Busch Complexity Lectures: Turing Machines. Prof. Busch - LSU 1

Size: px
Start display at page:

Download "Busch Complexity Lectures: Turing Machines. Prof. Busch - LSU 1"

Transcription

1 Busch Complexity ectures: Turing Machines Prof. Busch - SU 1

2 The anguage Hierarchy a n b n c n? ww? Context-Free anguages n b n a ww egular anguages a* a *b* Prof. Busch - SU 2

3 a n b anguages accepted by Turing Machines n c n Context-Free anguages n b n a ww ww egular anguages a* a *b* Prof. Busch - SU 3

4 Tape... A Turing Machine... Control Unit ead-write head Prof. Busch - SU 4

5 The Tape... No boundaries -- infinite length... ead-write head The head moves eft or ight Prof. Busch - SU 5

6 ead-write head The head at each transition (time step): 1. eads a symbol 2. Writes a symbol 3. Moves eft or ight Prof. Busch - SU 6

7 Example:... a Time 0 b a c Time 1 a b k c eads 2. Writes a k 3. Moves eft Prof. Busch - SU 7

8 ... Time 1 a b k c Time 2 a f k c eads 2. Writes b 3. Moves ight f Prof. Busch - SU 8

9 The Input String Input string Blank symbol... a b a c... head Head starts at the leftmost position of the input string Prof. Busch - SU 9

10 States & Transitions ead Write Move eft q a b, q2 1 Move ight q a b, q2 1 Prof. Busch - SU 10

11 Example: Time 1... a b a c... q 1 current state q a b, q2 1 Prof. Busch - SU 11

12 Time 1... a b a c... q 1 Time 2... a b b c... q 2 q a b, q2 1 Prof. Busch - SU 12

13 Example: Time 1... a b a c... q 1 Time 2... a b b c... q a b, q2 1 q 2 Prof. Busch - SU 13

14 Example: Time 1... a b a c... q 1 Time 2... a b b c g... q 2 g, q q2 1 Prof. Busch - SU 14

15 Determinism Turing Machines are deterministic Allowed Not Allowed a b, q 2 a b, q 2 q 1 q 1 b d, q 3 a d, q 3 No lambda transitions allowed Prof. Busch - SU 15

16 Example: Partial Transition Function... a b a c... q 1 q 1 a b, b d, q 2 q 3 Allowed: No transition for input symbol c Prof. Busch - SU 16

17 Halting The machine halts in a state if there is no transition to follow Prof. Busch - SU 17

18 Halting Example 1:... a b a c... q 1 q1 No transition from HAT!!! q 1 Prof. Busch - SU 18

19 Halting Example 2:... a b a c... q 1 a b, q 2 No possible transition q 1 from q1 and symbol c b d, q 3 HAT!!! Prof. Busch - SU 19

20 Accepting States q1 q2 Allowed q1 q2 Not Allowed Accepting states have no outgoing transitions The machine halts and accepts Prof. Busch - SU 20

21 Acceptance Accept Input string If machine halts in an accept state eject Input string If machine halts in a non-accept state or If machine enters an infinite loop Prof. Busch - SU 21

22 Observation: In order to accept an input string, it is not necessary to scan all the symbols in the string Prof. Busch - SU 22

23 Turing Machine Example Input alphabet Σ = { a, b} Accepts the language: a*, q 1 Prof. Busch - SU 23

24 Time 0 a a a, q 1 Prof. Busch - SU 24

25 Time 1 a a a, q 1 Prof. Busch - SU 25

26 Time 2 a a a, q 1 Prof. Busch - SU 26

27 Time 3 a a a, q 1 Prof. Busch - SU 27

28 Time 4 a a a q 1 Halt & Accept, q 1 Prof. Busch - SU 28

29 ejection Example Time 0 a b a, q 1 Prof. Busch - SU 29

30 Time 1 a b a No possible Transition Halt & eject, q 1 Prof. Busch - SU 30

31 A simpler machine for same language but for input alphabet Σ = {a } Accepts the language: a* Prof. Busch - SU 31

32 Time 0 a a a Halt & Accept Not necessary to scan input Prof. Busch - SU 32

33 Infinite oop Example A Turing machine for language a * + b( a + b) * b b,, q 1 Prof. Busch - SU 33

34 Time 0 a b a b b,, q 1 Prof. Busch - SU 34

35 Time 1 a b a b b,, q 1 Prof. Busch - SU 35

36 Time 2 a b a b b,, q 1 Prof. Busch - SU 36

37 Time 2 a b a Time 3 Time 4 Time 5 a b a a b a a b a Infinite loop Prof. Busch - SU 37

38 Because of the infinite loop: The accepting state cannot be reached The machine never halts The input string is rejected Prof. Busch - SU 38

