Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems

Size: px
Start display at page:

Download "Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems"

Transcription

1 Commun. Theor. Phys. Beijing, China) ) pp c International Academic Publishers Vol. 47, No. 2, February 15, 2007 Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems PANG Xiao-Feng 1,2, and YU Jia-Feng 1 1 Institute of Life Science and Technology, University of Electronic Science and Technology, Chengdu , China 2 International Centre for Materials Physics, the Chinese Academy of Sciences, Shenyang , China Received December 5, 2005) Abstract The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge Kutta way in our soliton model. The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium, the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium, but the proton-soliton disperses for quite great fluctuation of the force constant and damping coefficient. In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T 273 K under influences of damping and externally applied electric-field in ice crystal. This shows that our model is available and appropriate to ice. PACS numbers: w, Kf, Dn, Jn Key words: proton conductivity, structure disorder, temperature, hydrogen bonded system 1 Introduction It is well known that the hydrogen-bonded systems occur extensively in a lot of condensed matters, polymers, and biological systems, for instance, ice, imidazole, hydrogen halides, carbohydrates, solid alcohol, bacteriorhodopsin, and protein. Experiments discovered that there is a considerable electrical conductivity, [1 6] even though electron transport through these systems is hardly present. This is quite an intriguing feature that has always stimulated wide interest in recently three decades. [1 18] Studies show that this phenomenon is related to the proton transfer along the hydrogen bonded chains, which is associated with motions of ionic and bonded defects appearing in the systems. [1 18] From present studies we know that solution of this problem is helpful to understanding formation of ionic channel on the biomembrane and mechanism of photosynthesis of plant in life science. [3,5,6] The hydrogen-bonded system is characterized by the formation of long chains of hydrogen-bonded molecules X H X X H, where X is a heavy ion or atomic group or oxygen atom in ice. Each hydrogen ion or proton H + ) can be transferred inside the X H X bridge interchanging the role of the covalent ) and the hydrogen ) bonds with the heavy ion group X ). [3 18] When such a transfer of proton in the intrabond occurs the chain is locally disturbing its neutral charge distribution and generating an ionic defect. An additional degree of freedom allows the group X H to rotate in such a way that a proton transfer in interbond is possible, which generates a bonding or Bjerrum or orientational) defect. Any of the two defects could be the majority charge carriers through the chains. Many scientists, [1 4] trying to explain the protonic conductivity in ice, formulated theories based on the hopping migration of the ionic and bonding defects along the hydrogen-bonded networks in ice crystals. However, these theories fail to explain the dynamics of the protons in the systems. New ideas from the nonlinear dynamics and soliton motion provide a possibility to find a solution of this issue. The soliton model of the proton transport was first proposed by Antonchenko et al. [7] ADZ model) in ice, which is a two-component model. The main characteristic for this model is concentrated in the structure of the double-well potential, i.e., the proton transport in this system is determined by a double-well potential, the coupling interaction between the protons and heavy ions provides only one mechanism to reduce the height of the barrier that the proton has to overcome to pass from one molecule to other. Therefore, this model can only explain the ionic defect, but not the bonded defect. Also, since two coupled degrees of freedom at each lattice site are included in the ADZ model, it complicates also investigation of this problem. Even when a continuum limit is taken, the equations of motion coupling two fields are difficult to solve. So, no exact analytical solution is known for this model. Another difficulty appears, when one considers realistic parameters for the hydrogen-bonded systems, i.e., ranges of validity of the solutions are narrowing with respect to the lattice spacing, and the continuum approximation, then, fails. This is the case in ice in which the H 3 O + or OH is almost point defects. [8 15] Therefore, this model needs to develop further. The project supported by National Natural Science Foundation of China under Grant No pangxf@mail.sc.cninfo.net

2 236 PANG Xiao-Feng and YU Jia-Feng Vol. 47 We recently worked on a new model to study the dynamic properties of the proton transfer in this system. In this model we have included a double-well potential for the proton represented by UR n ) = U 0 [1 R n /R 0 ) 2 ] 2, the elastic interaction caused by the covalent interaction, the coupled interaction between the protons and heavy ions and the resonant or dipole-dipole interaction between neighboring the protons and the changes of relative positions of neighboring heavy ions resulting from this interaction were included. If assuming again the harmonic model with acoustic vibrations for the heavy ionic sublattice, the Hamiltonian of the systems is expressed by [15 20] H = H p + H ion + H int = { 1 2m p2 n mω2 0Rn 2 1 [ Rn ) 2 ] 2 } 2 mω2 1R n R n+1 + U [ 1 R n 0 2M P n W u n u n 1 ) 2] n + [ 1 ] 2 χ 1mu n+1 u n 1 )Rn 2 + mχ 2 u n+1 u n )R n R n+1, 1) n where the proton displacements and momentum are R n and p n = mṙn, respectively, the first being the displacement of the hydrogen atom from the middle of the bond between the n-th and the n+1)-th heavy ions in the static case. R 0 is the distance between the central maximum and one of the minima of the double-well, U 0 is the height of the barrier of the double-well potential. Similarly, u n and P n = M u n are the displacement of the heavy ion from its equilibrium position and its conjugate momentum, respectively. χ 1 = ω0/ u 2 n and χ 2 = ω1/ u 2 n are coupling constants between the proton and heavy ion sublattices which represent the changes of the energy of vibration of the protons and of the coupled energy between neighboring protons due to a unit extension of the heavy ionic sublattice, respectively. mω1r 2 n R n+1 /2 shows the correlation interaction between neighboring protons caused by the dipole-dipole interactions. ω 0 and ω 1 are diagonal and nondiagonal elements of the dynamic matrix of the proton, respectively. ω 0 is also the Einstein resonant frequency of the protonic sublattice. W is the elastic constant of the heavy ionic sublattice. m and M are the masses of the proton and heavy ion, respectively. C 0 = u 0 β/m) 1/2 is the velocity of sound in the heavy ionic sublattice, and u 0 is the lattice constant. The part H P of H is the Hamiltonian of the protonic sublattice with an on-site double-well potential UR n ), H ion is the Hamiltonian of the heavy ionic sublattice with low-frequency harmonic vibration and H int is the interaction Hamiltonian between the protonic and heavy ionic sublattices. Obviously, this model is significantly different from the ADZ model [7] and Pnevmatikos et al. s models [10,12,15,16] due to the following reasons. i) As far as the state and motion of the heavy ion in our model are concerned, it is only a harmonic oscillator with low-frequency acousticvibration due to large mass containing a great number of atoms or atomic groups. However, the heavy ion has both acoustic and optical vibrations in the ADZ model, whose physical idea, which is rather vague, we think is because the optical and acoustic vibrations are two different forms of vibration. ii) As far as the state and motion of the proton lying in the double-well potential are concerned, we here adopt the model of harmonic oscillator with optical vibration that includes a non-diagonal factor, arising from the interaction between neighboring protons; and the interaction of the proton with the heavy ions; namely, its vibrational frequencies are related to displacements of the heavy ions. Therefore there are high corresponding relations for these interactions in the above Hamiltonian. However the ADZ s Hamiltonian does not, the vibration of the proton is acoustic, which is contrary to the heavy ion. This is not reasonable for the protonic model because the vibration frequency of the proton is very high relative to the heavy ion due to its small mass and strong interaction. Moreover, the relation between the protonic and interactional Hamiltonians in the ADZ model does not have the correspondence with each other. These result in the above difficulties for this model. Inversely, the Hamiltonian in our model includes not only the optical vibration of the protons, but also the resonant interaction and the changes of the relative displacement of the neighboring heavy ions. Therefore, it can represent reasonably the dynamic features of the systems when compared with the ADZ and other models. Utilizing the new model we suggest [15 20] that the motion of the proton between a pair of heavy ions cross over the barrier in the intrabond, which results in a change of the relative position between the proton and neighboring heavy ions and the occurrence of the ionic defect, is mainly determined by the double-well potential. The coupled interaction between the proton and heavy ion, which is weaker due to larger spacing between them, can only reduce the height of the barrier that the proton has to overcome to pass from one well to another. However, when the proton approaches the neighboring heavy ions the above coupled interaction will be greatly enhanced and can be so much larger than the double-well potential that the proton can shift over the barriers in the interbonds at the heavy ions from one side to another by this nonlinear coupling interaction through the mechanism of deformation of the heavy ionic sublattice, arising from its stretching and compression This is a quasi-self-trapping mechanism). Thus, the direction of the covalent bond between the proton and heavy ion is changed and a rotation of the bond or Bjerrum defect appears. In such a case, the properties of motion

