroduce a class of bouds for the maximum k-cut

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

Solutions to HW Assignment 1

Solutions to HW Assignment 1 Solutios to HW: 1 Course: Theory of Probability II Page: 1 of 6 Uiversity of Texas at Austi Solutios to HW Assigmet 1 Problem 1.1. Let Ω, F, {F } 0, P) be a filtered probability space ad T a stoppig time.

More information

OPERATOR PROBABILITY THEORY

OPERATOR PROBABILITY THEORY OPERATOR PROBABILITY THEORY Sta Gudder Departmet of Mathematics Uiversity of Dever Dever, Colorado 80208 sta.gudder@sm.du.edu Abstract This article presets a overview of some topics i operator probability

More information

Homework Set #3 - Solutions

Homework Set #3 - Solutions EE 15 - Applicatios of Covex Optimizatio i Sigal Processig ad Commuicatios Dr. Adre Tkaceko JPL Third Term 11-1 Homework Set #3 - Solutios 1. a) Note that x is closer to x tha to x l i the Euclidea orm

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Concentration inequalities

Concentration inequalities Cocetratio iequalities Jea-Yves Audibert 1,2 1. Imagie - ENPC/CSTB - uiversité Paris Est 2. Willow (INRIA/ENS/CNRS) ThRaSH 2010 with Problem Tight upper ad lower bouds o f(x 1,..., X ) X 1,..., X i.i.d.

More information

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

More information

Riesz-Fischer Sequences and Lower Frame Bounds

Riesz-Fischer Sequences and Lower Frame Bounds Zeitschrift für Aalysis ud ihre Aweduge Joural for Aalysis ad its Applicatios Volume 1 (00), No., 305 314 Riesz-Fischer Sequeces ad Lower Frame Bouds P. Casazza, O. Christese, S. Li ad A. Lider Abstract.

More information

On forward improvement iteration for stopping problems

On forward improvement iteration for stopping problems O forward improvemet iteratio for stoppig problems Mathematical Istitute, Uiversity of Kiel, Ludewig-Mey-Str. 4, D-24098 Kiel, Germay irle@math.ui-iel.de Albrecht Irle Abstract. We cosider the optimal

More information

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n.

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n. CS 189 Itroductio to Machie Learig Sprig 218 Note 11 1 Caoical Correlatio Aalysis The Pearso Correlatio Coefficiet ρ(x, Y ) is a way to measure how liearly related (i other words, how well a liear model

More information

Agnostic Learning and Concentration Inequalities

Agnostic Learning and Concentration Inequalities ECE901 Sprig 2004 Statistical Regularizatio ad Learig Theory Lecture: 7 Agostic Learig ad Cocetratio Iequalities Lecturer: Rob Nowak Scribe: Aravid Kailas 1 Itroductio 1.1 Motivatio I the last lecture

More information

APPLIED MULTIVARIATE ANALYSIS

APPLIED MULTIVARIATE ANALYSIS ALIED MULTIVARIATE ANALYSIS FREQUENTLY ASKED QUESTIONS AMIT MITRA & SHARMISHTHA MITRA DEARTMENT OF MATHEMATICS & STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANUR X = X X X [] The variace covariace atrix

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

Week 10. f2 j=2 2 j k ; j; k 2 Zg is an orthonormal basis for L 2 (R). This function is called mother wavelet, which can be often constructed

Week 10. f2 j=2 2 j k ; j; k 2 Zg is an orthonormal basis for L 2 (R). This function is called mother wavelet, which can be often constructed Wee 0 A Itroductio to Wavelet regressio. De itio: Wavelet is a fuctio such that f j= j ; j; Zg is a orthoormal basis for L (R). This fuctio is called mother wavelet, which ca be ofte costructed from father

More information

Glivenko-Cantelli Classes

Glivenko-Cantelli Classes CS28B/Stat24B (Sprig 2008 Statistical Learig Theory Lecture: 4 Gliveko-Catelli Classes Lecturer: Peter Bartlett Scribe: Michelle Besi Itroductio This lecture will cover Gliveko-Catelli (GC classes ad itroduce

More information

o <Xln <X2n <... <X n < o (1.1)

o <Xln <X2n <... <X n < o (1.1) Metrika, Volume 28, 1981, page 257-262. 9 Viea. Estimatio Problems for Rectagular Distributios (Or the Taxi Problem Revisited) By J.S. Rao, Sata Barbara I ) Abstract: The problem of estimatig the ukow

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Rates of Convergence by Moduli of Continuity

Rates of Convergence by Moduli of Continuity Rates of Covergece by Moduli of Cotiuity Joh Duchi: Notes for Statistics 300b March, 017 1 Itroductio I this ote, we give a presetatio showig the importace, ad relatioship betwee, the modulis of cotiuity

More information

An almost sure invariance principle for trimmed sums of random vectors

An almost sure invariance principle for trimmed sums of random vectors Proc. Idia Acad. Sci. Math. Sci. Vol. 20, No. 5, November 200, pp. 6 68. Idia Academy of Scieces A almost sure ivariace priciple for trimmed sums of radom vectors KE-ANG FU School of Statistics ad Mathematics,

More information

Appendix to Quicksort Asymptotics

Appendix to Quicksort Asymptotics Appedix to Quicksort Asymptotics James Alle Fill Departmet of Mathematical Scieces The Johs Hopkis Uiversity jimfill@jhu.edu ad http://www.mts.jhu.edu/~fill/ ad Svate Jaso Departmet of Mathematics Uppsala

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments: Recall: STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Commets:. So far we have estimates of the parameters! 0 ad!, but have o idea how good these estimates are. Assumptio: E(Y x)! 0 +! x (liear coditioal

More information

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { } UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

More information