39 Another Turing Machine Example n n Turing machine for the language { a b } n 1 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 39

40 Basic Idea: Match a s with b s: epeat: replace leftmost a with x find leftmost b and replace it with y Until there are no more a s or b s If there is a remaining a or b reject Prof. Busch - SU 40

41 Time 0 a a b b q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 41

42 Time 1 x a b b q 1 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 42

43 Time 2 x a b b q 1 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 43

44 Time 3 x a y b q 2 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 44

45 Time 4 x a y b q 2 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 45

46 Time 5 x a y b q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 46

47 Time 6 x x y b q 1 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 47

48 Time 7 x x y b q 1 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 48

49 Time 8 x x y y q 2 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 49

50 Time 9 x x y y q 2 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 50

51 Time 10 x x y y q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 51

52 Time 11 x x y y q 3 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 52

53 Time 12 x x y y q 3 q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 53

54 Time 13 x x y y q 4 Halt & Accept q 4, q 3 a x, q0 1 b y, q q2 x x, Prof. Busch - SU 54

55 Observation: If we modify the machine for the language n n { a b } we can easily construct a machine for the language { a b c } n n n Prof. Busch - SU 55

56 Formal Definitions for Turing Machines Prof. Busch - SU 56

57 Transition Function q a b, q2 1 δ ( 2 q 1, a) = ( q, b, ) Prof. Busch - SU 57

58 Transition Function q c d, q2 1 δ ( 2 q 1, c) = ( q, d, ) Prof. Busch - SU 58

59 Turing Machine: States Input alphabet Tape alphabet M = ( Q, Σ, Γ, δ, q0,, F) Transition function Initial state Accept states blank Prof. Busch - SU 59

60 Configuration c a b a q 1 Instantaneous description: ca q 1 ba Prof. Busch - SU 60

61 Time 4 Time 5 x a y b x a y b q 2 A Move: q2 xayb x q0 ayb (yields in one mode) Prof. Busch - SU 61

62 Time 4 Time 5 x a y b x a y b q 2 Time 6 Time 7 x x y b x x y b q 1 A computation q 2 xayb x q0 ayb xx q1 yb xxy q 1 q 1 b Prof. Busch - SU 62

63 q 2 xayb x q0 ayb xx q1 yb xxy q 1 b Equivalent notation: q2 xayb xxy q1 b Prof. Busch - SU 63

64 Initial configuration: w Input string w a a b b Prof. Busch - SU 64

65 The Accepted anguage For any Turing Machine M ( M ) = { w : q0 w x1 q f x 2 } Initial state Accept state Prof. Busch - SU 65

66 If a language by a Turing machine then we say that is accepted M is: Turing ecognizable Other names used: Turing Acceptable ecursively Enumerable Prof. Busch - SU 66

Turing Machines. The Language Hierarchy. Context-Free Languages. Regular Languages. Courtesy Costas Busch - RPI 1

Turing Machines. The Language Hierarchy. Context-Free Languages. Regular Languages. Courtesy Costas Busch - RPI 1 Turing Machines a n b n c The anguage Hierarchy n? ww? Context-Free anguages a n b n egular anguages a * a *b* ww Courtesy Costas Busch - PI a n b n c n Turing Machines anguages accepted by Turing Machines

More information

and Models of Computation

and Models of Computation CDT314 FABE Formal anguages, Automata and Models of Computation ecture 12 Mälardalen University 2013 1 Content Chomsky s anguage Hierarchy Turing Machines Determinism Halting TM Examples Standard TM Computing

More information

HIS LEGACY. 100 Years Turing celebration. Gordana Dodig Crnkovic, IDT Open Seminar. Computer Science and Network Department Mälardalen University

HIS LEGACY. 100 Years Turing celebration. Gordana Dodig Crnkovic, IDT Open Seminar. Computer Science and Network Department Mälardalen University IDT Open Seminar AAN TUING AND HIS EGACY 00 Years Turing celebration http://www.mrtc.mdh.se/~gdc/work/turingcentenary.pdf http://www.mrtc.mdh.se/ mdh se/~gdc/work/turingmachine.pdf Gordana Dodig Crnkovic,

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM) Proposed by Alan Turing in 936 finite-state control + infinitely long tape A stronger

