Darcy Weisbach, ELM & Relative Viscosity

Size: px
Start display at page:

Download "Darcy Weisbach, ELM & Relative Viscosity"

Transcription

1 Darcy Weisbach, ELM & Relative Viscosity Dr.ir. Sape A. Miedema Head of Studies MSc Offshore & Dredging Engineering & Marine Technology Associate Professor of Dredging Engineering Faculty of 3mE Faculty CiTG Offshore & Dredging Engineering

2 Dredging A Way Of Life

3 Offshore A Way Of Life

4 What is Offshore & Dredging Engineering? Offshore & Dredging Engineering covers everything at sea that does not have the purpose of transporting goods & people and no fishery.

5 Darcy Weisbach

6 Darcy Weisbach L 1 p 2 l l l v ls D p 2 i l p l l v iw g L 2 g D l 2 ls p l ln lo g D 0.9 p R e 3.7 D p R e

7 Labda Moody diagram for the determination of the Darcy Weisbach friction coefficient. The legend shows the relative roughness. S.A.M Moody Diagram 0.08 Moody Diagram Labda Re Laminar Smooth

8 Darcy-Weisbach friction factor λ (-) S.A.M Moody Friction Factor vs. Line Speed Darcy-Weisbach friction factor λ vs. Line speed v ls Dp= m Dp= m Dp= m Dp= m Dp= m Dp= m Dp= m Dp= m Dp= m Dp= m Dp= m Dp= m Dp= m Dp= m S.A.M Line speed v ls (m/sec) Dp= m Dp= m

9 Darcy-Weisbach friction factor λ (-) S.A.M Moody Friction Factor vs. Pipe Diameter Darcy-Weisbach friction factor λ vs. Pipe diameter D p vls=1.00 m/sec vls=2.00 m/sec vls=3.00 m/sec vls=4.00 m/sec vls=5.00 m/sec vls=6.00 m/sec vls=7.00 m/sec S.A.M Pipe diameter D p (m)

10 Moody Friction Factor Approximation 1 v D l ls p p D r a n g e : ls v r a n g e :

11 Equivalent Liquid Model

12 Equivalent Liquid Model L 1 p 2 m l m v ls D p 2 i m p m m l v g L 2 g D 2 ls l l p l ln lo g D 0.9 p R e 3.7 D p R e

13 Relative Excess Hydraulic Gradient (E rhg ) S.A.M i 1 R C m s d v s l v 2 ls 2 g D p i 1 R C l s d v s E r h g R i m s d i C l v s i l

14 Relative Viscosity

15 Relative Viscosity ν m /ν l (-) S.A.M Relative Viscosity Collected Relative Viscosity Data, From 16 Sources 100 Experiments 10 Fit Line 4 Terms Upper Limit Lower Limit S.A.M Volume Fraction Solids C v (-)

16 Relative Viscosity ν m /ν fl (-) S.A.M Relative Viscosity, Selected Collected Relative Viscosity Data, Reduced Experiments Fit Line 2 Terms Fit Line 3 Terms Fit Line 4 Terms S.A.M Volume Fraction Solids C v (-)

17 Relative Viscosity, Approximation m r C v s E in s te in l C C e m 2 r v s v s l C vs T h o m a s R e la tiv e D y n a m ic V is c o s ity R e la tiv e K in e m a tic V is c o s ity m m m r l l l r

18 Experiments

19 Relative excess hydraulic gradient E rhg (-) S.A.M Solids Effect in Pure Liquid Relative excess hydraulic gradient E rhg vs. Hydraulic gradient i l Fixed Bed Cvs=c Sliding Bed Cvs=c. Mean Heterogeneous Flow Cvs=c. Homogeneous Flow Cvs=Cvt=c. Resulting Erhg curve Cvs=c. Fixed Bed, Sliding Bed & Het. Flow Cvt=c. Fixed Bed, Sliding Bed & Sliding Flow Cvt=c. Limit Deposit Velocity Ratio Potential/Kinetic Energy Cv=0.480 Cv=0.450 Cv= Hydraulic gradient i l (-) S.A.M. Dp= m, d=0.20 mm, Rsd=0.46, Cv=0.450, μsf=0.415

