LOWHLL #WEEKLY JOURNAL.
|
|
- Lilian Phillips
- 4 years ago
- Views:
Transcription
1 # F 7 F --) 2 9 Q - Q - - F - x $ 2 F? F \ F q - x q )< - -? - F - - Q z 2 Q - x % ) F x - \ q - q z- < F Q F 2 F - F \x -? z - x z F - - x q - x - x? - x x - ) z - x - x? z F - {< \ --- F - F - ) - ] - \ F- F 7- \ F - F F F q 7 - F 7 - ) 3 - < F [ / q ) < Q < < x < F - { F } - ) \ < - - { F F x 2 x - F< Q - - } - < x \ < < 7 / $ F $ x 2 ) x < -< - ) F - - x F F x < q 6 2) 6 ) # F < $6 q F 3 9 F Q - # 7 F $ 9 - x x q / - < F F F < F < F Q - F - - / < 2< 7 \ < - - F F x -) - 3 Q - < F - - / - - F q F F # Q < F \ - F 6 - #? F - F F x q { - 67 q - - -? - F F- - x ] x -
2 x \ - F -- - ] [ - - < -- - ) - q F F F - - <) ) - - \ Q 2 7 -F ] F - - < - q - - % # - - / )7 x- F - - <- 3<2Q / ) - - / F x ) q F Q $223 x - x F - - ] F {\ F q x? - z ) x 32 % z - - FQ < - F - - \ x- - - F - ) - z z x / 2{ - x F ) ] - F - q / / q) / q FF -#- - x < x x ) x < # - F - z x x F x x - - x x - F F - z - ) x - - \ - x F F F x x- z % - - ] -- ] - - F F F z Q q [ x- - x 7 Z - x F- - F - F - x- x x ] 3 <? - ) - - \ ] / } - x z x- - - ) - F - q - ] - - x ) z - x F F x Q - - x - - F \ ] - F F x Z \ x x x - - \ ) # - ) - ) x ) [ - ) \ \? F q z ] < ) F x F - q / - F - F F z x - ) F { <Q - - F F F F F-- F F F z - ) z 3 F q x - ) < - x / x - x -- < 27 q F x )7 ) -- < - 3) < - F - F # - x - 9 ) - - z # z F x - $ x q - q x - x < q F x z < - z ~ - - x ) - x - q q - F F { - F 9 - z x [ x x F ) F F q F ) - z z - 9 [ - z F - -- z z x F q - F - - 7~ 7 9 F F - F { q F F 7 { - F 6 ) - x - # F? ) F - F - - F x z x \ z F - x q Z - q Z xx q - # - - F - ) F x - F z F z q x F -? q q % z Z- - - q x z ) %- q - ] ) F < x- 2 9 x F x - - ] - z F ) - - F q \ F - - < x- ) - - x - # \ / < - - Q % x < - / F < - -q x x Q - $ / F - ) - / $ q x $ $23326 [ q xx
3 F Z / x x- < -x F F -? 7 F F F - - << F <<- - - F x ) # \ - \ - F F $ $2 F 32 - F - -x F < x - F q 6 9 Q 3 3 F / F -3 Fx / F z 3 3 F F - F 2 9 F x 2 --? - F? 9 7 -? ) - 2 F < x - F- - x -- # < x < - -- / x - - / - 7 F 7 / - - / < F # - F - - -x- F /x < \ - \ - x <- < ) F - - x - ) < \ - F Z -- - ) - F 3 F x - / - q - F 3 Q 2 7 x F / \ F ) F F ] F F q F x - - x F F ) F 2 < 6 F F \? x Q F 9 F # Q- F Z ) q x Q z F Z q x x - \ x- - - F Q 7 - F < - x < - F Q/ < # 6 --< #< q # - F < # F F - F x ) F 7 << # - - { Z \ [ / Z ) -F [ 2 x F < } - 7 F F F -= 3 F F q F - $) $ ) q x 2 F <- - F \ 7 - F < - - < z - F < F F F \ - -- < - qx x 3 2 F x - ) - x? -2 x F F F F F \/? - - F 7 F F - q F \ - } < - < - < x %) q z z ) F - - F 9 F Q- x [ < \ F - - x F $ x - / $ F - // - q F - - 7? << ) # - // < ? -# <3? x Z } 7 7 )? x - - F q F x { F F# F } q F