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM)? Proposed by Alan Turing in 936 finite-state control + infinitely long tape A

More information

CSCC63 Worksheet Turing Machines

CSCC63 Worksheet Turing Machines 1 An Example CSCC63 Worksheet Turing Machines Goal. Design a turing machine, M that accepts only strings of the form {w#w w {0, 1} }. Idea. Describe in words how the machine would work. Read first symbol

More information

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine There is no known model of computation more powerful than Turing Machines Definition of Algorithm:

More information

Busch Complexity Lectures: Turing s Thesis. Costas Busch - LSU 1

Busch Complexity Lectures: Turing s Thesis. Costas Busch - LSU 1 Busch Complexity Lectures: Turing s Thesis Costas Busch - LSU 1 Turing s thesis (1930): Any computation carried out by mechanical means can be performed by a Turing Machine Costas Busch - LSU 2 Algorithm:

More information

Introduction to Turing Machines

Introduction to Turing Machines Introduction to Turing Machines Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 12 November 2015 Outline 1 Turing Machines 2 Formal definitions 3 Computability

More information

Chapter 8. Turing Machine (TMs)

Chapter 8. Turing Machine (TMs) Chapter 8 Turing Machine (TMs) Turing Machines (TMs) Accepts the languages that can be generated by unrestricted (phrase-structured) grammars No computational machine (i.e., computational language recognition

More information

Chapter 3: The Church-Turing Thesis

Chapter 3: The Church-Turing Thesis Chapter 3: The Church-Turing Thesis 1 Turing Machine (TM) Control... Bi-direction Read/Write Turing machine is a much more powerful model, proposed by Alan Turing in 1936. 2 Church/Turing Thesis Anything

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Today's learning goals Sipser Ch 3 Trace the computation of a Turing machine using its transition function and configurations.

More information

Chapter 1 Welcome Aboard

Chapter 1 Welcome Aboard Chapter 1 Welcome Aboard Abstraction Interface Source: http://static.usnews.rankingsandreviews.com/images/auto/izmo/365609/2014_hyundai_elantra_gt_dashboard.jpg http://www.ridelust.com/wp-content/uploads/2012/12/engine2.jpg

More information

More Turing Machines. CS154 Chris Pollett Mar 15, 2006.

More Turing Machines. CS154 Chris Pollett Mar 15, 2006. More Turing Machines CS154 Chris Pollett Mar 15, 2006. Outline Multitape Turing Machines Nondeterministic Turing Machines Enumerators Introduction There have been many different proposals for what it means

More information

Turing s Thesis. Fall Costas Busch - RPI!1

Turing s Thesis. Fall Costas Busch - RPI!1 Turing s Thesis Costas Busch - RPI!1 Turing s thesis (1930): Any computation carried out by mechanical means can be performed by a Turing Machine Costas Busch - RPI!2 Algorithm: An algorithm for a problem

More information

Computability Theory. CS215, Lecture 6,

Computability Theory. CS215, Lecture 6, Computability Theory CS215, Lecture 6, 2000 1 The Birth of Turing Machines At the end of the 19th century, Gottlob Frege conjectured that mathematics could be built from fundamental logic In 1900 David

More information

Lecture 14: Recursive Languages

Lecture 14: Recursive Languages Lecture 14: Recursive Languages Instructor: Ketan Mulmuley Scriber: Yuan Li February 24, 2015 1 Recursive Languages Definition 1.1. A language L Σ is called recursively enumerable (r. e.) or computably

More information

Turing machines Finite automaton no storage Pushdown automaton storage is a stack What if we give the automaton a more flexible storage?

Turing machines Finite automaton no storage Pushdown automaton storage is a stack What if we give the automaton a more flexible storage? Turing machines Finite automaton no storage Pushdown automaton storage is a stack What if we give the automaton a more flexible storage? What is the most powerful of automata? In this lecture we will introduce

More information

Part I: Definitions and Properties

Part I: Definitions and Properties Turing Machines Part I: Definitions and Properties Finite State Automata Deterministic Automata (DFSA) M = {Q, Σ, δ, q 0, F} -- Σ = Symbols -- Q = States -- q 0 = Initial State -- F = Accepting States

More information

ECS 120 Lesson 15 Turing Machines, Pt. 1

ECS 120 Lesson 15 Turing Machines, Pt. 1 ECS 120 Lesson 15 Turing Machines, Pt. 1 Oliver Kreylos Wednesday, May 2nd, 2001 Before we can start investigating the really interesting problems in theoretical computer science, we have to introduce