20 Relative excess hydraulic gradient E rhg (-) S.A.M Solids Effect with Relative Viscosity Relative excess hydraulic gradient E rhg vs. Hydraulic gradient i l Fixed Bed Cvs=c Sliding Bed Cvs=c. Mean Heterogeneous Flow Cvs=c. Homogeneous Flow Cvs=Cvt=c. Resulting Erhg curve Cvs=c. Fixed Bed, Sliding Bed & Het. Flow Cvt=c. Fixed Bed, Sliding Bed & Sliding Flow Cvt=c. Limit Deposit Velocity Ratio Potential/Kinetic Energy Cv=0.480 Cv= Hydraulic gradient i l (-) Cv=0.400 S.A.M. Dp= m, d=0.20 mm, Rsd=0.46, Cv=0.450, μsf=0.415

21 Relative excess hydraulic gradient E rhg (-) S.A.M Solids Effect in Pure Liquid Relative excess hydraulic gradient E rhg vs. Hydraulic gradient i l Fixed Bed Cvs=c Sliding Bed Cvs=c. Mean Heterogeneous Flow Cvs=c. Homogeneous Flow Cvs=Cvt=c. Resulting Erhg curve Cvs=c. Fixed Bed, Sliding Bed & Het. Flow Cvt=c. Fixed Bed, Sliding Bed & Sliding Flow Cvt=c. Limit Deposit Velocity Ratio Potential/Kinetic Energy Cv= Hydraulic gradient i l (-) S.A.M. Dp= m, d=0.04 mm, Rsd=4.00, Cv=0.240, μsf=0.415

22 Relative excess hydraulic gradient E rhg (-) S.A.M Solids Effect with Relative Viscosity Relative excess hydraulic gradient E rhg vs. Hydraulic gradient i l Fixed Bed Cvs=c Sliding Bed Cvs=c. Mean Heterogeneous Flow Cvs=c. Homogeneous Flow Cvs=Cvt=c. Resulting Erhg curve Cvs=c. Fixed Bed, Sliding Bed & Het. Flow Cvt=c. Fixed Bed, Sliding Bed & Sliding Flow Cvt=c. Limit Deposit Velocity Hydraulic gradient i l (-) Ratio Potential/Kinetic Energy Cv=0.240 S.A.M. Dp= m, d=0.04 mm, Rsd=4.00, Cv=0.240, μsf=0.415

23 Questions?

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

THE INFLUENCE OF LOCAL HINDERED SETTLING ON THE CONCENTRATION DISTRIBUTION IN SLURRY TRANSPORT. Sape Andries Miedema 1

THE INFLUENCE OF LOCAL HINDERED SETTLING ON THE CONCENTRATION DISTRIBUTION IN SLURRY TRANSPORT. Sape Andries Miedema 1 18th International Conference on TRANSPORT AND SEDIMENTATION OF SOLID PARTICLES 11-15 September 2017, Prague, Czech Republic ISSN 0867-7964 ISBN 978-83-7717-269-8 THE INFLUENCE OF LOCAL HINDERED SETTLING

More information

Calculation of Pipe Friction Loss

Calculation of Pipe Friction Loss Doc.No. 6122-F3T071 rev.2 Calculation of Pipe Friction Loss Engineering Management Group Development Planning Department Standard Pump Business Division EBARA corporation October 16th, 2013 1 / 33 2 /

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d) ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

More information

A Model Answer for. Problem Set #7

A Model Answer for. Problem Set #7 A Model Answer for Problem Set #7 Pipe Flow and Applications Problem.1 A pipeline 70 m long connects two reservoirs having a difference in water level of 6.0 m. The pipe rises to a height of 3.0 m above

More information

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

More information

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,

More information

Hydraulics and hydrology

Hydraulics and hydrology Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

More information

Review of pipe flow: Friction & Minor Losses

Review of pipe flow: Friction & Minor Losses ENVE 204 Lecture -1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers

More information

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey

More information

Slurry Transport. Fundamentals, A Historical Overview & The Delft Head Loss & Limit Deposit Velocity Framework. DHLLDV Flow Regime Diagram

Slurry Transport. Fundamentals, A Historical Overview & The Delft Head Loss & Limit Deposit Velocity Framework. DHLLDV Flow Regime Diagram Durand Froude number F L (-) Line speed (m/s) Slurry Transport Fundamentals, A Historical Overview & The Delft Head Loss & Limit Deposit Velocity Framework DHLLDV Flow Regime Diagram Particle diameter