3 No. 2 Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in 237 of the protons crossed over the barrier in interbond at the heavy ion, or the rotation of the bond Bjerrum defect), is mainly caused by the coupled interaction between the protons and heavy ions. Therefore, both kinds of defects, ionic and bonded, can occur through the competition of the two kinds of nonlinear interaction, double-well potential and nonlinear coupled interaction. Thus the properties of the proton transfer via the ionic and bonded defects were well described in our model, the mobility and conductivity of the proton transfer obtained from this theory is consistent with experimental result in ice crystal. [15 20] Therefore, the new theory is available and credible. However, the above results are obtained by the analytic way in which the hydrogen-bond molecular system is thought to be a periodic system, all physical parameters of the system are taken to be their average values, and some approximate ways, including long-wave approximation, continuum approximation, and so on, are used in the calculation. In practice, the hydrogen-bond system consists of different atomic groups with molecular weights, thus they are not periodic, but aperiodic and nonuniform systems, in which there is structure disorder. Thus all physical parameters and the corresponding states of the soliton in the new model will be affected due to the structure disorder. In such a case it is very necessary to study influences of the structure disorders on the solitons at different temperatures. In this paper we will study the states and features of the soliton in nonuniform and aperiodic hydrogen-bond system by numerical simulation and Runge Kutta way. [21] We will see that the soliton is still stable at the biological temperature 300 K and robust against these structure disorders of the system. In Sec. 2 we introduce the calculated method; the results and discussions are described in Sec. 3. In Sec. 4 we state the conclusions of this paper. 2 Calculation Method Utilizing Eq. 1) and from formulae t p n = H, u n t P n = H, R n we can get the equations of motion for the proton and heavy ion as follows: m R n = mω0r 2 n mω2 1 2 R n+1 + R n 1 ) [ + m χ 1 u n+1 u n 1 ) 4U ] 0 mr0 2 R n + mχ 2 [u n+1 u n )R n+1 + u n u n 1 )R n 1 ] + 4U 0 R0 4 R n 2 R n, 2) Mü n t) = W u n+1 + u n 1 2u n ) + mχ 1 /2 R n+1 2 R n 1 2 ) + mχ 2 R n+1 R n R n R n 1 ). 3) We can represent Eqs. 2) and 3) as the following forms: Ṙ n,t = y n,t m, 4) ẏ n,t = mω0r 2 n,t mω2 1R n+1,t + R n 1,t ) [ + 4U 0 R0 2 Rn,t ) 2 ] 1 R n,t R 0 mχ 1 u n+1,t u n 1,t )R n,t mχ 2 [u n+1,t u n,t )R n+1,t + u n,t u n 1,t )R n 1,t ], 5) u n,t = z n,t M, 6) ż n,t = W u n+1,t + u n 1,t 2u n,t ) + mχ 1 R 2 n+1,t R 2 n 1,t) + mχ 2 R n,t R n+1,t R n,t R n 1,t ). 7) The above equations can determine states and behaviors of the new soliton. There are four equations for one atomic group. Hence for the hydrogen bonded system constructed by N atomic groups there are 4N associated equations. When the fourth-order Runge Kutta way [21] is used to calculate numerically the solutions of the above equations we should discritize them. Thus n denotes the site of atomic group, time is denoted by t, and the step length of the space variable is denoted by h in the equation. Thus, we can get the solutions of the above equations as follows: R n,t+1 = R n,t + h 6 K1 n + K2 n + K3 n + K4 n ), y n,t+1 = y n,t + h 6 L1 n + L2 n + L3 n + L4 n ), u n,t+1 = u n,t + h 6 M1 n + M2 n + M3 n + M4 n ), z n,t+1 = z n,t + h 6 N1 n + N2 n + N3 n + N4 n ), where 8a) 8b) 8c) 8d) K1 n = y n,t m, L1 n = mω 2 0R n,t mω2 1R n+1,t + R n 1,t ) + 4U 0 R 2 0 [ Rn,t 1 mχ 2 [u n+1,t u n,t )R n+1,t + u n,t u n 1,t )R n 1,t ], ) 2 ] R n,t mχ 1 u n+1,t u n 1,t )R n,t R 0 M1 n = z n,t M, N1 n = W u n+1,t + u n 1,t 2u n,t ) + mχ 1 R 2 n+1,t R 2 n 1,t) + mχ 2 R n,t R n+1,t R n,t R n 1,t ),