More information

Turing Machine properties. Turing Machines. Alternate TM definitions. Alternate TM definitions. Alternate TM definitions. Alternate TM definitions

Turing Machine properties. Turing Machines. Alternate TM definitions. Alternate TM definitions. Alternate TM definitions. Alternate TM definitions Turing Machine properties Turing Machines TM Variants and the Universal TM There are many ways to skin a cat And many ways to define a TM The book s Standard Turing Machines Tape unbounded on both sides

More information

Turing Machines Part II

Turing Machines Part II Turing Machines Part II COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 2016 Slides created by Katya Lebedeva COMP 2600 Turing Machines 1 Why

More information

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite The Church-Turing Thesis CS60001: Foundations of Computing Science Professor, Dept. of Computer Sc. & Engg., Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q 0, q accept, q reject ), where

More information

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT.

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT. Recap DFA,NFA, DTM Slides by Prof. Debasis Mitra, FIT. 1 Formal Language Finite set of alphabets Σ: e.g., {0, 1}, {a, b, c}, { {, } } Language L is a subset of strings on Σ, e.g., {00, 110, 01} a finite

More information

Lecture 13: Turing Machine

Lecture 13: Turing Machine Lecture 13: Turing Machine Instructor: Ketan Mulmuley Scriber: Yuan Li February 19, 2015 Turing machine is an abstract machine which in principle can simulate any computation in nature. Church-Turing Thesis:

More information

Turing machines COMS Ashley Montanaro 21 March Department of Computer Science, University of Bristol Bristol, UK

Turing machines COMS Ashley Montanaro 21 March Department of Computer Science, University of Bristol Bristol, UK COMS11700 Turing machines Department of Computer Science, University of Bristol Bristol, UK 21 March 2014 COMS11700: Turing machines Slide 1/15 Introduction We have seen two models of computation: finite

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 8 January 24, 2018 Outline Turing Machines and variants multitape TMs nondeterministic TMs Church-Turing Thesis So far several models of computation finite automata

More information

Designing 1-tape Deterministic Turing Machines

Designing 1-tape Deterministic Turing Machines MCS-265: The Theory of Computation Handout #T1 San Skulrattanakulchai Gustavus Adolphus College April 5, 2011 Designing 1-tape Deterministic Turing Machines A TM corresponds to a computer program. We will

More information

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Equivalence of TMs and Multitape TMs Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Turing Machines First proposed by Alan Turing in 1936 Similar to finite automaton, but with an unlimited and unrestricted

More information

CS154, Lecture 10: Rice s Theorem, Oracle Machines

CS154, Lecture 10: Rice s Theorem, Oracle Machines CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable

More information

Lecture 12: Mapping Reductions

Lecture 12: Mapping Reductions Lecture 12: Mapping Reductions October 18, 2016 CS 1010 Theory of Computation Topics Covered 1. The Language EQ T M 2. Mapping Reducibility 3. The Post Correspondence Problem 1 The Language EQ T M The

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 13 CHAPTER 4 TURING MACHINES 1. The definition of Turing machine 2. Computing with Turing machines 3. Extensions of Turing

More information

Turing Machines. Fall The Chinese University of Hong Kong. CSCI 3130: Formal languages and automata theory

Turing Machines. Fall The Chinese University of Hong Kong. CSCI 3130: Formal languages and automata theory The Chinese University of Hong Kong Fall 2011 CSCI 3130: Formal languages and automata theory Turing Machines Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130 Turing Machines control head a

More information

Two Way Deterministic Finite Automata

Two Way Deterministic Finite Automata Two Way Deterministic Finite Automata Jagvir Singh and Pavan Kumar Akulakrishna Indian Institute of Science November 29, 2013 Jagvir Singh and Pavan Kumar Akulakrishna (IISC) 2DFA November 29, 2013 1 /

More information

Reducability. Sipser, pages

Reducability. Sipser, pages Reducability Sipser, pages 187-214 Reduction Reduction encodes (transforms) one problem as a second problem. A solution to the second, can be transformed into a solution to the first. We expect both transformations

More information

1 Unrestricted Computation

1 Unrestricted Computation 1 Unrestricted Computation General Computing Machines Machines so far: DFAs, NFAs, PDAs Limitations on how much memory they can use: fixed amount of memory plus (for PDAs) a stack Limitations on what they

More information

A Turing Machine. The Tape. Languages accepted by Turing Machines. Tape... Read-Write head. Context-Free n Languages. Control Unit.

