Influence of Noise on Stability of the Ecosystem

Size: px
Start display at page:

Download "Influence of Noise on Stability of the Ecosystem"

Transcription

1 Commun. Theor. Phys. 60 (2013) Vol. 60, No. 4, October 15, 2013 Influence of Noise on Stability of the Ecosystem LIU Tong-Bo ( ) and TANG Jun (» ) College of Science, China University of Mining and Technology, Xuzhou , China (Received December 19, 2012; revised manuscript received March 7, 2013) Abstract Based on a simplified predator-prey model, the influence of noise on the ecosystem has been studied. The results show the following facts. (i) For all parameter values, the existence of noise maintains the oscillatory state of the ecosystem, and enough strong noise can destroy the ecosystem, which means the annihilation of the species. (ii) Comparing to oscillation with small amplitude, while the ecosystem oscillates explosively with large amplitude, it is more likely to lose balance. In addition, the small-amplitude oscillation takes on higher level of regularity. All the numerical results are reasonable comparing to the general knowledge about ecosystem. PACS numbers: Ac, Cb, a Key words: noise, predator-preg model, stability The relationship between predator and prey populations is the most essential factor contributing to ecosystem conservation. So, much theoretical attention has been paid on the predator-prey population dynamics. Since the pioneer work of Lotka [1] and Vortella, [2] many different mathematical models have been presented to mimic different types of ecosystems under different environmental conditions. For example, based on the experimental results, Holling et al. have introduced different model equations for different ecosystems. [3 4] Chattopadhyay et al. [5] have studied the ecosystem system with diseased species by using a three-variable model. In recent years, the migration of species has attracted much attention, which is simulated mathematically as a form of diffusion in the 2D ecosystem. The research results show that fruitful pattern formation appears in the ecosystem with migrating species, such as spiral pattern, Turing pattern, etc. [6] Single-armed, even multi-armed spiral pattern are observed in an ecosystem which contains three species with cyclic competition, and the competition rate is a important fact that determines the stability of spiral waves and the emergence of biodiversity, i.e., the change of competition rate makes the ecosystem transit from a state of coexistence of species to a state of extinction of one species. [7 8] In a four-species ecological system with cyclic dominance, phase transition from the coexistence of all four species to the existence of only two neutral species emerges through the changing of parameter across the threshold value. [9] In addition, some research work focus on the noise [10] and time-delay. [11] Based on Levins model with only one species, Wang [10] et al. find multiplicative and additive noise can influence the stability of the meta-population. Based on the classical Lotka Volterra model of one-species, the Stochastic Resonance (SR), which is a common phenomena in nonlinear noisy system, is theoretically and numerically observed. [12 13] However, the model with one species can not explicitly contain the relationship between predator and prey population. Noise originates from the fluctuation in a variety of physical, chemical or biological systems, and the source of noise is variable for different systems. For instance, the main noise source in the thermodynamic system is the fluctuation in environmental temperature. In the biochemical systems, the external noise originates from the random variations of one or more of the externally set control parameters, such as the rate constants associated with a given set of reactions, the internal noise comes from discrete nature of biochemical events such as transcription, translation, multimerization, and protein/mrna decay processes. Noise is often perceived as being undesirable and unpredictable, however, more and more advantages of noise are found in recent decades. For example, it has been documented that noise can induce sub-threshold oscillation in nonlinear systems, and improve the regularity of the oscillation. [14 16] Noise helps to achieve synchronized spikes in coupled neurons, [17 20] and can initiate spiral wave in the excitable system. [21] Our previous work show that an intermediate amount of noise plays a constructive role in persisting memory through noise-induced changing from monostable to bistable region. [22] Ecosystem is embedded inherently in some environment with different climate or atmosphere conditions, the fluctuation in which can bring noise to the system. In last decades, pollution badly disrupts the environment, different kinds of extreme climate appear more frequently, and ecosystems are destroyed intensively. Thereby, the influ- Supported by the National Natural Science Foundation of China under Grant No , and the Fundamental Research Funds for the Central Universities of China under Grant No. 2010QNA36 Corresponding author, tjuns1979@126.com c 2013 Chinese Physical Society and IOP Publishing Ltd