4 F F 7 F -?? \ < - q ) x { - - q - - F \ - - ) x - F - - x - ) F - - ) # - - q - q - F x x q - x < 3 - < - x - F - - q - F - x- 7 Z - - ) \ z? - x- F -? - 6? - Z F z x - < -? Z F ) ?? -x - x ) -? - x Q q - x F q - F x- # \6 - -?? x - - q \ x 9 x x 9 x < 2 / \ 9 ] < F %?? - z ) - 7 \ -? F - - % ~ q x / [ x z ? x 6 7 x F q x - - ) ) - { q x - x 7 q q - q - q x - - / F z - } F - 9 / - < - - x - - x x? < )? - - x \ - x $ F F z - x z x - - < q ---?? - -? F x -? q - / / z \ { q q q x - - x - -- x- F F -z - \ --? / Q x F Z - F ~ # - -? ~= q <? 6 ) F $ 7 x z - - $ 3 z $ x z $ - - z $ FF 9 q - / / $ 2 F {- - ] x < x - F F $ $ $< ) < - < / % - 7 z -? F 3 F % - - F F --- / <-< - ) ~~ F $ x $ $ - $2 - F F x x - F - x x - - x # - - F 2 - x < 9 - x - - x ) - - F F < F - )? q }? -- < -\ - - ) - x - - F? - q ) - - F ) q F q x F F - q /- ) / F \?? - F F )F F x F % - 2 F F/ x - F F / - x - x -zz x F $ - - < ? ) - x < -? - - F F x - F - / % F 2 q - x 6 - x x F F ) 62 - x q - F /- \ / - - QF x F F F F x F x - - F # - F - ~ < x ) ) F - - F x - \- x ) / F F?? - - \ x F q ) - -? - < - x - < ) - ]? - - ) ) x - F - < < q x -? q?? ) x - - x ) q 6 - F } x - F F - - / - F - q x x 7 x F ) x - - /~ x Z $6-23 x - - [ Z x 7 / F \ - ± \ # - F 3 F F - - Q - F [ F % 22 - x -?? - $#%?% F ~ - x - x ] - 2< F F - F - F\ -- F F - F < 3 F F 7 - \ - -- / -??? < / x x) # - - \ \ - - \\ q - F x- <) x -- Q < $26 - \ - 9 / F F <- } ) ) -- - < - F F q F < F < - - x - - F ) x < < - - F ) - < / - $ - -<~< x [ z $ F x < ) <? } - <- 33 ] x Q x <- - x F \ \ \ \ FF F x F - F [ / - F x F F F F $ - F -
5 - F x F F F- F F 3 F F F F F F < F F F -- F F FF F F F F - F F F 7? 7 < < 9 F F F 7 - < F 3 - F F \ F Q F Q F F F - $3 6 Q- F { x / Q Q x 2 F ?? 3 Q F 9- x -? x < F zzz - F x ) F F x ) { - - F F ) - < F ) F - x x x q Q x #~- Q 9 Fx % 7 F
' Liberty and Umou Ono and Inseparablo "
3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <
LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES
? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5
Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.
- - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-
T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO
q q P XXX F Y > F P Y ~ Y P Y P F q > ##- F F - 5 F F?? 5 7? F P P?? - - F - F F - P 7 - F P - F F % P - % % > P F 9 P 86 F F F F F > X7 F?? F P Y? F F F P F F
Two Posts to Fill On School Board
Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83
P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.
? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>
LOWELL WEEKI.Y JOURINAL
/ $ 8) 2 {!»!» X ( (!!!?! () ~ x 8» x /»!! $?» 8! ) ( ) 8 X x /! / x 9 ( 2 2! z»!!»! ) / x»! ( (»»!» [ ~!! 8 X / Q X x» ( (!»! Q ) X x X!! (? ( ()» 9 X»/ Q ( (X )!» / )! X» x / 6!»! }? ( q ( ) / X! 8 x»
LOWELL. MICHIGAN. WEDNESDAY, FEBRUARY NUMllEE 33, Chicago. >::»«ad 0:30am, " 16.n«l w 00 ptn Jaekten,.'''4snd4:4(>a tii, ijilwopa
4/X6 X 896 & # 98 # 4 $2 q $ 8 8 $ 8 6 8 2 8 8 2 2 4 2 4 X q q!< Q 48 8 8 X 4 # 8 & q 4 ) / X & & & Q!! & & )! 2 ) & / / ;) Q & & 8 )
A. H. Hall, 33, 35 &37, Lendoi
7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9
LOWELL WEEKLY JOURNAL
Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q
W i n t e r r e m e m b e r t h e W O O L L E N S. W rite to the M anageress RIDGE LAUNDRY, ST. H E LE N S. A uction Sale.
> 7? 8 «> ««0? [ -! ««! > - ««>« ------------ - 7 7 7 = - Q9 8 7 ) [ } Q ««
r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.
$ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -
LOWELL WEEKLY JOURNAL
G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G
PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >
5 28 (x / &» )»(»»» Q ( 3 Q» (» ( (3 5» ( q 2 5 q 2 5 5 8) 5 2 2 ) ~ ( / x {» /»»»»» (»»» ( 3 ) / & Q ) X ] Q & X X X x» 8 ( &» 2 & % X ) 8 x & X ( #»»q 3 ( ) & X 3 / Q X»»» %» ( z 22 (»» 2» }» / & 2 X
MANY BILLS OF CONCERN TO PUBLIC
- 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -
A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any
Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»
Q SON,' (ESTABLISHED 1879L
( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0
a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?
? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (
E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk
K q X k K 5 ) ) 5 / K K x x) )? //? q? k X z K 8 5 5? K K K / / $8 ± K K K 8 K / 8 K K X k k X ) k k /» / K / / / k / ] 5 % k / / k k? Z k K ] 8 K K K )» 5 ) # 8 q»)kk q»» )88{ k k k k / k K X 8 8 8 ]
L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank
G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y
LOWELL WEEKLY JOURNAL.
Y $ Y Y 7 27 Y 2» x 7»» 2» q» ~ [ } q q $ $ 6 2 2 2 2 2 2 7 q > Y» Y >» / Y» ) Y» < Y»» _»» < Y > Y Y < )»» >» > ) >» >> >Y x x )»» > Y Y >>»» }> ) Y < >» /» Y x» > / x /»»»»» >» >» >»» > > >» < Y /~ >
Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.
» ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z
II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa
382 4 7 q X
' '-'in.-i 1 'iritt in \ rrivfi pr' 1 p. ru
V X X Y Y 7 VY Y Y F # < F V 6 7»< V q q $ $» q & V 7» Q F Y Q 6 Q Y F & Q &» & V V» Y V Y [ & Y V» & VV & F > V } & F Q \ Q \» Y / 7 F F V 7 7 x» > QX < #» > X >» < F & V F» > > # < q V 6 & Y Y q < &
County Council Named for Kent
\ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V
OWELL WEEKLY JOURNAL
Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --
d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation
) - 5 929 XXX - $ 83 25 5 25 $ ( 2 2 z 52 $9285)9 7 - - 2 72 - - 2 3 zz - 9 86 - - - - 88 - q 2 882 q 88 - - - - - - ( 89 < - Q - 857-888 - - - & - - q - { q 7 - - - - q - - - - - - q - - - - 929 93 q
LOWELL WEEKLY JOURNAL.
Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F
.1 "patedl-righl" timti tame.nto our oai.c iii C. W.Fiak&Co. She ftowtt outnal,
J 2 X Y J Y 3 : > Y 6? ) Q Y x J Y Y // 6 : : \ x J 2 J Q J Z 3 Y 7 2 > 3 [6 2 : x z (7 :J 7 > J : 7 (J 2 J < ( q / 3 6 q J $3 2 6:J : 3 q 2 6 3 2 2 J > 2 :2 : J J 2 2 J 7 J 7 J \ : q 2 J J Y q x ( ) 3:
. ^e Traveler in taesnok. i the IHilty.-^ifStiiart. BbUaaoa aad WalL.""ras 'crossing a mountain»h ch w e are A«ply inteiwted. Add
x 8[ x [qqq xq F x & R FX G NR F XN R X ( F R Y
and Union One end Inseparable." LOWELL. MICHIGAN. WEDNESDAY. JUNE HUMPHBHT'S HOMEOPATHIC SPECIFICS
Y J B B BD Y DDY 8 B F B F x F D > q q j 8 8 J 4 8 8 24 B j 88 4 4 4 8 q 8 bb B 6 B q B b b b B 4 B D J B B b B
oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our
x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2
ATLANTA, GEORGIA, DECEMBER 12, No. 13. D r. M. L. B r i t t a i n T e l l s S t u d e n t s C o n t r a c t I s B r o k e n
Z-V. XX,, D 141.. 13 ' ' b v k ; D... k x 1 1 7 v f b k f f ' b,, b J 7 11:30 D... D. b " vv f, bv." x v..., bk, b v ff., b b Jk,., f ' v v z. b f. f f b v 123. k,., - f x 123. ' b 140-41, f " f" b - 141-42
Simplifying Rational Expressions and Functions
Department of Mathematics Grossmont College October 15, 2012 Recall: The Number Types Definition The set of whole numbers, ={0, 1, 2, 3, 4,...} is the set of natural numbers unioned with zero, written
i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER
N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X
LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort
- 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [
ATTACHMENT 5 RESOLUTION OF THE BOARD OF SUPERVISORS COUNTY OF SANTA BARBARA, STATE OF CALIFORNIA
TTHT 5 I F TH F UI Y F T TT F IFI I TH TT F TI IFI ) I. 15 - T T TH U T F ) TH T Y HI ) : 14-00000-00019 Y TH TI F TH T ) T Y UITY. ) ITH F T TH FI:. 20 1980. 80-566 f U f.. J 20 1993. 93-401 f.. T q f
Exam 1. (2x + 1) 2 9. lim. (rearranging) (x 1 implies x 1, thus x 1 0
Department of Mathematical Sciences Instructor: Daiva Pucinskaite Calculus I January 28, 2016 Name: Exam 1 1. Evaluate the it x 1 (2x + 1) 2 9. x 1 (2x + 1) 2 9 4x 2 + 4x + 1 9 = 4x 2 + 4x 8 = 4(x 1)(x
LOWELL JOURNAL. DEBS IS DOOMED. Presldrtit Cleveland Write* to the New York Democratic Rilltors. friends were present at the banquet of
X 9 Z X 99 G F > «?« - F # K-j! K F v G v x- F v v» v K v v v F
Universal LaW of J^latGre: TboagbL tbe Solvent of fier Problems. CHICAGO, A U G U S T what thoy shall or shall not bollevo.