A Turing Machine. The Tape. Languages accepted by Turing Machines. Tape... Read-Write head. Context-Free n Languages. Control Unit. CS 30 - ecture 9 Turig Machies Fall 2008 eview aguages ad Grammars Alphaets, strigs, laguages egular aguages Determiistic Fiite ad Nodetermiistic Automata Equivalece of NFA ad DFA ad Miimizig a DFA egular

More information

CSci 311, Models of Computation Chapter 9 Turing Machines

CSci 311, Models of Computation Chapter 9 Turing Machines CSci 311, Models of Computation Chapter 9 Turing Machines H. Conrad Cunningham 29 December 2015 Contents Introduction................................. 1 9.1 The Standard Turing Machine...................

More information

Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM)

Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM) Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM) 1 Deterministic Turing Machine (DTM).. B B 0 1 1 0 0 B B.. Finite Control Two-way, infinite tape, broken into

More information

Decision Problems with TM s. Lecture 31: Halting Problem. Universe of discourse. Semi-decidable. Look at following sets: CSCI 81 Spring, 2012

Decision Problems with TM s. Lecture 31: Halting Problem. Universe of discourse. Semi-decidable. Look at following sets: CSCI 81 Spring, 2012 Decision Problems with TM s Look at following sets: Lecture 31: Halting Problem CSCI 81 Spring, 2012 Kim Bruce A TM = { M,w M is a TM and w L(M)} H TM = { M,w M is a TM which halts on input w} TOTAL TM

More information

The Church-Turing Thesis

The Church-Turing Thesis The Church-Turing Thesis Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

Homework. Turing Machines. Announcements. Plan for today. Now our picture looks like. Languages

Homework. Turing Machines. Announcements. Plan for today. Now our picture looks like. Languages Homework s TM Variants and the Universal TM Homework #6 returned Homework #7 due today Homework #8 (the LAST homework!) Page 262 -- Exercise 10 (build with JFLAP) Page 270 -- Exercise 2 Page 282 -- Exercise

More information

Decidability: Church-Turing Thesis

Decidability: Church-Turing Thesis Decidability: Church-Turing Thesis While there are a countably infinite number of languages that are described by TMs over some alphabet Σ, there are an uncountably infinite number that are not Are there

More information

1 Showing Recognizability

1 Showing Recognizability CSCC63 Worksheet Recognizability and Decidability 1 1 Showing Recognizability 1.1 An Example - take 1 Let Σ be an alphabet. L = { M M is a T M and L(M) }, i.e., that M accepts some string from Σ. Prove

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #6 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 39 Lecture 6: Overview Prove the equivalence of enumerators and TMs. Dovetailing

More information

IV. Turing Machine. Yuxi Fu. BASICS, Shanghai Jiao Tong University

IV. Turing Machine. Yuxi Fu. BASICS, Shanghai Jiao Tong University IV. Turing Machine Yuxi Fu BASICS, Shanghai Jiao Tong University Alan Turing Alan Turing (23Jun.1912-7Jun.1954), an English student of Church, introduced a machine model for effective calculation in On

More information

Turing Machines. Nicholas Geis. February 5, 2015

Turing Machines. Nicholas Geis. February 5, 2015 Turing Machines Nicholas Geis February 5, 2015 Disclaimer: This portion of the notes does not talk about Cellular Automata or Dynamical Systems, it talks about turing machines, however this will lay the

More information

Turing Machines. Wen-Guey Tzeng Computer Science Department National Chiao Tung University

Turing Machines. Wen-Guey Tzeng Computer Science Department National Chiao Tung University Turing Machines Wen-Guey Tzeng Computer Science Department National Chiao Tung University Alan Turing One of the first to conceive a machine that can run computation mechanically without human intervention.

More information

Equivalent Variations of Turing Machines

Equivalent Variations of Turing Machines Equivalent Variations of Turing Machines Nondeterministic TM = deterministic TM npda = pushdown automata with n stacks 2PDA = npda = TM for all n 2 Turing machines with n tapes (n 2) and n tape heads has

More information

Automata Theory (2A) Young Won Lim 5/31/18

Automata Theory (2A) Young Won Lim 5/31/18 Automata Theory (2A) Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Foundations of

Foundations of 91.304 Foundations of (Theoretical) Computer Science Chapter 3 Lecture Notes (Section 3.2: Variants of Turing Machines) David Martin dm@cs.uml.edu With some modifications by Prof. Karen Daniels, Fall 2012