2 No. 4 Communications in Theoretical Physics 511 ence of noise on the ecosystem is a theoretical problem relate closely to the reality. In this paper, a simplified Rosenzweig MacArthur (RM) predator-prey model is used to mimic the ecosystem with two species. [23] The model equations are given by: du ( dt = αu 1 u v ) = f(u, v), 1 + βu dv dt = v ( βu 1 + βu γ ) = g(u, v), (1) where the two model variables u and v represent the population densities of prey and predator. The model parameter α is the ratio between growth rate of the prey and birth rate of the predator, β is the effective carrying capacity of the prey population, and γ is the ratio between death and growth rate of the predator. In this letter, we set α = 0.3, β = 7.5, and we focus on γ, the value of γ varies in the region (0 1). Fig. 1 The bifurcation diagram of the Presented predator-prey model, and γ is the bifurcation parameter. The dark thick lines indicate the stable fix points, while the thin lines represents unstable fix points or periodic orbits. The red lines indicate maximum and minimum of stable limit cycles. To investigate the dynamics of the system, the fix points of the deterministic model and the corresponding stability are calculated. In Fig. 1, we can see that, while γ decreases from 1.0, the annihilated state of predator (v = 0) becomes unstable through the bifurcation point (BP), at which γ = In addition, a new stable fix point appears through the BP, for which v 0. This stable fix point corresponds to the state at which the populations of prey and predator maintain on constant values. Then, the stable fix point becomes unstable again and a periodic orbit appears through a hopf bifurcation point (HB), at which γ = Although the bifurcation diagram is depicted only for γ > 0.4, the fix points for γ < 0.4 are obvious because no other bifurcation point is found. Furthermore, we can inferred from Fig. 1 that although the model is always oscillatory for γ < , the amplitude is changed with γ. While the value of γ is close to the HB, the amplitude is small and the minimum is not zero, but for smaller γ, the amplitude is large and the minimum becomes zero. We find the large-amplitude oscillation is similar to the excitable system, such as electrical activity in neuron system, which here will be named as explosive oscillation. As mentioned above, the fluctuation in the environmental condition can influence the ecosystem. Theoretically, the influence is usually studied by allowing the fluctuation of the model parameter. In this paper, we suppose parameter γ is subjected to additive random fluctuation, i.e., γ γ + ξ(t). The additive fluctuation gives rise to a multiplicative noise term in Eqs. (1), and the stochastic version of Eqs. (1) is given by du dv = f(u, v), = g(u, v) vξ(t), (2) dt dt where the multiplicative noise are interpreted in Stratonovich sense, ξ(t) is the Gaussian white noise. The statistical properties are given by ξ(t) = 0, ξ(t)ξ(t ) = Dδ(t t ), (3) where D is the corresponding noise intensity and δ is the Kronecker symbol. We use a forward Euler integration scheme with a time step 0.01 time unit. Simulations verify further time step reduction does not significantly improve accuracy. The numerical algorithm presented by Sancho et al. [24] will be used to simulate the noise term. To quantitatively describe the regularity of the oscillations, we employ the normalized auto correlation function of v time-series [25] ṽ(t)ṽ(t + τ) C(τ) = ṽ 2, ṽ = v v, (4) Then the characteristic correlation time can be integrated as follows: τ c = 0 C 2 (t)dt. (5) Firstly, the influence of noise in the parameter region < γ < (between the two bifurcation points) will be studied. As an example, we let γ = It is found that the oscillatory dynamics is dependent on the noise intensity. For small intensity of noise, predator population v undergoes small-amplitude phase oscillation [see top panel in Fig. 2 for D = ] with high-level regularity. While D increases, the dynamics of v becomes explosive oscillation (see center panel in Fig. 2 for D = 0.05). Additionally, it is obvious that the regularity of the explosive oscillation is much lower than that of small-amplitude phase oscillation. Further increasing of D lead the predator population vanishing, which may correspond to annihilation of the species, and the ecosystem is totally corrupted (see bottom panel in Fig. 2 for D = 0.11). Obviously, large fluctuation in climate brings the emergence of extreme climate conditions. It has been estimated more extreme climate conditions are easier to result in population decline and extinction, [26] and this is accord with our numerical result. Sequentially, it can be concluded that

3 512 Communications in Theoretical Physics the explosive oscillation is closer to the ecosystem corruption than the small-amplitude phase oscillation. Furthermore, our simulations show that although the noise intensity is extremely small (for example, D < ), the small-amplitude oscillation can be found yet. It tells us that although for the ideal environment (corresponding to small fluctuation), the ecosystem prefers oscillating with small-amplitude rather than being in a balance state with constant species population, i.e., the oscillation of ecosystem is robust. Vol. 60 τc of the v time-series for the oscillatory region in Fig. 3. Figure 4 shows the dependence of τc on noise intensity for three selected γ value. Obviously, with the increasing of noise intensity, τc decreases, i.e., the regularity of the oscillation decreases. In fact, this decreasing should be ascribed to the transiting from the small-amplitude phase oscillation to the explosive oscillation. Furthermore, the configuration of the lines in Fig. 4 can be divided into two regions. While D > 0.01 approximately, τc is very small for all γ value, and it corresponds to the explosive oscillation, i.e., the regularity of explosive oscillation is always low-level. On the contrary, for D < 0.01, the ecosystem undergoes small-amplitude phase oscillation, the destroying of noise on the regularity can be depicted explicitly. In addition, for a given weaker noise, τc decreases with parameter γ (see the inset in Fig. 4), i.e., while the system is closer to the annihilated state, the regularity of the oscillation is easier to be destroyed by the noise. Fig. 2 Time series of v for γ = Top: D = ; Center: D = 0.05; Bottom: D = We have also calculated the evolution of species population for other value of γ in the parameter region < γ < , similar results has been obtained. As mentioned above, enough large D leads the predator population vanishing, and corrupts the ecosystem. The critical value of D, for which the ecosystem can be corrupted, is calculated and shown in Fig. 3. The critical value Dc decreases linearly with the value of γ. As shown in Fig. 1, larger γ is closer to the annihilated state (γ > ). So, we can conclude that the ecosystem closer to the annihilated state, the ecosystem is easier to be corrupted. Fig. 3 The critical noise intensity Dc, across which the ecosystem transits from explosive oscillation to annihilation. To show the character of the oscillation more explicitly, we have calculated the characteristic correlation time Fig. 4 The dependence of the characteristic correlation time τc on noise intensity D for three selected γ value. Inset: the dependence of τc on γ for a given noise intensity D = Furthermore, in Fig. 4, we can see that τc maintain on a low level for all values of noise intensity for γ = To understand this result, the noisy time series of v for different γ value are compared in Fig. 5. While γ = 0.77, the ecosystem possesses small-amplitude phase oscillation. It is because that γ = 0.77 is close to the HB, and noise can induce the subthreshold oscillation. As the increasing of γ, the value of the parameter is far from the HB, and then instead of noise-induced subthreshold oscillation, the ecosystem undergoes small-amplitude fluctuation around the steady state. So, we can conclude that while the value of γ is far from the HB, the subthreshold phase oscillation will not appear, and arbitrary intensity of noise makes the system undergoes fluctuating around the steady state,