VO J^G: GO G 13 1892 O 142 " V z K x x' - * G -^ G x ( '! 1 < G O O G j 2 O 180 3 O O z OO V - O -OOK O O - O O - q G O - q x x K " 8 2 q 1 F O?" O O j j O 3 O - O O - G O ; 10000000 ; O G x G O O q! O
1 h 9 e $ s i n t h e o r y, a p p l i c a t i a n
T : 99 9 \ E \ : \ 4 7 8 \ \ \ \ - \ \ T \ \ \ : \ 99 9 T : 99-9 9 E : 4 7 8 / T V 9 \ E \ \ : 4 \ 7 8 / T \ V \ 9 T - w - - V w w - T w w \ T \ \ \ w \ w \ - \ w \ \ w \ \ \ T \ w \ w \ w \ w \ \ w \
MEMORIAL UNIVERSITY OF NEWFOUNDLAND
MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Section 5. Math 090 Fall 009 SOLUTIONS. a) Using long division of polynomials, we have x + x x x + ) x 4 4x + x + 0x x 4 6x
and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in
5 7 8 x z!! Y! [! 2 &>3 x «882 z 89 q!!! 2 Y 66 Y $ Y 99 6 x x 93 x 7 8 9 x 5$ 4 Y q Q 22 5 3 Z 2 5 > 2 52 2 $ 8» Z >!? «z???? q > + 66 + + ) ( x 4 ~ Y Y»» x ( «/ ] x ! «z x( ) x Y 8! < 6 x x 8 \ 4\
1871. twadaa t, 30 cta. pat Haa;fe,ttaw Spiritism. From Uis luport of tie vision, and in U e n i e h t i a d i W A C h r f i
V < > X Q x X > >! 5> V3 23 3 - - - : -- { - -- (!! - - - -! :- 4 -- : -- -5--4 X -
Solutions for Problem Set 6
Solutions for Problem Set 6 A: Find all subfields of Q(ζ 8 ). SOLUTION. All subfields of K must automatically contain Q. Thus, this problem concerns the intermediate fields for the extension K/Q. In a
HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,
#4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0
L O W Z L L, M Z C B., W S D I T X S D J L T, JT7ITZ 2 6, O n # D o l l a r a T m t. L Cuiiveuiluu. BASEBALL.
# Z Z B X 7Z 6 8 9 0 # F Y BB F x B- B B BV 5 G - V 84 B F x - G 6 x - F - 500000 Bx > -- z : V Y B / «- Q - 4«7 6 890 6 578 0 00 8: B! 0 677 F 574 BB 4 - V 0 B 8 5 5 0 5 Z G F Q 4 50 G B - 5 5-7 B z 7
THE LOWELL LEDGER. INDEPENDENT NOT NEUTRAL. NPRAKER BLOCK SOLI)
D DD U X X 2 U UD U 2 90 x F D D F & U [V U 2 225 00 U D?? - F V D VV U F D «- U 20 -! - - > - U ( >»!( - > ( - - < x V ) - - F 8 F z F < : V - x x F - ) V V ( V x V V x V D 6 0 ( F - V x x z F 5-- - F
Solutions for Field Theory Problem Set 1
Solutions for Field Theory Problem Set 1 FROM THE TEXT: Page 355, 2a. ThefieldisK = Q( 3, 6). NotethatK containsqand 3and 6 3 1 = 2. Thus, K contains the field Q( 2, 3). In fact, those two fields are the
Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).
MA109, Activity 34: Review (Sections 3.6+3.7+4.1+4.2+4.3) Date: Objective: Additional Assignments: To prepare for Midterm 3, make sure that you can solve the types of problems listed in Activities 33 and
Horizontal and Vertical Asymptotes from section 2.6
Horizontal and Vertical Asymptotes from section 2.6 Definition: In either of the cases f(x) = L or f(x) = L we say that the x x horizontal line y = L is a horizontal asymptote of the function f. Note:
Skills Practice Skills Practice for Lesson 10.1
Skills Practice Skills Practice for Lesson.1 Name Date Higher Order Polynomials and Factoring Roots of Polynomial Equations Problem Set Solve each polynomial equation using factoring. Then check your solution(s).