4 238 PANG Xiao-Feng and YU Jia-Feng Vol. 47 K2 n = K1 n + hl1 n 2m, L2 n = mω0 2 R n,t + 1 ) 2 hk1 n + 1 [ 2 mω2 1 R n+1,t + R n 1,t + 1 ] 2 hk1 n+1 + K1 n 1 ) [ 1 + 4U 0 R0 2 1 R n,t + 1 )) 2 ] R 0 2 hk1 n R n,t + 1 ) 2 hk1 n mχ 1 [u n+1,t u n 1,t + 1 ] 2 hm1 n+1 M1 n 1 ) R n,t + 1 ) [ 2 hk1 n mχ 2 u n+1,t u n,t + 1 ] 2 hm1 n+1 M1 n ) R n+1,t + 1 ) 2 hk1 n+1 + u n,t u n 1,t + 1 ) 2 hm1 n M1 n 1 ) R n 1,t + 1 )] 2 hk1 n 1, M2 n = M1 n + hn1 n 2M, N2 n = W [u n+1,t + u n 1,t 2u n,t + 1 [ 2 hm1 n+1 + M1 n 1 2M1 n ) + mχ 1 R n+1,t hk1 n+1 R n 1,t + 1 ) 2 ] [ 2 hk1 n 1 + mχ 2 R n,t + 1 ) 2 hk1 n R n+1,t + 1 ) 2 hk1 n+1 R n,t + 1 ) 2 hk1 n R n 1,t + 1 )] 2 hk1 n 1, K3 n = K1 n + hl2 n 2m, L3 n = mω0 2 R n,t + 1 ) 2 hk2 n mω2 1 [R n+1,t + R n 1,t h K2 n )] 2 K2 n 1 [ 1 + 4U 0 R0 2 1 R n,t + 1 )) 2 ] R 0 2 hk2 n R n,t + 1 ) 2 hk2 n mχ 1 [u n+1,t u n 1,t + 1 ] 2 hm2 n+1 M2 n 1 ) R n,t + 1 ) 2 hk2 n mχ 2 {[u n+1,t u n,t + 1 ] 2 hm2 n+1 M2 n ) R n+1,t + 1 ) 2 hk2 n+1 [ + u n,t u n 1,t + 1 ] 2 hm2 n M2 n 1 ) R n 1,t + 1 )} 2 hk2 n 1, M3 n = M1 n + hn2 n 2M, [ N3 n = W u n+1,t + u n 1,t 2u n,t + 1 ] [ 2 hm2 n+1 + M2 n 1 2M2 n ) + mχ 1 R n+1,t hk2 n+1 R n 1,t + 1 ) 2 ] [ 2 hk2 n 1 + mχ 2 R n,t + 1 ) 2 hk2 n R n+1,t + 1 ) 2 hk2 n+1 R n,t + 1 ) 2 hk2 n R n 1,t + 1 )] 2 hk2 n 1, K4 n = K1 n + hl3 n m, L4 n = mω0r 2 n,t + hk3 n ) + 1 [ 2 mω2 1 Rn+1,t + R n 1,t + hk3 n+1 + K3 n 1 ) ] [ 1 ) 2 ] + 4U 0 R0 2 1 R n,t + hk3 n ) R n,t + hk3 n ) R 0 mχ 1 u n+1,t u n 1,t + hm3 n+1 M3 n 1 ))R n,t + hk3 n ) mχ 2 [u n+1,t u n,t + hm3 n+1 M3 n ))R n+1,t + hk3 n+1 ) + u n,t u n 1,t + hm3 n M3 n 1 ))R n 1,t + hk3 n 1 )], M4 n = M1 n + hn3 n M, N4 n = W u n+1,t + u n 1,t 2u n,t + hm3 n+1 + M3 n 1 2M3 n )) + mχ 1 R + n+1,t hk3 n+1) 2 R + n 1,t hk3 n 1) 2 ) + mχ 2 R n,t + hk3 n )R n+1,t + hk3 n+1 ) R n,t + hk3 n )R n 1,t + hk3 n 1 )). The system of units ev for energy, Å for length, and ps for time prove to be suitable for the numerical solutions of Eqs. 2) and 3). In the numerical simulation by the fourth-order Runge Kutta way, [21] we require that following conditions must be satisfied: the total energy E = constant up to %), a possible imaginary part of the energy which can occur due to numerical in accuracy is zero to an accuracy of fev; the norm was conserved up to ) 2 ) 2

5 No. 2 Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in pp parts per million). An initial excitation is required in this calculation, it is chosen as, R n 0) = A tanh[n n 0 ) hχ 1 + χ 2 ) 2 /4ω 0 ω 2 1W ] where A is normalization constant) at the size n, for the lattice, u n 0) = 0 is applied. The molecular chain is fixed, N is chosen to be N = 100, a time step size of is used in the simulations. Total numerical simulation was performed by data parallel algorithm and MALAB language. 3 Calculation Results and Discussion 3.1 Numerical Result in Uniform and Periodic Hydrogen-Bond Chains If utilizing the above average values for the parameter, M, Ū0, ϖ o, ϖ 1, W, J, χ1, and χ 2 as shown in Table 1, here m = m P, we calculate numerically the solution of Eqs. 2) and 3) by the fourth-order. Runge Kutta way [21] in a uniform and periodic hydrogen bonded system. The result is shown in Fig. 1. This figure shows that the amplitude of the solution can retain constancy. In Fig. 2 we show the collision property of two new solitons, respectively. From the figures we see that the solution is very stable and can cross with each other in the collision of two solitons. Therefore, equations 2) and 3) have exactly soliton solution in the uniform and periodic systems. Table 1 The average values of physical parameters in ice crystal. W N/m) M kg) R m) U J ) ω s 1 ) ω s 1 ) χ /s 2 m) χ /s 2 m) m Fig. 1 The new soliton solution of Eqs. 2) and 3) for the average parameter values in ice crystal. Fig. 2 Collision behavior of the two solitons in Eqs. 2) and 3) in uniform system. 3.2 Effects of Fluctuation of Force Constant and Disorder in Sequence of Mass on New Soliton We now study numerically the influence of the changes of force constant W and variation of mass of the atomic group, M, arising from the structure distortion of the hydrogen bonded systems or impurity importing, on the stability of the new soliton. When the effects of the structure disorder are taken into account the states and features of the new soliton will be changed. In such a case we should use a random number generator to produce or represent the random sequences of the different parameters in the systems. To test the stability of the new soliton against disorder in the sequence of masses we have to introduce random number generator α k to create random sequences of the masses of amino acids, thus there is a random series of masses for the whole chain, M k = α k M, where αk are determined using a random-number generators with equal probability within a prescribed interval. The fluctuation of W arising from the structure disorder is designated by W = ±β W, β < 1. The results of simulations are shown in Fig. 3 for the four cases of fluctuation of W at 1.1 α k +1.1). From this figure we see that up to a random variation of ±30% W. We find no change in the dynamics for the new soliton. For ±40% W its velocity only is somewhat diminished as compared with the case of W. Finally, for ±50% W the new soliton disperses slowly and the propagation is irregular. In the case of W < ±40% W at 1.1 α k +1.1) virtually no change in the new soliton stability can be obtained. Therefore the ability of the new soliton against the fluctuation of the force constant and disorder in the sequence of masses is robust. Also, in this numerical simulation we find that the influences of the fluctuations of other physical parameters, for example, Ū 0, ϖ 0, ϖ 1, J, χ1, and χ 2, on the properties of the new soliton are small, thus we here do not list these