4 No. 4 Communications in Theoretical Physics which makes the regularity of the time series maintain on a low-level for all noise intensity. 513 the transiting from small-amplitude phase oscillation to explosive oscillation. While D increases across a critical value, the population of predator will annihilate after a period of explosive oscillation (see the bottom panel in Fig. 6). Comparing Figs. 2 and 6, we conclude that for all parameter regions, the system always undergoes the same successive transition with the increasing of noise intensity. The sequence is, small-amplitude phase oscillation, explosive oscillation, and annihilation. We also calculate the critical value Dc in the parameter region for phase oscillation, as done for the region < γ < The results (see Fig. 7) are similar to those shown in Fig. 3. The critical value Dc decreases linearly with the value of γ. Fig. 5 Time series of v for different value of γ (D = ). Above results are obtained in the parameter region for which the deterministic model being in the steady state. In what follows, we will focus on the parameter region for oscillation, i.e., γ < In Fig. 1, the oscillating region can be divided into two segments. For γ > 0.7, the ecosystem possesses phase oscillation, while γ < 0.7, the oscillation becomes explosive one, for which the minimum of v is close to zero. Intuitively, in a real ecosystem, the population of species should not come to zero, although the system is oscillating. So, our following attention will be paid on the phase oscillating region (0.7 < γ < ). Fig. 6 Time series of v for different value of D (γ = 0.74). As an example, the time series of v for γ = 0.74 is compared in Fig. 6. Apart from the disturbing of the noise (D = 0), the system undergoes small-amplitude phase oscillation with ideal regularity. While the noise intensity D increases to 0.01, the regularity of the oscillation is destroyed. Further increasing of noise intensity induces Fig. 7 The critical noise intensity Dc, across which the ecosystem transits from explosive oscillation to annihilation. In summary, the influence of noise on the ecosystem is studied for different parameter region, including phase oscillatory region and region for steady states. Noise leads the ecosystem oscillating for all parameter values. The amplitude and style of the oscillation are dependent on the intensity of noise. For weak noise, the ecosystem possesses small-amplitude phase oscillation, and the system exhibits explosive oscillation for stronger noise, while the noise intensity increases across a critical value Dc, the ecosystem will lose the balance, which means the annihilation of the species. It tells us that the ecosystem is easier to be destroy while the system possessing explosive oscillation. It has ever been found this kind of annihilation can be induced by the change of the parameter value in other ecosystems.[7 9] On the other hand, it is also been found that the regularity of the small-amplitude oscillation is better than explosive oscillation, and the level of the regularity decreases with the noise intensity. In addition, we find the critical value Dc change with model parameter γ linearly. As discussed above, our numerical results accord with the general knowledge about ecosystem. The deteriorating ecological environment destroy the balance between species in the ecosystems, which makes our theoretical study has great realistic significance.

5 514 Communications in Theoretical Physics Vol. 60 References [1] A.J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore (1925). [2] V. Vortella, Nature (London) 118 (1926) 558. [3] C.S. Holling, Mem. Entomol. Sec. Can. 45 (1965) 1. [4] J.B. Collings, J. Math. Biol. 36 (1997) 149. [5] J. Chattopadhyay and O. Arino, Nonl. Anal. 36 (1999) 747. [6] S. Nagano and Y. Maeda, Phys. Rev. E 85 (2012) [7] L.L. Jiang, T. Zhou, M. Perc, and B.H. Wang, Phys. Rev. E 84 (2011) [8] L.L. Jiang, W.X. Wang, Y.C. Lai, and X. Ni, Phys. Lett. A 376 (2012) [9] G. Szabó and G.A. Sznaider, Phys. Rev. E 69 (2004) [10] C.J. Wang, J.C. Li, and D.C. Mei, Acta Phys. Sin. 61 (2012) (in Chinese). [11] L.P. Zhang, H.N. Wang, and M. Xu, Acta Phys. Sin. 60 (2011) (in Chinese). [12] X.H. Wang, L. Bai, Z.R. Zhou, L.R. Nie, and D.C. Mei, Commun. Theor. Phys. 57 (2012) 619. [13] L.R. Nie, J.H. Peng, and D.C. Mei, Commun. Theor. Phys. 55 (2011) 829. [14] J. Tang, Y. Jia, M. Yi, J. Ma, and J.R. Li, Phys. Rev. E 77 (2008) [15] J. Tang, Y. Jia, and M. Yi, Commun. Theor. Phys. 51 (2009) 455. [16] M. Yi, Y. Jia, Q. Liu, J.R. Li, and C.N. Zhu, Phys. Rev. E 73 (2006) [17] Y. Wang, D.T.W. Chik, and Z.D. Wang, Phys. Rev. E 61 (2000) 740. [18] C. Zhou and J. Kurths, Chaos 13 (2003) 401. [19] J. Tang, J. Ma, M. Yi, H. Xia, and X.Q. Yang, Phys. Rev. E 83 (2011) [20] J. Tang, L.C. Qu, and J.M. Luo, Chin. Phys. Lett. 28 (2011) [21] B.M. Cyrill, V.E. Eric, and Weinan, Proc. Natl. Acad. Sci. USA 104 (2007) 702. [22] J. Tang, X.Q. Yang, J. Ma, and Y. Jia, Phys. Rev. E 80 (2009) [23] M.L. Rosenzweig and R.H. Macarthur, Am. Nature 97 (1963) 209. [24] J.M. Sancho, M. Sanmiguel, S.L. Katz, and J.D. Gunton, Phys. Rev. A 26 (1982) [25] A.S. Pikovsky and J. Kurths, Phys. Rev. Lett. 78 (1997) 775. [26] J.K. Hill, H.M. Griffiths, and C.D. Thomas, Annual Review of Entomology 56 (2011) 143.

Cooperative Effects of Noise and Coupling on Stochastic Dynamics of a Membrane-Bulk Coupling Model

Cooperative Effects of Noise and Coupling on Stochastic Dynamics of a Membrane-Bulk Coupling Model Commun. Theor. Phys. (Beijing, China) 51 (2009) pp. 455 459 c Chinese Physical Society and IOP Publishing Ltd Vol. 51, No. 3, March 15, 2009 Cooperative Effects of Noise and Coupling on Stochastic Dynamics

More information

Time Delay Induced Stochastic Resonance in One Species Competition Ecosystem without a Periodic Signal

Time Delay Induced Stochastic Resonance in One Species Competition Ecosystem without a Periodic Signal Commun. Theor. Phys. 57 (2012) 619 623 Vol. 57, No. 4, April 15, 2012 Time Delay Induced Stochastic Resonance in One Species Competition Ecosystem without a Periodic Signal WANG Xiu-Hua ( ), 1 BAI Li (Ü

More information

Nonchaotic random behaviour in the second order autonomous system

Nonchaotic random behaviour in the second order autonomous system Vol 16 No 8, August 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/1608)/2285-06 Chinese Physics and IOP Publishing Ltd Nonchaotic random behaviour in the second order autonomous system Xu Yun ) a), Zhang

More information

Phase Transitions of an Epidemic Spreading Model in Small-World Networks

Phase Transitions of an Epidemic Spreading Model in Small-World Networks Commun. Theor. Phys. 55 (2011) 1127 1131 Vol. 55, No. 6, June 15, 2011 Phase Transitions of an Epidemic Spreading Model in Small-World Networks HUA Da-Yin (Ù ) and GAO Ke (Ô ) Department of Physics, Ningbo