5. Series Solutions of ODEs
Advanced Engineering Mathematics 5. Series solutions of ODEs 1 5. Series Solutions of ODEs 5.1 Power series method and Theory of the power series method Advanced Engineering Mathematics 5. Series solutions
ELECTRIC SUN NEW JERSEY'S OLDEST WEEKLY NEWSPAPER EST :30-5:30 DAILY SAT. 10>00-5:30 OPEN TILL 9:00 P.M. THURS. "A Unisex Boutique*'
G Y Y 9 ] v- j $ G - v $ F v F v v - v G / $ v z - -! v - )v - v ( -! - - j---- - - - v v- - - - -! / j v - v G -
ECE 680 Modern Automatic Control. Gradient and Newton s Methods A Review
ECE 680Modern Automatic Control p. 1/1 ECE 680 Modern Automatic Control Gradient and Newton s Methods A Review Stan Żak October 25, 2011 ECE 680Modern Automatic Control p. 2/1 Review of the Gradient Properties
1 Fundamental Concepts From Algebra & Precalculus
Fundamental Concepts From Algebra & Precalculus. Review Exercises.. Simplify eac expression.. 5 7) [ 5)) ]. ) 5) 7) 9 + 8 5. 8 [ 5) 8 6)] [9 + 8 5 ]. 9 + 8 5 ) 8) + 5. 5 + [ )6)] 7) 7 + 6 5 6. 8 5 ) 6
Divergence Theorem Fundamental Theorem, Four Ways. 3D Fundamental Theorem. Divergence Theorem
Divergence Theorem 17.3 11 December 213 Fundamental Theorem, Four Ways. b F (x) dx = F (b) F (a) a [a, b] F (x) on boundary of If C path from P to Q, ( φ) ds = φ(q) φ(p) C φ on boundary of C Green s Theorem:
an;'. Union One aud lnsopftrabls.'' LOWELL. MICflTGAN, WKDM SDAV, MAY I I is: LOW.NATIONAL 1>AXK ullv tn , ,800.
Y v N Y Y \\ «\ v R v R F RN «x vv 2 R F RN N # Z qr $ $ $2 2 2 X R 2 2
Finite Fields. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay
1 / 25 Finite Fields Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay September 25, 2014 2 / 25 Fields Definition A set F together
Math 121, Practice Questions for Final (Hints/Answers)
Math 11, Practice Questions for Final Hints/Answers) 1. The graphs of the inverse functions are obtained by reflecting the graph of the original function over the line y = x. In each graph, the original
Integration - Past Edexcel Exam Questions
Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point
Section 3.2 Polynomial Functions and Their Graphs
Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P (x) = 3, Q(x) = 4x 7, R(x) = x 2 + x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 + 2x +
. L( )WE WEEKLY JOURNAL.
) Y R G V V VV ) V R R F RP : x 2 F VV V Ṅ : V \ \ : P R : G V Y F P 35 RP 8 G V : % \ V X Q V < \ V P R V \ V< R VRG : Y ) P [ < _ & V V 6 :: V } V x V V & x 2 ) 3 RR & 8 \ R < Y q GR : XR < R V R % 7
Strauss PDEs 2e: Section Exercise 2 Page 1 of 6. Solve the completely inhomogeneous diffusion problem on the half-line
Strauss PDEs 2e: Section 3.3 - Exercise 2 Page of 6 Exercise 2 Solve the completely inhomogeneous diffusion problem on the half-line v t kv xx = f(x, t) for < x
V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday
1 6 5 J 9 6 " " z k ; k x k k k z z k j " " ( k " " k 8 1959 " " x k j 5 25 ; ; k k qz ; x 13 x k * k ( ) k k : qz 13 k k k j ; q k x ; x 615 26 ( : k z 113 99751 z k k q ; 15 k k k j q " " k j x x ( *»
Wayfarer Traveler. The. Laura. Most of us enjoy. Family and multi-generational travel. The Luxury of Togetherness. Happy Traveling, Owner s
6, z j Kw x w 8- x - w w w; x w w z, K, x -, w w w, w! x w j w w x z w w J w w w, w w w x w w w w 6, w q, w x, w x x, w Q, w 3-, w,, -w 6 ;, w x w w-- w j -, -, x, - -,, -,, w,, w w w, w w w, - w, w,,
Department of mathematics MA201 Mathematics III
Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i
b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true
Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the
Chapter 2. Polynomial and Rational Functions. 2.6 Rational Functions and Their Graphs. Copyright 2014, 2010, 2007 Pearson Education, Inc.