6 240 PANG Xiao-Feng and YU Jia-Feng Vol. 47 results. Fig. 3 The states of the new soliton resulting from the fluctuations of force constant W for W = ±20% W a), ±30% W b), ±40% W c), ±50% W d) at 1.1 α k +1.1). 3.3 Influences of Temperature and Damping of Medium on New Soliton Exposed in an Externally Applied Electric-Field Since the hydrogen-bonded system is always in an environment or heat bath) with finite temperatures, then it is necessary that the state and properties of the soliton are affected by the temperature and damping of the medium. One can safely assume that the heat bath primarily affects the soliton motion via only the lattice of heavy ion. [22,23] In accordance with thermo-dynamic theory, a decay term MΓ q n and random thermal-noise term, F n t), resulting from the interaction between the heat bath with temperature T and the hydrogen-bonded systems, should be added in displacement equation of the heavy ions. [22,23] Utilizing this idea and considering further the influence of an externally applied electric-field its strength is E), on the soliton, then equations 2) and 3) become m R n = mω0r 2 n + 1 [ 2 mω2 1R n+1 + R n 1 ) + 4U 0 R0 2 Rn ) 2 ] 1 R n mχ 1 u n+1 u n 1 )R n R 0 mχ 2 [u n+1 u n )R n+1 + u n u n 1 )R n 1 ] + qe, 9) Mü n = W u n+1 + u n 1 2u n ) + mχ 1 R 2 n+1 R 2 n 1) + mχ 2 R n R n+1 R n R n 1 ) MΓ u n + F n t), 10) where Γ is the damping coefficient of the medium, which is about 10 9 s 1 for the ice, and q is the charge of the proton. In such a case we must give the explicit representation of F n t). In accordance with statistic physics, F n t) is related with the temperature of the systems, the average value of its correlation function can be represented by [22,23] F x, t)f 0, 0) = 2MΓK B T δx)δt) 1 τ, where τ is damping constant. We assume that the deviation of the random noise satisfies the normal distribution with criterion deviation and has zero expectation value, thus it can be expressed by NF n ) = 1/ 2πσ) exp Fn/2σ), 2 where σ = 2MK B T Γ/τ, τ is time constant, Γ is measured by an inverse number of the time constant of the heat bath. Thus F n can be denoted by F n t) = σ L r=1 [X nrt) 1/2)], here the random number X nr t) is in the region of 0 X nr 1). We here assume L = 12, then the deviation of [X ur t) 1/2)] is 1/12, the domain of the random noise force is just F n t) 6 σ. Thus, F n t) can be represented by σ. Therefore the temperature of the systems is considered in this calculation.

7 No. 2 Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in 241 Utilizing Eqs. 9) and 10) we can study the influences of the temperature and random thermalnoise forces of medium exposed in an externally applied electric-field E on the states of the new soliton in the ice by above fourthorder Runge Kutta way. We first study the effect of the electric-field on the soliton at T = Γ = 0. The states of the soliton for E = 100 kv/cm and 200 kv/cm are shown in Fig. 4. From this figure we see that the soliton is stable, and its velocity is changed. This electric-field dependence of velocity of the soliton is shown in Fig. 5, namely its velocity increases linearly with increasing of the electric-field. We further calculate the influence of the damping of the medium on the soliton at T = E = 0. The properties of the soliton for three different damping coefficients are shown Fig. 6. We see that no change in the new soliton stability is found for small damping, but at great damping the soliton disperses, its velocity decreases also with the increase of the damping coefficient, which is shown in Fig. 7. when Γ 0, T 0, and E 0, the states of the soliton differ from above results. In Fig. 8 we give the features of the soliton for four different temperatures, T = 190 K, 200 K, 210 K, and 273 K at E = 200 kv/cm and Γ = s 1 in the ice. From this result we find no variation in the dynamics for the new soliton under influences of these temperatures, i.e., the new soliton is thermally stable. This shows that our theoretical model of the proton transfer in hydrogen-bonded systems is available and successful. Fig. 4 The states of the soliton for E = 100 kv/cm a) and 200 kv/cm b) at T = Γ = 0. Fig. 5 This electric-field dependence of velocity of the soliton at T = Γ = 0, here the velocity is denoted by the lattice numbers in longitudinal axis. Fig. 6 The properties of the new soliton for the damping coefficients Γ = s 1 a), s 1 b), and s 1 c) at T = E = 0.

8 242 PANG Xiao-Feng and YU Jia-Feng Vol. 47 Fig. 7 The velocity of the soliton on the damping coefficient at T = Γ = 0, here the velocity is denoted by the lattice numbers in longitudinal axis. Fig. 8 The features of the soliton for T = 190 K a), 200 K b), 210 K c), and 273 K d) at E = 200 kv/cm and Γ = s 1 in the ice. 4 Conclusion We here study the dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-field by numerical simulation and fourth-order Runge Kutta way in our soliton model. The results obtained show that the proton-soliton is very robust against the structure disorder including the different fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation at different temperatures and damping coefficients of medium, the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium, but the proton-soliton disperses for quite great fluctuation of the force constant and damping coefficient. In the numerical simulation we find that the proton-soliton in our model is thermally stable in large region of temperature of T 273 K under influences of damping and externally applied electric-field in ice crystal. This shows that our model is available and appropriate to ice. References [1] P. Schuster, G. Zundel, and C. Sandorfy, The Hydrogen Bond, Recent Developments in Theory and Experiments, North Holland, Amsterdam 1976). [2] M. Peyrard, Nonlinear Excitation in Biomolecules, Springer, Berlin 1995).

9 No. 2 Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in 243 [3] T. Bountis, Proton Transfers in Hydrogen Bonded Systems, Plenum Press, London 1992). [4] M. Eigen and L. de Maeyer, Proc. Roy. Soc. A ) 505. [5] J.F. Nagl and S.T. Nagle, J. Membr. Biol ) 1. [6] J.F. Nagle and H.J. Morowitz, Proc. Natl. Acad. Sci. USA ) 298. [7] V. Ya Antonchenko, A.S. Davydov, and A.V. Zolotaryuk, Phys. Stat. Sol. b) ) 631. [8] St. Pnevmatikos, Phys. Rev. Lett ) [9] A.V. Zolotaryuk and St. Pnevmatikos, Phys. Lett. A ) 233. [10] St. Pnermatikos, A.V. Savin, A.V. Zolotaryuk, Yu. S. Kivshar, and M.J. Velgakis, Phys. Rev. A ) 518. [11] St. Pnevmatikos, Yu.S. Kivshar, M.J. Valgakis, and A.V. Zolotaryuk, Phys. Lett. A ) 43. [12] I. Chochliouros and J. Pouget, Phys. Cond. Matter ) 741. [13] R. Mittal and I.A. Howaed, Physica D ) 76. [14] A.V. Zolotaryuk, M. Peyrard, and K.H. Spatschek, Phys. Rev. E ) [15] X.F. Pang and H.J.W. Muller-Kirsten, J. Phys. Cond. Matter ) 885. [16] X.F. Pang and Y.P. Feng, Chem. Phys. Lett ) 392; Chin. Phys. Lett ) [17] X.F. Pang and A.F. Jalbout, Phys. Lett. A ) 245. [18] X.F. Pang and G. Zundel, Acta Phys. Sin ) 625; Chinese Physics ) 70. [19] X.F. Pang, Chin. Phys ) 86; Prog. Phys. Sin ) 214; Phys. Stat. Sol. b) ) 43; Theory for Non-Linear Quantum Mechanics, Chinese Chongqing Press, Chongqing 1994) pp ; Soliton Physics, Sichuan. Scie. Tech. Press, Chengdu 2003) pp [20] X.F. Pang and Y.P. Feng, Quantum Mechanics in Nonlinear Systems, World Science, Singapore 2005) pp ; X.L. Yan, R.X. Dong, and X.F. Pang, Commun. Theor. Phys. Beijing, China) ) 615. [21] J. Stiefel, Einfuhrung in die Numerische Mathematik, Teubner Verlag, Stuttgart 1965); K.E. Atkinson, An Introduction to Numerical Analysis, Wiley, New York 1987). [22] P.S. Lomdahl and W.C. Kerr, Phys. Rev. Lett ) [23] X.F. Pang, Phys. Rev. E ) 6989; European Phys. J. B ) 297; Phys. Lett. A ) 5408; Commun. Theor. Phys. Beijing, China) ) 323; Commun. Theor. Phys. Beijing, China) ) 178; X.F. Pang and Y.H. Luo, Commun. Theor. Phys. Beijing, China) ) 470; Commun. Theor. Phys. Beijing, China) ) 367.