More information

The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises

The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises Chin. Phys. B Vol. 19, No. 1 (010) 01050 The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises Dong Xiao-Juan(

More information

Bifurcation and Stability Analysis of a Prey-predator System with a Reserved Area

Bifurcation and Stability Analysis of a Prey-predator System with a Reserved Area ISSN 746-733, England, UK World Journal of Modelling and Simulation Vol. 8 ( No. 4, pp. 85-9 Bifurcation and Stability Analysis of a Prey-predator System with a Reserved Area Debasis Mukherjee Department

More information

New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect

New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect Commun. Theor. Phys. 70 (2018) 803 807 Vol. 70, No. 6, December 1, 2018 New Feedback Control Model in the Lattice Hydrodynamic Model Considering the Historic Optimal Velocity Difference Effect Guang-Han

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

Numerical Solution of a Fractional-Order Predator-Prey Model with Prey Refuge and Additional Food for Predator

Numerical Solution of a Fractional-Order Predator-Prey Model with Prey Refuge and Additional Food for Predator 66 Numerical Solution of a Fractional-Order Predator-Prey Model with Prey Refuge Additional Food for Predator Rio Satriyantara, Agus Suryanto *, Noor Hidayat Department of Mathematics, Faculty of Mathematics

More information

Spatiotemporal pattern formation in a prey-predator model under environmental driving forces

Spatiotemporal pattern formation in a prey-predator model under environmental driving forces Home Search Collections Journals About Contact us My IOPscience Spatiotemporal pattern formation in a prey-predator model under environmental driving forces This content has been downloaded from IOPscience.

More information

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Anti-synchronization of a new hyperchaotic system via small-gain theorem Anti-synchronization of a new hyperchaotic system via small-gain theorem Xiao Jian( ) College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China (Received 8 February 2010; revised

More information

A NUMERICAL STUDY ON PREDATOR PREY MODEL

A NUMERICAL STUDY ON PREDATOR PREY MODEL International Conference Mathematical and Computational Biology 2011 International Journal of Modern Physics: Conference Series Vol. 9 (2012) 347 353 World Scientific Publishing Company DOI: 10.1142/S2010194512005417

More information

On predator-prey models

On predator-prey models Predator-prey On models ddd Department of Mathematics College of William and Mary Math 41/CSUMS Talk February 3, 1 Collaborators Sze-Bi Hsu (Tsinghua University, Hsinchu, Taiwan) Junjie Wei (Harbin Institute

More information

Pure Multiplicative Noises Induced Population Extinction in an Anti-tumor Model under Immune Surveillance

Pure Multiplicative Noises Induced Population Extinction in an Anti-tumor Model under Immune Surveillance Commun. Theor. Phys. Beijing, China 52 29 pp. 463 467 c Chinese Physical Society and IOP Publishing Ltd Vol. 52, No. 3, September 15, 29 Pure Multiplicative Noises Induced Population Extinction in an Anti-tumor

More information

Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system

Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system ISSN 1746-7659 England UK Journal of Information and Computing Science Vol. 10 No. 4 2015 pp. 265-270 Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system Haijuan Chen 1 * Rui Chen

More information

Stochastic models in biology and their deterministic analogues

Stochastic models in biology and their deterministic analogues Stochastic models in biology and their deterministic analogues Alan McKane Theory Group, School of Physics and Astronomy, University of Manchester Newton Institute, May 2, 2006 Stochastic models in biology

More information

550 XU Hai-Bo, WANG Guang-Rui, and CHEN Shi-Gang Vol. 37 the denition of the domain. The map is a generalization of the standard map for which (J) = J

550 XU Hai-Bo, WANG Guang-Rui, and CHEN Shi-Gang Vol. 37 the denition of the domain. The map is a generalization of the standard map for which (J) = J Commun. Theor. Phys. (Beijing, China) 37 (2002) pp 549{556 c International Academic Publishers Vol. 37, No. 5, May 15, 2002 Controlling Strong Chaos by an Aperiodic Perturbation in Area Preserving Maps

More information

Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 265 269 c International Academic Publishers Vol. 47, No. 2, February 15, 2007 Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

More information

Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses Journal of Physics: Conference Series PAPER OPEN ACCESS Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses To cite this article: D Savitri 2018

More information

Bifurcation in a Discrete Two Patch Logistic Metapopulation Model

Bifurcation in a Discrete Two Patch Logistic Metapopulation Model Bifurcation in a Discrete Two Patch Logistic Metapopulation Model LI XU Tianjin University of Commerce Department of Statistics Jinba road, Benchen,Tianjin CHINA beifang xl@63.com ZHONGXIANG CHANG Tianjin

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information

Chaos suppression of uncertain gyros in a given finite time

Chaos suppression of uncertain gyros in a given finite time Chin. Phys. B Vol. 1, No. 11 1 1155 Chaos suppression of uncertain gyros in a given finite time Mohammad Pourmahmood Aghababa a and Hasan Pourmahmood Aghababa bc a Electrical Engineering Department, Urmia

More information

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999 Simple approach to the creation of a strange nonchaotic attractor in any chaotic system J. W. Shuai 1, * and K. W. Wong 2, 1 Department of Biomedical Engineering,

More information

Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation

Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation Chin. Phys. B Vol. 19, No. (1 1 Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation Zhang Huan-Ping( 张焕萍 a, Li Biao( 李彪 ad, Chen Yong ( 陈勇 ab,

More information

arxiv: v1 [nlin.ao] 19 May 2017

arxiv: v1 [nlin.ao] 19 May 2017 Feature-rich bifurcations in a simple electronic circuit Debdipta Goswami 1, and Subhankar Ray 2, 1 Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA

More information

Spiral Waves Emergence in a Cyclic Predator-Prey Model

Spiral Waves Emergence in a Cyclic Predator-Prey Model Spiral Waves Emergence in a Cyclic Predator-Prey Model Luo-Luo Jiang 1,Wen-XuWang 2,XinHuang 3, and Bing-Hong Wang 1 1 Department of Modern Physics, University of Science and Technology of China, Hefei