Chapter Polynomial and Rational Functions.6 Rational Functions and Their Graphs Copyright 014, 010, 007 Pearson Education, Inc. 1 Objectives: Find the domains of rational functions. Use arrow notation.
Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt
Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain
ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0
ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x
Power Series and Analytic Function
Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 21 Some Reviews of Power Series Differentiation and Integration of a Power Series
Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA
U G G G U 2 93 YX Y q 25 3 < : z? 0 (? 8 0 G 936 x z x z? \ 9 7500 00? 5 q 938 27? 60 & 69? 937 q? G x? 937 69 58 } x? 88 G # x 8 > x G 0 G 0 x 8 x 0 U 93 6 ( 2 x : X 7 8 G G G q x U> x 0 > x < x G U 5
2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l.
Numerical Methods II UNIT.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS.1.1 Runge-Kutta Method of Fourth Order 1. Let = f x,y,z, = gx,y,z be the simultaneous first order
Scot Siegel, Planning and Building Services Director Leslie Hamilton, Senior Planner
T: :, v, UJET: #2 ( -) TE: 22, 2 EETI TE: 2, 2 2, 2, () f v ( ),. T f 2 vf f f, f ff q J, f f q v f f f v f f (). T q, f. T z f f ff q f.. f v ; Ex f : -. v,, v. I f - f f. I, v f. (, f,.) I,,, f v v f
Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes.
Learning Target: I can sketch the graphs of rational functions without a calculator Consider the graph of y= f(x), where f(x) = 3x 3 (x+2) 2 a. Determine the equation(s) of the asymptotes. b. Find the
Curve Sketching. Warm up
Curve Sketching Warm up Below are pictured six functions: f,f 0,f 00,g,g 0, and g 00. Pick out the two functions that could be f and g, andmatchthemtotheir first and second derivatives, respectively. (a)
LOWELL J O U R N A L
O O V X 5 O G O X G O K O K FG O O K F; K F OK 5 O K $GOO «OKK O G F G G G G ( v v Gvz O O *«* K ] F F K v v v : v : F OG O OK O G?;;::OO O K O O vv v q >v v V v / (}»* v v v: v vv?? O ; Q
Mission 1 Simplify and Multiply Rational Expressions
Algebra Honors Unit 6 Rational Functions Name Quest Review Questions Mission 1 Simplify and Multiply Rational Expressions 1) Compare the two functions represented below. Determine which of the following
Week #1 The Exponential and Logarithm Functions Section 1.3
Week #1 The Exponential and Logarithm Functions Section 1.3 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used by
Lesson 7: Linear Transformations Applied to Cubes
Classwork Opening Exercise Consider the following matrices: AA = 1 2 0 2, BB = 2, and CC = 2 2 4 0 0 2 2 a. Compute the following determinants. i. det(aa) ii. det(bb) iii. det(cc) b. Sketch the image of
(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks)
1. Let f(x) = p(x q)(x r). Part of the graph of f is shown below. The graph passes through the points ( 2, 0), (0, 4) and (4, 0). (a) Write down the value of q and of r. (b) Write down the equation of
Supplementary Information
If f - - x R f z (F ) w () () f F >, f E jj E, V G >, G >, E G,, f ff f FILY f jj ff LO_ N_ j:rer_ N_ Y_ fg LO_; LO_ N_; N_ j:rer_; j:rer_ N_ Y_ f LO_ N_ j:rer_; j:rer_; N_ j:rer_ Y_ fn LO_ N_ - N_ Y_
'P'A f- 'p y. snratirj $. t3.dii for ila Months. n 11 I. mmmmmwimm 4 00 M ISLANDS..IANUAKY HAWAIIAN. itttttaira!. HkHUL Li la. P. 1. Bt. aib:suii.