More information

Theory of Computation Turing Machine and Pushdown Automata

Theory of Computation Turing Machine and Pushdown Automata Theory of Computation Turing Machine and Pushdown Automata 1. What is a Turing Machine? A Turing Machine is an accepting device which accepts the languages (recursively enumerable set) generated by type

More information

Griffith University 3130CIT Theory of Computation (Based on slides by Harald Søndergaard of The University of Melbourne) Turing Machines 9-0

Griffith University 3130CIT Theory of Computation (Based on slides by Harald Søndergaard of The University of Melbourne) Turing Machines 9-0 Griffith University 3130CIT Theory of Computation (Based on slides by Harald Søndergaard of The University of Melbourne) Turing Machines 9-0 Turing Machines Now for a machine model of much greater power.

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form:

More information

Theory of Computation

Theory of Computation Theory of Computation Unit 4-6: Turing Machines and Computability Decidability and Encoding Turing Machines Complexity and NP Completeness Syedur Rahman syedurrahman@gmail.com Turing Machines Q The set

More information

Turing Machines. Our most powerful model of a computer is the Turing Machine. This is an FA with an infinite tape for storage.

Turing Machines. Our most powerful model of a computer is the Turing Machine. This is an FA with an infinite tape for storage. Turing Machines Our most powerful model of a computer is the Turing Machine. This is an FA with an infinite tape for storage. A Turing Machine A Turing Machine (TM) has three components: An infinite tape

More information

Turing Machines. Chapter 17

Turing Machines. Chapter 17 Turing Machines Chapter 17 Languages and Machines SD D Context-Free Languages Regular Languages reg exps FSMs cfgs PDAs unrestricted grammars Turing Machines Grammars, SD Languages, and Turing Machines

More information

Introduction to Turing Machines. Reading: Chapters 8 & 9

Introduction to Turing Machines. Reading: Chapters 8 & 9 Introduction to Turing Machines Reading: Chapters 8 & 9 1 Turing Machines (TM) Generalize the class of CFLs: Recursively Enumerable Languages Recursive Languages Context-Free Languages Regular Languages

More information

Homework 5 Solution CSCI 2670 October 6, c) New text q 1 1##1 xq 3 ##1 x#q 5 #1 q reject. Old text. ~q 3 ##1 ~#q 5 #1

Homework 5 Solution CSCI 2670 October 6, c) New text q 1 1##1 xq 3 ##1 x#q 5 #1 q reject. Old text. ~q 3 ##1 ~#q 5 #1 Homework 5 Solution CSCI 2670 October 6, 2005 3.2 c) New text q 1 1##1 xq 3 ##1 x#q 5 #1 q reject Old text q 1 1##1 ~q 3 ##1 ~#q 5 #1 q reject 3.2 e) New text q 1 10#10 xq 3 0#10 x0q 3 #10 x0#q 5 10 x0q

More information

CS4026 Formal Models of Computation

CS4026 Formal Models of Computation CS4026 Formal Models of Computation Turing Machines Turing Machines Abstract but accurate model of computers Proposed by Alan Turing in 1936 There weren t computers back then! Turing s motivation: find

More information

A Universal Turing Machine

A Universal Turing Machine A Universal Turing Machine A limitation of Turing Machines: Turing Machines are hardwired they execute only one program Real Computers are re-programmable Solution: Universal Turing Machine Attributes:

More information

SCHEME FOR INTERNAL ASSESSMENT TEST 3

SCHEME FOR INTERNAL ASSESSMENT TEST 3 SCHEME FOR INTERNAL ASSESSMENT TEST 3 Max Marks: 40 Subject& Code: Automata Theory & Computability (15CS54) Sem: V ISE (A & B) Note: Answer any FIVE full questions, choosing one full question from each

More information

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Turing Machines Review An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Varieties of TMs Multi-Tape TMs Nondeterministic TMs String Enumerators

More information

Turing Machines and Time Complexity

Turing Machines and Time Complexity Turing Machines and Time Complexity Turing Machines Turing Machines (Infinitely long) Tape of 1 s and 0 s Turing Machines (Infinitely long) Tape of 1 s and 0 s Able to read and write the tape, and move

More information

Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis

Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis Harvard CS 121 and CSCI E-121 Lecture 14: Turing Machines and the Church Turing Thesis Harry Lewis October 22, 2013 Reading: Sipser, 3.2, 3.3. The Basic Turing Machine The Basic Turing Machine a a b a

More information

CSCI3390-Assignment 2 Solutions

CSCI3390-Assignment 2 Solutions CSCI3390-Assignment 2 Solutions due February 3, 2016 1 TMs for Deciding Languages Write the specification of a Turing machine recognizing one of the following three languages. Do one of these problems.