More information

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd College of William and Mary Williamsburg, Virginia 23187 Mathematical Applications in Ecology and Evolution Workshop

More information

It has become increasingly evident that nonlinear phenomena

It has become increasingly evident that nonlinear phenomena Increased competition may promote species coexistence J. Vandermeer*, M. A. Evans*, P. Foster*, T. Höök, M. Reiskind*, and M. Wund* *Department of Ecology and Evolutionary Biology, and School of Natural

More information

Controlling the Period-Doubling Bifurcation of Logistic Model

Controlling the Period-Doubling Bifurcation of Logistic Model ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.20(2015) No.3,pp.174-178 Controlling the Period-Doubling Bifurcation of Logistic Model Zhiqian Wang 1, Jiashi Tang

More information

698 Zou Yan-Li et al Vol. 14 and L 2, respectively, V 0 is the forward voltage drop across the diode, and H(u) is the Heaviside function 8 < 0 u < 0;

698 Zou Yan-Li et al Vol. 14 and L 2, respectively, V 0 is the forward voltage drop across the diode, and H(u) is the Heaviside function 8 < 0 u < 0; Vol 14 No 4, April 2005 cfl 2005 Chin. Phys. Soc. 1009-1963/2005/14(04)/0697-06 Chinese Physics and IOP Publishing Ltd Chaotic coupling synchronization of hyperchaotic oscillators * Zou Yan-Li( ΠΛ) a)y,

More information

Lecture 15: Biological Waves

Lecture 15: Biological Waves Lecture 15: Biological Waves Jonathan A. Sherratt Contents 1 Wave Fronts I: Modelling Epidermal Wound Healing 2 1.1 Epidermal Wound Healing....................... 2 1.2 A Mathematical Model.........................

More information

Hopf-Fold Bifurcation Analysis in a Delayed Predator-prey Models

Hopf-Fold Bifurcation Analysis in a Delayed Predator-prey Models Vol.37 (SUComS 6), pp.57-66 http://dx.doi.org/.457/astl.6.37. Hopf-Fold Bifurcation Analysis in a Delayed Predator-prey Models Shuang Guo, Xiuli Li, Jian Yu, Xiu Ren Department of Mathematics, Teacher

More information

Toward Analytic Solution of Nonlinear Differential Difference Equations via Extended Sensitivity Approach

Toward Analytic Solution of Nonlinear Differential Difference Equations via Extended Sensitivity Approach Commun. Theor. Phys. 57 (2012) 5 9 Vol. 57, No. 1, January 15, 2012 Toward Analytic Solution of Nonlinear Differential Difference Equations via Extended Sensitivity Approach G. Darmani, 1, S. Setayeshi,

More information

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Wang Ai-Yuan( 王爱元 ) a)b) and Ling Zhi-Hao( 凌志浩 ) a) a) Department of Automation, East China University of Science and

More information

ANALYSIS AND CONTROLLING OF HOPF BIFURCATION FOR CHAOTIC VAN DER POL-DUFFING SYSTEM. China

ANALYSIS AND CONTROLLING OF HOPF BIFURCATION FOR CHAOTIC VAN DER POL-DUFFING SYSTEM. China Mathematical and Computational Applications, Vol. 9, No., pp. 84-9, 4 ANALYSIS AND CONTROLLING OF HOPF BIFURCATION FOR CHAOTIC VAN DER POL-DUFFING SYSTEM Ping Cai,, Jia-Shi Tang, Zhen-Bo Li College of

More information

NOTES ON CHAOS. Chaotic dynamics stem from deterministic mechanisms, but they look very similar to random fluctuations in appearance.

NOTES ON CHAOS. Chaotic dynamics stem from deterministic mechanisms, but they look very similar to random fluctuations in appearance. NOTES ON CHAOS. SOME CONCEPTS Definition: The simplest and most intuitive definition of chaos is the extreme sensitivity of system dynamics to its initial conditions (Hastings et al. 99). Chaotic dynamics

More information

Generalized projective synchronization between two chaotic gyros with nonlinear damping

Generalized projective synchronization between two chaotic gyros with nonlinear damping Generalized projective synchronization between two chaotic gyros with nonlinear damping Min Fu-Hong( ) Department of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China

More information

A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent Sources

A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent Sources Commun. Theor. Phys. Beijing, China 54 21 pp. 1 6 c Chinese Physical Society and IOP Publishing Ltd Vol. 54, No. 1, July 15, 21 A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent

More information

Chaos and adaptive control in two prey, one predator system with nonlinear feedback

Chaos and adaptive control in two prey, one predator system with nonlinear feedback Chaos and adaptive control in two prey, one predator system with nonlinear feedback Awad El-Gohary, a, and A.S. Al-Ruzaiza a a Department of Statistics and O.R., College of Science, King Saud University,

More information

Suppression of Spiral Waves and Spatiotemporal Chaos Under Local Self-adaptive Coupling Interactions

Suppression of Spiral Waves and Spatiotemporal Chaos Under Local Self-adaptive Coupling Interactions Commun. Theor. Phys. (Beijing, China) 45 (6) pp. 121 126 c International Academic Publishers Vol. 45, No. 1, January 15, 6 Suppression of Spiral Waves and Spatiotemporal Chaos Under Local Self-adaptive

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA March 9, 2007 10:18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Int J. Bifurcation and Chaos Submission Style EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA S. Morfu Laboratoire

More information

New Homoclinic and Heteroclinic Solutions for Zakharov System

New Homoclinic and Heteroclinic Solutions for Zakharov System Commun. Theor. Phys. 58 (2012) 749 753 Vol. 58, No. 5, November 15, 2012 New Homoclinic and Heteroclinic Solutions for Zakharov System WANG Chuan-Jian ( ), 1 DAI Zheng-De (à ), 2, and MU Gui (½ ) 3 1 Department

More information

New Application of the (G /G)-Expansion Method to Excite Soliton Structures for Nonlinear Equation

New Application of the (G /G)-Expansion Method to Excite Soliton Structures for Nonlinear Equation New Application of the /)-Expansion Method to Excite Soliton Structures for Nonlinear Equation Bang-Qing Li ac and Yu-Lan Ma b a Department of Computer Science and Technology Beijing Technology and Business

More information

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 2, Number, Spring 22 COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE SILOGINI THANARAJAH AND HAO WANG ABSTRACT. In many studies of

More information

SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS

SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS Bull. Korean Math. Soc. 52 (2015), No. 4, pp. 1113 1122 http://dx.doi.org/10.4134/bkms.2015.52.4.1113 SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS Wenzhen Gan and Peng

More information

Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties

Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties Commun. Theor. Phys. 67 (2017) 377 382 Vol. 67, No. 4, April 1, 2017 Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties Lei Shi ( 石磊

More information

Is chaos possible in 1d? - yes - no - I don t know. What is the long term behavior for the following system if x(0) = π/2?