Properties of Soliton-Transported Bio-energy in α-helix Protein Molecules with Three Channels

Properties of Soliton-Transported Bio-energy in α-helix Protein Molecules with Three Channels Commun. Theor. Phys. (Beijing, China) 48 (2007) pp. 369 376 c International Academic Publishers Vol. 48, No. 2, August 15, 2007 Properties of Soliton-Transported Bio-energy in α-helix Protein Molecules

More information

Features of Motion of Soliton Transported Bio-energy in Aperiodic α-helix Protein Molecules with Three Channels

Features of Motion of Soliton Transported Bio-energy in Aperiodic α-helix Protein Molecules with Three Channels Commun. Theor. Phys. (Beijing, China) 51 (2009) pp. 170 180 c Chinese Physical Society and IOP Publishing Ltd Vol. 51, No. 1, January 15, 2009 Features of Motion of Soliton Transported Bio-energy in Aperiodic

More information

The conductivity properties of protons in ice and mechanism of magnetization of liquid water

The conductivity properties of protons in ice and mechanism of magnetization of liquid water Eur. Phys. J. B 49, 5 3 (6) DOI: 1.114/epjb/e6--6 THE EUROPEAN PHYSICAL JOURNAL B The conductivity properties of protons in ice and mechanism of magnetization of liquid water X.F. Pang a Institute of Life

More information

Localization and electron-phonon interactions in disordered systems

Localization and electron-phonon interactions in disordered systems EUROPHYSICS LETTERS 20 February 1996 Europhys. Lett., 33 (6), pp. 459-464 (1996) Localization and electron-phonon interactions in disordered systems G. Kopidakis 1, C. M. Soukoulis 1 and E. N. Economou

More information

Nonlinear Gap Modes in a 1D Alternating Bond Monatomic Lattice with Anharmonicity

Nonlinear Gap Modes in a 1D Alternating Bond Monatomic Lattice with Anharmonicity Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 609 614 c International Academic Publishers Vol. 35, No. 5, May 15, 2001 Nonlinear Gap Modes in a 1D Alternating Bond Monatomic Lattice with Anharmonicity

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

Dynamics of Proton and Electron conductivity in DNA Chains

Dynamics of Proton and Electron conductivity in DNA Chains Chaotic Modeling and Simulation (CMSIM) 3: 277 284, 2017 Dynamics of Proton and Electron conductivity in DNA Chains Sohrab Behnia 1, and Samira Fathizadeh 1 Department of Physics, Urmia University of Technology,

More information

Proton Dynamics in Hydrogen-Bonded Systems

Proton Dynamics in Hydrogen-Bonded Systems Journal of Statistical Physics, Vol. 70, Nos. 1/2, 1993 Proton Dynamics in Hydrogen-Bonded Systems Eric Nylund, 1 Katja Lindenberg, 1 and George Tsironis 2 We discuss a simplified version of an ice lattice

More information

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 425 430 c International Academic Publishers Vol. 42, No. 3, September 15, 2004 Absorption-Amplification Response with or Without Spontaneously Generated

More information

Theoretical Analysis of Neutron Double-Differential Cross Section of n + 19 F at 14.2 MeV

Theoretical Analysis of Neutron Double-Differential Cross Section of n + 19 F at 14.2 MeV Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 102 106 c International Academic Publishers Vol. 47, No. 1, January 15, 2007 Theoretical Analysis of Neutron Double-Differential Cross Section of n +

More information

Investigation of changes in properties of water under the action of a magnetic field

Investigation of changes in properties of water under the action of a magnetic field Science in China Series G: Physics, Mechanics & Astronomy 2008 SCIENCE IN CHINA PRESS www.scichina.com phys.scichina.com Investigation of changes in properties of water under the action of a magnetic field

More information

Non-Continuum Energy Transfer: Phonons

Non-Continuum Energy Transfer: Phonons Non-Continuum Energy Transfer: Phonons D. B. Go Slide 1 The Crystal Lattice The crystal lattice is the organization of atoms and/or molecules in a solid simple cubic body-centered cubic hexagonal a NaCl

More information

Partial factorization of wave functions for a quantum dissipative system

Partial factorization of wave functions for a quantum dissipative system PHYSICAL REVIEW E VOLUME 57, NUMBER 4 APRIL 1998 Partial factorization of wave functions for a quantum dissipative system C. P. Sun Institute of Theoretical Physics, Academia Sinica, Beiing 100080, China

More information

An Introduction to Lattice Vibrations

An Introduction to Lattice Vibrations An Introduction to Lattice Vibrations Andreas Wacker 1 Mathematical Physics, Lund University November 3, 2015 1 Introduction Ideally, the atoms in a crystal are positioned in a regular manner following

More information

Generalized projective synchronization between two chaotic gyros with nonlinear damping

Generalized projective synchronization between two chaotic gyros with nonlinear damping Generalized projective synchronization between two chaotic gyros with nonlinear damping Min Fu-Hong( ) Department of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China

More information

Phonons and lattice dynamics

Phonons and lattice dynamics Chapter Phonons and lattice dynamics. Vibration modes of a cluster Consider a cluster or a molecule formed of an assembly of atoms bound due to a specific potential. First, the structure must be relaxed

More information

Combined Influence of Off-diagonal System Tensors and Potential Valley Returning of Optimal Path

Combined Influence of Off-diagonal System Tensors and Potential Valley Returning of Optimal Path Commun. Theor. Phys. (Beijing, China) 54 (2010) pp. 866 870 c Chinese Physical Society and IOP Publishing Ltd Vol. 54, No. 5, November 15, 2010 Combined Influence of Off-diagonal System Tensors and Potential

More information

How Were DNA and Protein Molecules Formed During the Process of the Origin of Life?