More information

Homework Assignment 6 Answers

Homework Assignment 6 Answers Homework Assignment 6 Answers CSCI 2670 Introduction to Theory of Computing, Fall 2016 December 2, 2016 This homework assignment is about Turing machines, decidable languages, Turing recognizable languages,

More information

Before We Start. Turing Machines. Languages. Now our picture looks like. Theory Hall of Fame. The Turing Machine. Any questions? The $64,000 Question

Before We Start. Turing Machines. Languages. Now our picture looks like. Theory Hall of Fame. The Turing Machine. Any questions? The $64,000 Question Before We Start s Any questions? Languages The $64,000 Question What is a language? What is a class of languages? Now our picture looks like Context Free Languages Deterministic Context Free Languages

More information

Most General computer?

Most General computer? Turing Machines Most General computer? DFAs are simple model of computation. Accept only the regular languages. Is there a kind of computer that can accept any language, or compute any function? Recall

More information

There are two main techniques for showing that problems are undecidable: diagonalization and reduction

There are two main techniques for showing that problems are undecidable: diagonalization and reduction Reducibility 1 There are two main techniques for showing that problems are undecidable: diagonalization and reduction 2 We say that a problem A is reduced to a problem B if the decidability of A follows

More information

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS 1. [6 POINTS] For language L 1 = {0 n 1 m n, m 1, m n}, which string is in L 1? ANSWER: 0001111 is in L 1 (with n =

More information

Automata Theory - Quiz II (Solutions)

Automata Theory - Quiz II (Solutions) Automata Theory - Quiz II (Solutions) K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu} 1 Problems 1. Induction: Let L denote the language of balanced strings over Σ =

More information

Computation Histories

Computation Histories 208 Computation Histories The computation history for a Turing machine on an input is simply the sequence of configurations that the machine goes through as it processes the input. An accepting computation

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #2 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 1 Lecture 2: Overview Recall some basic definitions from Automata Theory.

More information

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2. March 30, Please write your name in the upper corner of each page.

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2. March 30, Please write your name in the upper corner of each page. 6.045J/18.400J: Automata, Computability and Complexity March 30, 2005 Quiz 2 Prof. Nancy Lynch Please write your name in the upper corner of each page. Problem Score 1 2 3 4 5 6 Total Q2-1 Problem 1: True

More information

The tape of M. Figure 3: Simulation of a Turing machine with doubly infinite tape

The tape of M. Figure 3: Simulation of a Turing machine with doubly infinite tape UG3 Computability and Intractability (2009-2010): Note 4 4. Bells and whistles. In defining a formal model of computation we inevitably make a number of essentially arbitrary design decisions. These decisions

More information

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG)

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) CS5371 Theory of Computation Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) Objectives Recall that decidable languages are languages that can be decided by TM (that means,

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 5 Reductions Undecidable problems from language theory Linear bounded automata given by Jiri Srba Lecture 5 Computability and Complexity 1/14 Reduction Informal Definition

More information

Theory of Computation (IX) Yijia Chen Fudan University

Theory of Computation (IX) Yijia Chen Fudan University Theory of Computation (IX) Yijia Chen Fudan University Review The Definition of Algorithm Polynomials and their roots A polynomial is a sum of terms, where each term is a product of certain variables and

More information

CS5371 Theory of Computation. Lecture 15: Computability VI (Post s Problem, Reducibility)

CS5371 Theory of Computation. Lecture 15: Computability VI (Post s Problem, Reducibility) CS5371 Theory of Computation Lecture 15: Computability VI (Post s Problem, Reducibility) Objectives In this lecture, we introduce Post s correspondence problem (playing with a special type of domino) We

More information

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4 Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form: A BC A a S ε B and C aren t start variables a is

More information

Variations of the Turing Machine

Variations of the Turing Machine Variations of the Turing Machine 1 The Standard Model Infinite Tape a a b a b b c a c a Read-Write Head (Left or Right) Control Unit Deterministic 2 Variations of the Standard Model Turing machines with:

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Handicapped machines DFA limitations Tape head moves only one direction 2-way DFA

More information

CSCE 551: Chin-Tser Huang. University of South Carolina

CSCE 551: Chin-Tser Huang. University of South Carolina CSCE 551: Theory of Computation Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Computation History A computation history of a TM M is a sequence of its configurations C 1, C 2,, C l such