Is chaos possible in 1d? - yes - no - I don t know. What is the long term behavior for the following system if x(0) = π/2? Is chaos possible in 1d? - yes - no - I don t know What is the long term behavior for the following system if x(0) = π/2? In the insect outbreak problem, what kind of bifurcation occurs at fixed value

More information

Transport properties through double-magnetic-barrier structures in graphene

Transport properties through double-magnetic-barrier structures in graphene Chin. Phys. B Vol. 20, No. 7 (20) 077305 Transport properties through double-magnetic-barrier structures in graphene Wang Su-Xin( ) a)b), Li Zhi-Wen( ) a)b), Liu Jian-Jun( ) c), and Li Yu-Xian( ) c) a)

More information

Oscillatory Turing Patterns in a Simple Reaction-Diffusion System

Oscillatory Turing Patterns in a Simple Reaction-Diffusion System Journal of the Korean Physical Society, Vol. 50, No. 1, January 2007, pp. 234 238 Oscillatory Turing Patterns in a Simple Reaction-Diffusion System Ruey-Tarng Liu and Sy-Sang Liaw Department of Physics,

More information

Bifurcation control and chaos in a linear impulsive system

Bifurcation control and chaos in a linear impulsive system Vol 8 No 2, December 2009 c 2009 Chin. Phys. Soc. 674-056/2009/82)/5235-07 Chinese Physics B and IOP Publishing Ltd Bifurcation control and chaos in a linear impulsive system Jiang Gui-Rong 蒋贵荣 ) a)b),

More information

Spatiotemporal multiple coherence resonances and calcium waves in a coupled hepatocyte system

Spatiotemporal multiple coherence resonances and calcium waves in a coupled hepatocyte system Vol 18 No 3, March 2009 c 2009 Chin. Phys. Soc. 1674-1056/2009/18(03)/0872-09 Chinese Physics B and IOP Publishing Ltd Spatiotemporal multiple coherence resonances and calcium waves in a coupled hepatocyte

More information

DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS. Wei Feng

DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS. Wei Feng DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 7 pp. 36 37 DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS Wei Feng Mathematics and Statistics Department

More information

Coherence resonance near the Hopf bifurcation in coupled chaotic oscillators

Coherence resonance near the Hopf bifurcation in coupled chaotic oscillators Coherence resonance near the Hopf bifurcation in coupled chaotic oscillators Meng Zhan, 1 Guo Wei Wei, 1 Choy-Heng Lai, 2 Ying-Cheng Lai, 3,4 and Zonghua Liu 3 1 Department of Computational Science, National

More information

Stabilization of Hyperbolic Chaos by the Pyragas Method

Stabilization of Hyperbolic Chaos by the Pyragas Method Journal of Mathematics and System Science 4 (014) 755-76 D DAVID PUBLISHING Stabilization of Hyperbolic Chaos by the Pyragas Method Sergey Belyakin, Arsen Dzanoev, Sergey Kuznetsov Physics Faculty, Moscow

More information

DYNAMICS OF A PREDATOR-PREY INTERACTION IN CHEMOSTAT WITH VARIABLE YIELD

DYNAMICS OF A PREDATOR-PREY INTERACTION IN CHEMOSTAT WITH VARIABLE YIELD Journal of Sustainability Science Management Volume 10 Number 2, December 2015: 16-23 ISSN: 1823-8556 Penerbit UMT DYNAMICS OF A PREDATOR-PREY INTERACTION IN CHEMOSTAT WITH VARIABLE YIELD SARKER MD SOHEL

More information

The upper limit for the exponent of Taylor s power law is a consequence of deterministic population growth

The upper limit for the exponent of Taylor s power law is a consequence of deterministic population growth Evolutionary Ecology Research, 2005, 7: 1213 1220 The upper limit for the exponent of Taylor s power law is a consequence of deterministic population growth Ford Ballantyne IV* Department of Biology, University

More information

2 One-dimensional models in discrete time

2 One-dimensional models in discrete time 2 One-dimensional models in discrete time So far, we have assumed that demographic events happen continuously over time and can thus be written as rates. For many biological species with overlapping generations

More information

Projective synchronization of a complex network with different fractional order chaos nodes

Projective synchronization of a complex network with different fractional order chaos nodes Projective synchronization of a complex network with different fractional order chaos nodes Wang Ming-Jun( ) a)b), Wang Xing-Yuan( ) a), and Niu Yu-Jun( ) a) a) School of Electronic and Information Engineering,

More information

Existence of Positive Periodic Solutions of Mutualism Systems with Several Delays 1

Existence of Positive Periodic Solutions of Mutualism Systems with Several Delays 1 Advances in Dynamical Systems and Applications. ISSN 973-5321 Volume 1 Number 2 (26), pp. 29 217 c Research India Publications http://www.ripublication.com/adsa.htm Existence of Positive Periodic Solutions

More information

Controlling a Novel Chaotic Attractor using Linear Feedback

Controlling a Novel Chaotic Attractor using Linear Feedback ISSN 746-7659, England, UK Journal of Information and Computing Science Vol 5, No,, pp 7-4 Controlling a Novel Chaotic Attractor using Linear Feedback Lin Pan,, Daoyun Xu 3, and Wuneng Zhou College of

More information

150 Zhang Sheng-Hai et al Vol. 12 doped fibre, and the two rings are coupled with each other by a coupler C 0. I pa and I pb are the pump intensities