How Were DNA and Protein Molecules Formed During the Process of the Origin of Life? How Were DNA and Protein Molecules Formed During the Process of the Origin of Life? Xiao-Feng Pang 1,2 1 Institute of Life Science and Technology, University of Electronic Science and Technology of China,

More information

Photonic zitterbewegung and its interpretation*

Photonic zitterbewegung and its interpretation* Photonic zitterbewegung and its interpretation* Zhi-Yong Wang, Cai-Dong Xiong, Qi Qiu School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 654, CHINA

More information

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Indian Journal of Pure & Applied Physics Vol. 49, February 2011, pp. 132-136 Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Dushyant Pradeep, U C Naithani

More information

Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms

Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms In Lecture 11, we have discussed energy diagrams of one-dimensional molecular wires. Here we will focus on electron transport mechanisms

More information

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How Vol 12 No 2, February 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(02)/0154-05 Chinese Physics and IOP Publishing Ltd lectronic state and potential energy function for UH 2+* Wang Hong-Yan( Ψ) a)y,

More information

Classical Theory of Harmonic Crystals

Classical Theory of Harmonic Crystals Classical Theory of Harmonic Crystals HARMONIC APPROXIMATION The Hamiltonian of the crystal is expressed in terms of the kinetic energies of atoms and the potential energy. In calculating the potential

More information

Comparing Ionic and Covalent Compounds

Comparing Ionic and Covalent Compounds Comparing Ionic and Covalent Compounds It takes energy to overcome the forces holding particles together. Thus, it takes energy to cause a substance to go from the liquid to the gaseous state. The boiling

More information

Phonons (Classical theory)

Phonons (Classical theory) Phonons (Classical theory) (Read Kittel ch. 4) Classical theory. Consider propagation of elastic waves in cubic crystal, along [00], [0], or [] directions. Entire plane vibrates in phase in these directions

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 8 Oct 1996

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 8 Oct 1996 December 21, 2013 arxiv:cond-mat/9610066v1 [cond-mat.stat-mech] 8 Oct 1996 Some Finite Size Effects in Simulations of Glass Dynamics Jürgen Horbach, Walter Kob, Kurt Binder Institut für Physik, Johannes

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

Momentum Distribution of a Fragment and Nucleon Removal Cross Section in the Reaction of Halo Nuclei

Momentum Distribution of a Fragment and Nucleon Removal Cross Section in the Reaction of Halo Nuclei Commun. Theor. Phys. Beijing, China) 40 2003) pp. 693 698 c International Academic Publishers Vol. 40, No. 6, December 5, 2003 Momentum Distribution of a ragment and Nucleon Removal Cross Section in the

More information

Rock fragmentation mechanisms and an experimental study of drilling tools during high-frequency harmonic vibration

Rock fragmentation mechanisms and an experimental study of drilling tools during high-frequency harmonic vibration Pet.Sci.(03)0:05- DOI 0.007/s8-03-068-3 05 Rock fragmentation mechanisms and an experimental study of drilling tools during high- harmonic vibration Li Wei, Yan Tie, Li Siqi and Zhang Xiaoning School of

More information

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain*

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* PHUOC X. TRAN, DONALD W. BRENNER, and C. T. WHITE Naval Research Laboratory, Washington, DC 20375-5000 Abstract The propagation

More information

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice 4. Thermal properties of solids Time to study: 4 hours Objective After studying this chapter you will get acquainted with a description of oscillations of atoms learn how to express heat capacity for different

More information

Journal of Atoms and Molecules

Journal of Atoms and Molecules Research article Journal of Atoms and Molecules An International Online Journal ISSN 77 147 Hot Electron Transport in Polar Semiconductor at Low Lattice Temperature A. K. Ghorai Physics Department, Kalimpong

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

The Phase of a Bose-Einstein Condensate by the Interference of Matter Waves. W. H. Kuan and T. F. Jiang

The Phase of a Bose-Einstein Condensate by the Interference of Matter Waves. W. H. Kuan and T. F. Jiang CHINESE JOURNAL OF PHYSICS VOL. 43, NO. 5 OCTOBER 2005 The Phase of a Bose-Einstein Condensate by the Interference of Matter Waves W. H. Kuan and T. F. Jiang Institute of Physics, National Chiao Tung University,

More information

Bifurcation of Sound Waves in a Disturbed Fluid

Bifurcation of Sound Waves in a Disturbed Fluid American Journal of Modern Physics 7; 6(5: 9-95 http://www.sciencepublishinggroup.com/j/ajmp doi:.68/j.ajmp.765.3 ISSN: 36-8867 (Print; ISSN: 36-889 (Online Bifurcation of Sound Waves in a Disturbed Fluid

More information

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

Composite Model for LENR in linear defects of a lattice

Composite Model for LENR in linear defects of a lattice Composite Model for LENR in linear defects of a lattice A. Meulenberg a) and K. P. Sinha b) a) Science for Humanity Trust, Inc. Tucker, GA, USA mules333@gmail.com b) Department of Physics, Indian Institute

More information

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Summary: In this video we introduce the concept that atoms are not rigid, fixed points within the lattice. Instead we treat them as quantum harmonic

More information

Physics Qual - Statistical Mechanics ( Fall 2016) I. Describe what is meant by: (a) A quasi-static process (b) The second law of thermodynamics (c) A throttling process and the function that is conserved

More information

Dispersion relation for transverse waves in a linear chain of particles

Dispersion relation for transverse waves in a linear chain of particles Dispersion relation for transverse waves in a linear chain of particles V. I. Repchenkov* It is difficult to overestimate the importance that have for the development of science the simplest physical and

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28 Lecture 2 Wednesday, August 28 Contents 1 Fermi s Method 2 2 Lattice Oscillators 3 3 The Sine-Gordon Equation 8 1 1 Fermi s Method Feynman s Quantum Electrodynamics refers on the first page of the first

More information

CALCULATION OF NONLINEAR VIBRATIONS OF PIECEWISE-LINEAR SYSTEMS USING THE SHOOTING METHOD

CALCULATION OF NONLINEAR VIBRATIONS OF PIECEWISE-LINEAR SYSTEMS USING THE SHOOTING METHOD Vietnam Journal of Mechanics, VAST, Vol. 34, No. 3 (2012), pp. 157 167 CALCULATION OF NONLINEAR VIBRATIONS OF PIECEWISE-LINEAR SYSTEMS USING THE SHOOTING METHOD Nguyen Van Khang, Hoang Manh Cuong, Nguyen

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Spring 2008 Lecture

More information

Polarization. D =e i E=k i e o E =e o E+ P

Polarization. D =e i E=k i e o E =e o E+ P Dielectrics Polarization a perfect insulator or a dielectric is the material with no free charge carriers. if an electric field, E, is applied to the insulator no charge flow. However in the presence of

More information

In-class exercises Day 1

In-class exercises Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 11 Exercises due Mon Apr 16 Last correction at April 16, 2018, 11:19 am c 2018, James Sethna,

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Plasmons, polarons, polaritons

Plasmons, polarons, polaritons Plasmons, polarons, polaritons Dielectric function; EM wave in solids Plasmon oscillation -- plasmons Electrostatic screening Electron-electron interaction Mott metal-insulator transition Electron-lattice

More information

Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics and accurate long time dynamics

Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics and accurate long time dynamics for resubmission Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics and accurate long time dynamics Aram Davtyan, 1 Gregory A. Voth, 1 2, a) and Hans

More information

Probing the Optical Conductivity of Harmonically-confined Quantum Gases!

Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Eugene Zaremba Queen s University, Kingston, Ontario, Canada Financial support from NSERC Work done in collaboration with Ed Taylor

More information

M02M.1 Particle in a Cone

M02M.1 Particle in a Cone Part I Mechanics M02M.1 Particle in a Cone M02M.1 Particle in a Cone A small particle of mass m is constrained to slide, without friction, on the inside of a circular cone whose vertex is at the origin

More information

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 1011 1016 c International Academic Publishers Vol. 46, No. 6, December 15, 2006 A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

More information

Quantum Continuum Mechanics for Many-Body Systems

Quantum Continuum Mechanics for Many-Body Systems Workshop on High Performance and Parallel Computing Methods and Algorithms for Materials Defects, 9-13 February 2015 Quantum Continuum Mechanics for Many-Body Systems J. Tao 1,2, X. Gao 1,3, G. Vignale

More information

Electromagnetic generation of ultrasound in metals at low temperatures

Electromagnetic generation of ultrasound in metals at low temperatures Pramana-J. Phys., Vol. 28, No. 5, May 1987, pp. 483--488. ~) Printed in India. Electromagnetic generation of ultrasound in metals at low temperatures A N VASIL'EV and Yu P GAIDUKOV Physical Department,

More information

Effect of nonlinearity on wave scattering and localization. Yuri S. Kivshar

Effect of nonlinearity on wave scattering and localization. Yuri S. Kivshar Effect of nonlinearity on wave scattering and localization Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia St. Petersburg University of Information Technologies,

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates

Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates Symposium, Bordeaux Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates Alexander Schubert Institute of Physical and Theoretical Chemistry, University of Würzburg November

More information

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar

More information

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Anti-synchronization of a new hyperchaotic system via small-gain theorem Anti-synchronization of a new hyperchaotic system via small-gain theorem Xiao Jian( ) College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China (Received 8 February 2010; revised

More information

x(t+ δt) - x(t) = slope δt t+δt

x(t+ δt) - x(t) = slope δt t+δt Techniques of Physics Worksheet 2 Classical Vibrations and Waves Introduction You will have encountered many different examples of wave phenomena in your courses and should be familiar with most of the

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

SUPER-ABSORPTION CORRELATION BETWEEN DEUTERIUM FLUX AND EXCESS HEAT

SUPER-ABSORPTION CORRELATION BETWEEN DEUTERIUM FLUX AND EXCESS HEAT Li, X.Z., et al. "Super-absorption" - Correlation between deuterium flux and excess heat-. in The 9th International Conference on Cold Fusion, Condensed Matter Nuclear Science. 00. Tsinghua Univ., Beijing,

More information

J09M.1 - Coupled Pendula

J09M.1 - Coupled Pendula Part I - Mechanics J09M.1 - Coupled Pendula J09M.1 - Coupled Pendula Two simple pendula, each of length l and mass m, are coupled by a spring of force constant k. The spring is attached to the rods of

More information

Isotopic effect of Cl + 2 rovibronic spectra in the A X system

Isotopic effect of Cl + 2 rovibronic spectra in the A X system Vol 18 No 7, July 009 c 009 Chin. Phys. Soc. 1674-1056/009/1807)/74-05 Chinese Physics B and IOP Publishing Ltd Isotopic effect of Cl + rovibronic spectra in the A X system Wu Ling ) a)c), Yang Xiao-Hua

More information

Ab initio calculations of f-orbital electron-phonon interaction in laser cooling

Ab initio calculations of f-orbital electron-phonon interaction in laser cooling Ab initio calculations of f-orbital electron-phonon interaction in laser cooling Jedo Kim and Massoud Kaviany* Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125,

More information

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology What Is a Soliton? by Peter S. Lomdahl A bout thirty years ago a remarkable discovery was made here in Los Alamos. Enrico Fermi, John Pasta, and Stan Ulam were calculating the flow of energy in a onedimensional

More information

MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION

MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION MATEC Web of Conferences 55, 44 (8) IME&T 7 https://doi.org/.5/matecconf/85544 MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION Angela Kuzovova,, Timur Muksunov Tomsk State University,

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

Shallow Donor Impurity Ground State in a GaAs/AlAs Spherical Quantum Dot within an Electric Field

Shallow Donor Impurity Ground State in a GaAs/AlAs Spherical Quantum Dot within an Electric Field Commun. Theor. Phys. (Beijing, China) 52 (2009) pp. 710 714 c Chinese Physical Society and IOP Publishing Ltd Vol. 52, No. 4, October 15, 2009 Shallow Donor Impurity Ground State in a GaAs/AlAs Spherical

More information

New Homoclinic and Heteroclinic Solutions for Zakharov System

New Homoclinic and Heteroclinic Solutions for Zakharov System Commun. Theor. Phys. 58 (2012) 749 753 Vol. 58, No. 5, November 15, 2012 New Homoclinic and Heteroclinic Solutions for Zakharov System WANG Chuan-Jian ( ), 1 DAI Zheng-De (à ), 2, and MU Gui (½ ) 3 1 Department

More information

Transition from the exhibition to the nonexhibition of negative differential thermal resistance in the two-segment Frenkel-Kontorova model

Transition from the exhibition to the nonexhibition of negative differential thermal resistance in the two-segment Frenkel-Kontorova model Transition from the exhibition to the nonexhibition of negative differential thermal resistance in the two-segment Frenkel-Kontorova model Zhi-Gang Shao, 1 Lei Yang, 1,2, * Ho-Kei Chan, 1 and Bambi Hu

More information

ANALYSIS OF NONUNIFORM BEAMS ON ELASTIC FOUNDATIONS USING RECURSIVE DIFFERENTATION METHOD

ANALYSIS OF NONUNIFORM BEAMS ON ELASTIC FOUNDATIONS USING RECURSIVE DIFFERENTATION METHOD Engineering MECHANICS, Vol. 22, 2015, No. 2, p. 83 94 83 ANALYSIS OF NONUNIFORM BEAMS ON ELASTIC FOUNDATIONS USING RECURSIVE DIFFERENTATION METHOD Mohamed Taha Hassan*, Samir Abo Hadima* Analytical solutions

More information

A tight-binding molecular dynamics study of phonon anharmonic effects in diamond and graphite

A tight-binding molecular dynamics study of phonon anharmonic effects in diamond and graphite J. Phys.: Condens. Matter 9 (1997) 7071 7080. Printed in the UK PII: S0953-8984(97)83513-8 A tight-binding molecular dynamics study of phonon anharmonic effects in diamond and graphite G Kopidakis, C Z

More information

Photodetachment of H in an electric field between two parallel interfaces

Photodetachment of H in an electric field between two parallel interfaces Vol 17 No 4, April 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(04)/1231-06 Chinese Physics B and IOP Publishing Ltd Photodetachment of H in an electric field between two parallel interfaces Wang De-Hua(

More information

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 466 470 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire

More information

A Model for Periodic Nonlinear Electric Field Structures in Space Plasmas

A Model for Periodic Nonlinear Electric Field Structures in Space Plasmas Commun. Theor. Phys. (Beijing, China) 52 (2009) pp. 149 154 c Chinese Physical Society and IOP Publishing Ltd Vol. 52, No. 1, July 15, 2009 A Model for Periodic Nonlinear Electric Field Structures in Space