More information

6.5.3 An NP-complete domino game

6.5.3 An NP-complete domino game 26 Chapter 6. Complexity Theory 3SAT NP. We know from Theorem 6.5.7 that this is true. A P 3SAT, for every language A NP. Hence, we have to show this for languages A such as kcolor, HC, SOS, NPrim, KS,

More information

CS 525 Proof of Theorems 3.13 and 3.15

CS 525 Proof of Theorems 3.13 and 3.15 Eric Rock CS 525 (Winter 2015) Presentation 1 (Week 4) Equivalence of Single-Tape and Multi-Tape Turing Machines 1/30/2015 1 Turing Machine (Definition 3.3) Formal Definition: (Q, Σ, Γ, δ, q 0, q accept,

More information

Chapter 6: Turing Machines

Chapter 6: Turing Machines Chapter 6: Turing Machines 6.1 The Turing Machine Definition A deterministic Turing machine (DTM) M is specified by a sextuple (Q, Σ, Γ, δ, s, f), where Q is a finite set of states; Σ is an alphabet of

More information

CSCE 551 Final Exam, Spring 2004 Answer Key

CSCE 551 Final Exam, Spring 2004 Answer Key CSCE 551 Final Exam, Spring 2004 Answer Key 1. (10 points) Using any method you like (including intuition), give the unique minimal DFA equivalent to the following NFA: 0 1 2 0 5 1 3 4 If your answer is

More information

Fundamentals of Computer Science

Fundamentals of Computer Science Fundamentals of Computer Science Chapter 8: Turing machines Henrik Björklund Umeå University February 17, 2014 The power of automata Finite automata have only finite memory. They recognize the regular

More information

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Turing Machines Review An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Varieties of TMs Multi-Tape TMs Nondeterministic TMs String Enumerators

More information

Testing Emptiness of a CFL. Testing Finiteness of a CFL. Testing Membership in a CFL. CYK Algorithm

Testing Emptiness of a CFL. Testing Finiteness of a CFL. Testing Membership in a CFL. CYK Algorithm Testing Emptiness of a CFL As for regular languages, we really take a representation of some language and ask whether it represents φ Can use either CFG or PDA Our choice, since there are algorithms to

More information

Turing Machines. Lecture 8

Turing Machines. Lecture 8 Turing Machines Lecture 8 1 Course Trajectory We will see algorithms, what can be done. But what cannot be done? 2 Computation Problem: To compute a function F that maps each input (a string) to an output

More information

CpSc 421 Homework 9 Solution

CpSc 421 Homework 9 Solution CpSc 421 Homework 9 Solution Attempt any three of the six problems below. The homework is graded on a scale of 100 points, even though you can attempt fewer or more points than that. Your recorded grade

More information

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable?

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable? } We ll now take a look at Turing Machines at a high level and consider what types of problems can be solved algorithmically and what types can t: What languages are Turing-decidable? What languages are

More information

jflap demo Regular expressions Pumping lemma Turing Machines Sections 12.4 and 12.5 in the text

jflap demo Regular expressions Pumping lemma Turing Machines Sections 12.4 and 12.5 in the text On the menu today jflap demo Regular expressions Pumping lemma Turing Machines Sections 12.4 and 12.5 in the text 1 jflap Demo jflap: Useful tool for creating and testing abstract machines Finite automata,

More information

Variants of Turing Machine (intro)

Variants of Turing Machine (intro) CHAPTER 3 The Church-Turing Thesis Contents Turing Machines definitions, examples, Turing-recognizable and Turing-decidable languages Variants of Turing Machine Multi-tape Turing machines, non-deterministic

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Advanced topic: Space complexity

Advanced topic: Space complexity Advanced topic: Space complexity CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2016 1/28 Review: time complexity We have looked at how long it takes to

More information

TURING MAHINES

TURING MAHINES 15-453 TURING MAHINES TURING MACHINE FINITE STATE q 10 CONTROL AI N P U T INFINITE TAPE read write move 0 0, R, R q accept, R q reject 0 0, R 0 0, R, L read write move 0 0, R, R q accept, R 0 0, R 0 0,

More information

Chapter 1 - Time and Space Complexity. deterministic and non-deterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE

Chapter 1 - Time and Space Complexity. deterministic and non-deterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE Chapter 1 - Time and Space Complexity deterministic and non-deterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE 1 / 41 Deterministic Turing machines Definition 1.1 A (deterministic

More information