8 gbb X p Y gbb BD bp $ D Fg b B R D p g XXX 9 R F D R BRR R p X R D p g g R b p pp b q p b F D p D R B g 8 bb FR R R 8 8 D DR RR X D 8 g 98 RR D B D DR D FR D RR p B D RY F R p p g p 8 F Bg Q DR R DR
Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution
Jim Lambers MAT 8 Fall emester 6-7 Practice Final Exam olution. Use Lagrange multipliers to find the point on the circle x + 4 closest to the point (, 5). olution We have f(x, ) (x ) + ( 5), the square
Definition: If y = f(x), then. f(x + x) f(x) y = f (x) = lim. Rules and formulas: 1. If f(x) = C (a constant function), then f (x) = 0.
Definition: If y = f(x), then Rules and formulas: y = f (x) = lim x 0 f(x + x) f(x). x 1. If f(x) = C (a constant function), then f (x) = 0. 2. If f(x) = x k (a power function), then f (x) = kx k 1. 3.
A L T O SOLO LOWCLL. MICHIGAN, THURSDAY. DECEMBER 10,1931. ritt. Mich., to T h e Heights. Bos" l u T H I S COMMl'NiTY IN Wilcox
G 093 < 87 G 9 G 4 4 / - G G 3 -!! - # -G G G : 49 q» - 43 8 40 - q - z 4 >» «9 0-9 - - q 00! - - q q!! ) 5 / : \ 0 5 - Z : 9 [ -?! : ) 5 - - > - 8 70 / q - - - X!! - [ 48 - -!
REAL WORLD SCENARIOS: PART IV {mostly for those wanting 114 or higher} 1. If 4x + y = 110 where 10 < x < 20, what is the least possible value of y?
REAL WORLD SCENARIOS: PART IV {mostly for those wanting 114 or higher} REAL WORLD SCENARIOS 1. If 4x + y = 110 where 10 < x < 0, what is the least possible value of y? WORK AND ANSWER SECTION. Evaluate
LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS
LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or
A secant line is a line drawn through two points on a curve. The Mean Value Theorem relates the slope of a secant line to the slope of a tangent line.
The Mean Value Theorem 10-1-005 A secant line is a line drawn through two points on a curve. The Mean Value Theorem relates the slope of a secant line to the slope of a tangent line. The Mean Value Theorem.
Solutions to Homework Set #6 (Prepared by Lele Wang)
Solutions to Homework Set #6 (Prepared by Lele Wang) Gaussian random vector Given a Gaussian random vector X N (µ, Σ), where µ ( 5 ) T and 0 Σ 4 0 0 0 9 (a) Find the pdfs of i X, ii X + X 3, iii X + X
Ch 7 Summary - POLYNOMIAL FUNCTIONS
Ch 7 Summary - POLYNOMIAL FUNCTIONS 1. An open-top box is to be made by cutting congruent squares of side length x from the corners of a 8.5- by 11-inch sheet of cardboard and bending up the sides. a)
Logarithmic Functions
Name Student ID Number Group Name Group Members Logarithmic Functions 1. Solve the equations below. xx = xx = 5. Were you able solve both equations above? If so, was one of the equations easier to solve
Final Review Accelerated Advanced Algebra
Name: ate: 1. What are the factors of z + z 2 + 25z + 25? 5. Factor completely: (7x + 2) 2 6 (z + 1)(z + 5)(z 5) (z 1)(z + 5i) 2 (49x + 1)(x 8) (7x 4)(7x + 8) (7x + 4)(7x 8) (7x + 4)(x 9) (z 1)(z + 5i)(z
Ottlo* l a T r a i n ' s Opera H o u s e B l o o k. LOWELL, MICHIGAN, FRIDAY. MAY 4, WIND AND W A T E R.
4 888 X X y Q fy» v y vf c v f ff x f 28 q gv g f xyx y f c g f «y «ff ( f 2 8 xyx vy f y g x 2& f g f y y y y f 2 8 y f v v c f f y f Q c ffc c c x y x 2 y v v y v c y y yy f g f y y y c v y g f (cgyj