150 Zhang Sheng-Hai et al Vol. 12 doped fibre, and the two rings are coupled with each other by a coupler C 0. I pa and I pb are the pump intensities Vol 12 No 2, February 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(02)/0149-05 Chinese Physics and IOP Publishing Ltd Controlling hyperchaos in erbium-doped fibre laser Zhang Sheng-Hai(ΞΛ ) y and Shen

More information

Modelling Research Group

Modelling Research Group Modelling Research Group The Importance of Noise in Dynamical Systems E. Staunton, P.T. Piiroinen November 20, 2015 Eoghan Staunton Modelling Research Group 2015 1 / 12 Introduction Historically mathematicians

More information

Applied Mathematics Letters. Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system

Applied Mathematics Letters. Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system Applied Mathematics Letters 5 (1) 198 1985 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Stationary distribution, ergodicity

More information

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:13 No:05 55 Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting K. Saleh Department of Mathematics, King Fahd

More information

Exact Solutions of Fractional-Order Biological Population Model

Exact Solutions of Fractional-Order Biological Population Model Commun. Theor. Phys. (Beijing China) 5 (009) pp. 99 996 c Chinese Physical Society and IOP Publishing Ltd Vol. 5 No. 6 December 15 009 Exact Solutions of Fractional-Order Biological Population Model A.M.A.

More information

A lattice traffic model with consideration of preceding mixture traffic information

A lattice traffic model with consideration of preceding mixture traffic information Chin. Phys. B Vol. 0, No. 8 011) 088901 A lattice traffic model with consideration of preceding mixture traffic information Li Zhi-Peng ) a), Liu Fu-Qiang ) a), Sun Jian ) b) a) School of Electronics and

More information

Lecture 4: Importance of Noise and Fluctuations

Lecture 4: Importance of Noise and Fluctuations Lecture 4: Importance of Noise and Fluctuations Jordi Soriano Fradera Dept. Física de la Matèria Condensada, Universitat de Barcelona UB Institute of Complex Systems September 2016 1. Noise in biological

More information

Instabilities In A Reaction Diffusion Model: Spatially Homogeneous And Distributed Systems

Instabilities In A Reaction Diffusion Model: Spatially Homogeneous And Distributed Systems Applied Mathematics E-Notes, 10(010), 136-146 c ISSN 1607-510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Instabilities In A Reaction Diffusion Model: Spatially Homogeneous And

More information

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

More information

A Producer-Consumer Model With Stoichiometry

A Producer-Consumer Model With Stoichiometry A Producer-Consumer Model With Stoichiometry Plan B project toward the completion of the Master of Science degree in Mathematics at University of Minnesota Duluth Respectfully submitted by Laura Joan Zimmermann

More information

1.Introduction: 2. The Model. Key words: Prey, Predator, Seasonality, Stability, Bifurcations, Chaos.

1.Introduction: 2. The Model. Key words: Prey, Predator, Seasonality, Stability, Bifurcations, Chaos. Dynamical behavior of a prey predator model with seasonally varying parameters Sunita Gakkhar, BrhamPal Singh, R K Naji Department of Mathematics I I T Roorkee,47667 INDIA Abstract : A dynamic model based

More information

ROLE OF TIME-DELAY IN AN ECOTOXICOLOGICAL PROBLEM

ROLE OF TIME-DELAY IN AN ECOTOXICOLOGICAL PROBLEM CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 6, Number 1, Winter 1997 ROLE OF TIME-DELAY IN AN ECOTOXICOLOGICAL PROBLEM J. CHATTOPADHYAY, E. BERETTA AND F. SOLIMANO ABSTRACT. The present paper deals with

More information

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.7, pp , 2015

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.7, pp , 2015 International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: 0974-4304 Vol.8, No.7, pp 99-, 05 Lotka-Volterra Two-Species Mutualistic Biology Models and Their Ecological Monitoring Sundarapandian

More information

Radiation energy flux of Dirac field of static spherically symmetric black holes

Radiation energy flux of Dirac field of static spherically symmetric black holes Radiation energy flux of Dirac field of static spherically symmetric black holes Meng Qing-Miao( 孟庆苗 ), Jiang Ji-Jian( 蒋继建 ), Li Zhong-Rang( 李中让 ), and Wang Shuai( 王帅 ) Department of Physics, Heze University,

More information

No. 11 Analysis of the stability and density waves for trafc flow 119 where the function f sti represents the response to the stimulus received by the

No. 11 Analysis of the stability and density waves for trafc flow 119 where the function f sti represents the response to the stimulus received by the Vol 11 No 11, November 00 cfl 00 Chin. Phys. Soc. 1009-196/00/11(11)/118-07 Chinese Physics and IOP Publishing Ltd Analysis of the stability and density waves for trafc flow * Xue Yu( ) Shanghai Institute

More information

Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different 4D Nonlinear Dynamical Systems

Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different 4D Nonlinear Dynamical Systems Mathematics Letters 2016; 2(5): 36-41 http://www.sciencepublishinggroup.com/j/ml doi: 10.11648/j.ml.20160205.12 Complete Synchronization, Anti-synchronization and Hybrid Synchronization Between Two Different

More information

PREDATOR-PREY SYSTEM WITH EXTINCTION DYNAMICS YONG-JUNG KIM

PREDATOR-PREY SYSTEM WITH EXTINCTION DYNAMICS YONG-JUNG KIM PREDATOR-PREY SYSTEM WITH EXTINCTION DYNAMICS YONG-JUNG KIM Abstract. Most of population models, if not all of them, do not have the extinction dynamics. The Lotka-Volterra ordinary differential equations

More information

Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel

Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel Zhou Nan-Run( ) a), Hu Li-Yun( ) b), and Fan Hong-Yi( ) c) a) Department of Electronic Information Engineering,

More information

Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping

Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping Commun. Theor. Phys. 55 (2011) 617 621 Vol. 55, No. 4, April 15, 2011 Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping WANG Xing-Yuan ( ), LIU

More information

Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey. Received: 5 February 2018; Accepted: 5 March 2018; Published: 8 March 2018

Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey. Received: 5 February 2018; Accepted: 5 March 2018; Published: 8 March 2018 mathematics Article Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey Malay Banerjee 1, *,, Nayana Mukherjee 1, and Vitaly Volpert 2, 1 Department of Mathematics and Statistics, IIT Kanpur,