More information

COMPARISON OF PROCESS OF DIFFUSION OF INTERSTITIAL OXYGEN ATOMS AND INTERSTITIAL HYDROGEN MOLECULES IN SILICON AND

COMPARISON OF PROCESS OF DIFFUSION OF INTERSTITIAL OXYGEN ATOMS AND INTERSTITIAL HYDROGEN MOLECULES IN SILICON AND COMPARISON OF PROCESS OF DIFFUSION OF INTERSTITIAL OXYGEN ATOMS AND INTERSTITIAL HYDROGEN MOLECULES IN SILICON AND GERMANIUM CRYSTALS: QUANTUMCHEMICAL SIMULATION Vasilii Gusakov Joint Institute of Solid

More information

Scattering of heavy charged particles on hydrogen atoms

Scattering of heavy charged particles on hydrogen atoms Few-Body Systems 0, 1 8 (2001) Few- Body Systems c by Springer-Verlag 2001 Printed in Austria Scattering of heavy charged particles on hydrogen atoms R. Lazauskas and J. Carbonell Institut des Sciences

More information

Calculation and Analysis of the Dielectric Functions for BaTiO 3, PbTiO 3, and PbZrO 3

Calculation and Analysis of the Dielectric Functions for BaTiO 3, PbTiO 3, and PbZrO 3 CHINESE JOURNAL OF PHYSICS VOL. 1, NO. 3 June 213 Calculation and Analysis of the Dielectric Functions for BaTiO 3, PbTiO 3, and PbZrO 3 Chao Zhang and Dashu Yu School of Physics & Electronic Information

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sci. Technol., 3() (0), pp. 7-39 International Journal of Pure and Applied Sciences and Technology ISSN 9-607 Available online at www.ijopaasat.in Research Paper Reflection of Quasi

More information

Ж У Р Н А Л С Т Р У К Т У Р Н О Й Х И М И И Том 50, 5 Сентябрь октябрь С

Ж У Р Н А Л С Т Р У К Т У Р Н О Й Х И М И И Том 50, 5 Сентябрь октябрь С Ж У Р Н А Л С Т Р У К Т У Р Н О Й Х И М И И 2009. Том 50, 5 Сентябрь октябрь С. 873 877 UDK 539.27 STRUCTURAL STUDIES OF L-SERYL-L-HISTIDINE DIPEPTIDE BY MEANS OF MOLECULAR MODELING, DFT AND 1 H NMR SPECTROSCOPY

More information

Research on the iterative method for model updating based on the frequency response function

Research on the iterative method for model updating based on the frequency response function Acta Mech. Sin. 2012) 282):450 457 DOI 10.1007/s10409-012-0063-1 RESEARCH PAPER Research on the iterative method for model updating based on the frequency response function Wei-Ming Li Jia-Zhen Hong Received:

More information

Magnetic field effect on state energies and transition frequency of a strong-coupling polaron in an anisotropic quantum dot

Magnetic field effect on state energies and transition frequency of a strong-coupling polaron in an anisotropic quantum dot PRAMANA c Indian Academy of Sciences Vol. 81, No. 5 journal of November 013 physics pp. 865 871 Magnetic field effect on state energies and transition frequency of a strong-coupling polaron in an anisotropic

More information

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA March 9, 2007 10:18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Int J. Bifurcation and Chaos Submission Style EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA S. Morfu Laboratoire

More information

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR 1 ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR R. L. Merlino Department of Physics and Astronomy University of Iowa Iowa City, IA 52242 December 21, 2001 ABSTRACT Using a fluid treatment,

More information

Phase Diagram of One-Dimensional Bosons in an Array of Local Nonlinear Potentials at Zero Temperature

Phase Diagram of One-Dimensional Bosons in an Array of Local Nonlinear Potentials at Zero Temperature Commun. Theor. Phys. (Beijing, China) 36 (001) pp. 375 380 c International Academic Publishers Vol. 36, No. 3, September 15, 001 Phase Diagram of One-Dimensional Bosons in an Array of Local Nonlinear Potentials

More information

Relativistic multichannel treatment of autoionization Rydberg series of 4s 2 nf(n = 4 23)J π = (7/2) for scandium

Relativistic multichannel treatment of autoionization Rydberg series of 4s 2 nf(n = 4 23)J π = (7/2) for scandium Vol 17 No 6, June 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(06)/2027-06 Chinese Physics B and IOP Publishing Ltd Relativistic multichannel treatment of autoionization Rydberg series of 4s 2 nf(n =

More information

Proton Conduction Mechanism in Water Nanotube of New Molecular Porous Crystal

Proton Conduction Mechanism in Water Nanotube of New Molecular Porous Crystal Proton Conduction Mechanism in Water anotube of ew Molecular Porous Crystal Tohoku Univ.. Matsui Tokyo Univ. of Science M. Tadokoro Structure and dynamics of confined water in nanospace the present water

More information

Exciton-Dependent Pre-formation Probability of Composite Particles

Exciton-Dependent Pre-formation Probability of Composite Particles Commun. Theor. Phys. (Beijing China) 47 (27) pp. 116 111 c International Academic Publishers Vol. 47 No. 6 June 15 27 Exciton-Dependent Pre-formation Probability of Composite Particles ZHANG Jing-Shang

More information

GENERATION OF COLORED NOISE

GENERATION OF COLORED NOISE International Journal of Modern Physics C, Vol. 12, No. 6 (2001) 851 855 c World Scientific Publishing Company GENERATION OF COLORED NOISE LORENZ BARTOSCH Institut für Theoretische Physik, Johann Wolfgang

More information

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Siying Liu, Hongyi Zhang, Hao Yu * Department of Mathematical Sciences, Xi an Jiaotong-Liverpool University,

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Quantum Effect in a Diode Included Nonlinear Inductance-Capacitance Mesoscopic Circuit

Quantum Effect in a Diode Included Nonlinear Inductance-Capacitance Mesoscopic Circuit Commun. Theor. Phys. (Beijing, China) 52 (2009) pp. 534 538 c Chinese Physical Society and IOP Publishing Ltd Vol. 52, No. 3, September 15, 2009 Quantum Effect in a Diode Included Nonlinear Inductance-Capacitance

More information

J07M.1 - Ball on a Turntable

J07M.1 - Ball on a Turntable Part I - Mechanics J07M.1 - Ball on a Turntable J07M.1 - Ball on a Turntable ẑ Ω A spherically symmetric ball of mass m, moment of inertia I about any axis through its center, and radius a, rolls without

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013235 TITLE: Homogeneous Broadening of the Zero Optical Phonon Spectral Line in Semiconductor Quantum Dots DISTRIBUTION: Approved

More information

Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 265 269 c International Academic Publishers Vol. 47, No. 2, February 15, 2007 Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

More information

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea Supporting Information for Coherent Lattice Vibrations in Mono- and Few-Layer WSe 2 Tae Young Jeong, 1,2 Byung Moon Jin, 1 Sonny H. Rhim, 3 Lamjed Debbichi, 4 Jaesung Park, 2 Yu Dong Jang, 1 Hyang Rok

More information