More information

Models Involving Interactions between Predator and Prey Populations

Models Involving Interactions between Predator and Prey Populations Models Involving Interactions between Predator and Prey Populations Matthew Mitchell Georgia College and State University December 30, 2015 Abstract Predator-prey models are used to show the intricate

More information

Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy

Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy Yu Fa-Jun School of Mathematics and Systematic Sciences, Shenyang Normal University, Shenyang 110034, China Received

More information

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters Vol 16 No 5, May 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(05)/1246-06 Chinese Physics and IOP Publishing Ltd Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with

More information

The effect of emigration and immigration on the dynamics of a discrete-generation population

The effect of emigration and immigration on the dynamics of a discrete-generation population J. Biosci., Vol. 20. Number 3, June 1995, pp 397 407. Printed in India. The effect of emigration and immigration on the dynamics of a discrete-generation population G D RUXTON Biomathematics and Statistics

More information

Predator-Prey Model with Ratio-dependent Food

Predator-Prey Model with Ratio-dependent Food University of Minnesota Duluth Department of Mathematics and Statistics Predator-Prey Model with Ratio-dependent Food Processing Response Advisor: Harlan Stech Jana Hurkova June 2013 Table of Contents

More information

Research Article The Mathematical Study of Pest Management Strategy

Research Article The Mathematical Study of Pest Management Strategy Discrete Dynamics in Nature and Society Volume 22, Article ID 25942, 9 pages doi:.55/22/25942 Research Article The Mathematical Study of Pest Management Strategy Jinbo Fu and Yanzhen Wang Minnan Science

More information

Synchronization of Limit Cycle Oscillators by Telegraph Noise. arxiv: v1 [cond-mat.stat-mech] 5 Aug 2014

Synchronization of Limit Cycle Oscillators by Telegraph Noise. arxiv: v1 [cond-mat.stat-mech] 5 Aug 2014 Synchronization of Limit Cycle Oscillators by Telegraph Noise Denis S. Goldobin arxiv:148.135v1 [cond-mat.stat-mech] 5 Aug 214 Department of Physics, University of Potsdam, Postfach 61553, D-14415 Potsdam,

More information

A new four-dimensional chaotic system

A new four-dimensional chaotic system Chin. Phys. B Vol. 19 No. 12 2010) 120510 A new four-imensional chaotic system Chen Yong ) a)b) an Yang Yun-Qing ) a) a) Shanghai Key Laboratory of Trustworthy Computing East China Normal University Shanghai

More information

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS IC/94/195 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS A PHASE-TRANSITION INDUCED BY THE STRUGGLE FOR LIFE IN A COMPETITIVE COEXISTENCE MODEL IN ECOLOGY Horacio S. Wio and M.N. Kuperman INTERNATIONAL ATOMIC

More information

NUMERICAL SIMULATION DYNAMICAL MODEL OF THREE-SPECIES FOOD CHAIN WITH LOTKA-VOLTERRA LINEAR FUNCTIONAL RESPONSE

NUMERICAL SIMULATION DYNAMICAL MODEL OF THREE-SPECIES FOOD CHAIN WITH LOTKA-VOLTERRA LINEAR FUNCTIONAL RESPONSE Journal of Sustainability Science and Management Volume 6 Number 1, June 2011: 44-50 ISSN: 1823-8556 Universiti Malaysia Terengganu Publisher NUMERICAL SIMULATION DYNAMICAL MODEL OF THREE-SPECIES FOOD

More information

x 2 F 1 = 0 K 2 v 2 E 1 E 2 F 2 = 0 v 1 K 1 x 1

x 2 F 1 = 0 K 2 v 2 E 1 E 2 F 2 = 0 v 1 K 1 x 1 ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 4, Fall 1990 ON THE STABILITY OF ONE-PREDATOR TWO-PREY SYSTEMS M. FARKAS 1. Introduction. The MacArthur-Rosenzweig graphical criterion" of stability

More information

Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers

Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers Commun. Theor. Phys. Beijing China) 48 2007) pp. 288 294 c International Academic Publishers Vol. 48 No. 2 August 15 2007 Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of

More information

Stochastic Oscillator Death in Globally Coupled Neural Systems

Stochastic Oscillator Death in Globally Coupled Neural Systems Journal of the Korean Physical Society, Vol. 52, No. 6, June 2008, pp. 19131917 Stochastic Oscillator Death in Globally Coupled Neural Systems Woochang Lim and Sang-Yoon Kim y Department of Physics, Kangwon

More information

Optical time-domain differentiation based on intensive differential group delay

Optical time-domain differentiation based on intensive differential group delay Optical time-domain differentiation based on intensive differential group delay Li Zheng-Yong( ), Yu Xiang-Zhi( ), and Wu Chong-Qing( ) Key Laboratory of Luminescence and Optical Information of the Ministry

More information

Enrichment in a Producer-Consumer Model with varying rates of Stoichiometric Elimination

Enrichment in a Producer-Consumer Model with varying rates of Stoichiometric Elimination Enrichment in a Producer-Consumer Model with varying rates of Stoichiometric Elimination Plan B project toward the completion of the Master of Science degree in Mathematics at University of Minnesota Duluth

More information

Backstepping synchronization of uncertain chaotic systems by a single driving variable

Backstepping synchronization of uncertain chaotic systems by a single driving variable Vol 17 No 2, February 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(02)/0498-05 Chinese Physics B and IOP Publishing Ltd Backstepping synchronization of uncertain chaotic systems by a single driving variable

More information

Generalized Function Projective Lag Synchronization in Fractional-Order Chaotic Systems

Generalized Function Projective Lag Synchronization in Fractional-Order Chaotic Systems Generalized Function Projective Lag Synchronization in Fractional-Order Chaotic Systems Yancheng Ma Guoan Wu and Lan Jiang denotes fractional order of drive system Abstract In this paper a new synchronization

More information

Photodetachment of H in an electric field between two parallel interfaces

Photodetachment of H in an electric field between two parallel interfaces Vol 17 No 4, April 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(04)/1231-06 Chinese Physics B and IOP Publishing Ltd Photodetachment of H in an electric field between two parallel interfaces Wang De-Hua(

More information