More information

Chapter 10 Flow in Conduits

Chapter 10 Flow in Conduits Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear

More information

Engineers Edge, LLC PDH & Professional Training

Engineers Edge, LLC PDH & Professional Training 510 N. Crosslane Rd. Monroe, Georgia 30656 (770) 266-6915 fax (678) 643-1758 Engineers Edge, LLC PDH & Professional Training Copyright, All Rights Reserved Engineers Edge, LLC Pipe Flow-Friction Factor

More information

FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE

FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE 11 ACPPA TECHNICAL SERIES FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE This paper presents formulas to assist in hydraulic design of concrete pressure pipe. There are many formulas to calculate

More information

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: 7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus

More information

1-Reynold s Experiment

1-Reynold s Experiment Lect.No.8 2 nd Semester Flow Dynamics in Closed Conduit (Pipe Flow) 1 of 21 The flow in closed conduit ( flow in pipe ) is differ from this occur in open channel where the flow in pipe is at a pressure

More information

Hydraulics of pipelines

Hydraulics of pipelines Hydraulics of pipelines K 4 HYAE Hydraulics of pipelines Application of Bernoulli equation BE continuity equation CE g g p h g g p h loss head (losses): friction losses t (in distance L) local losses m

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

Uniform Channel Flow Basic Concepts Hydromechanics VVR090

Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform Channel Flow Basic Concepts Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Feb 2014 SYNOPSIS 1. Definition of Uniform Flow 2. Momentum Equation for Uniform Flow 3. Resistance equations

More information

Figure 34: Coordinate system for the flow in open channels.

Figure 34: Coordinate system for the flow in open channels. OE466 redging Processes 5. SCOUR 5.. Steady uniform flow in open channels This chapter is written with a view to bottom scour. The main outcome is the scour velocity as a function of the particle diameter.

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the

More information

Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

More information

Geology 550 Spring 2005 LAB 3: HYDRAULICS OF PRAIRIE CREEK

Geology 550 Spring 2005 LAB 3: HYDRAULICS OF PRAIRIE CREEK Geology 550 Spring 2005 LAB 3: HYDRAULICS OF PRAIRIE CREEK Objectives: 1. To examine the distribution of velocity in a stream channel 2. To characterize the state of flow using dimensionless variables

More information

Department of Civil Engineering Hydraulics and Water Resources Division Application and Solution I

Department of Civil Engineering Hydraulics and Water Resources Division Application and Solution I Question 1: The Specific weight of water is 1000 /. Using this given value, find the specific mass of water in SI units (g= m/s ). Solution 1: The specific mass of water in SI units: 1 N 1000 m 9810 Nm

More information

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10 Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Pipe Flow. Lecture 17

Pipe Flow. Lecture 17 Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

FLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: Darcy-Weisbach equation for flow in pipes. Major and minor losses in pipe lines.

FLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: Darcy-Weisbach equation for flow in pipes. Major and minor losses in pipe lines. FLUID MECHANICS Dynamics of iscous Fluid Flow in Closed Pipe: Darcy-Weisbach equation for flow in pipes. Major and minor losses in pipe lines. Dr. Mohsin Siddique Assistant Professor Steady Flow Through

More information

LABORATORY TESTING OF PIPE FLOWS OF BIMODAL COMPLEX SLURRIES

LABORATORY TESTING OF PIPE FLOWS OF BIMODAL COMPLEX SLURRIES 18th International Conference on TRANSPORT AND SEDIMENTATION OF SOLID PARTICLES 11-15 September 2017, Prague, Czech Republic ISSN 0867-7964 ISBN 978-83-7717-269-8 LABORATORY TESTING OF PIPE FLOWS OF BIMODAL

More information

Some CFD simulations for the design of the FCC ventilation system. 9/28/2015 A. Rakai EN-CV-PJ 2

Some CFD simulations for the design of the FCC ventilation system. 9/28/2015 A. Rakai EN-CV-PJ 2 Some CFD simulations for the design of the FCC ventilation system 9/28/2015 A. Rakai EN-CV-PJ 2 FCC tunnel design 9/28/2015 A. Rakai EN-CV-PJ 3 FCC: machine tunnel A 9100 m section considered for the study,

More information

5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows)

5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows) 5. MODELING OF NON-STRATIFIED MIXTURE FLOWS (Pseudo-homogeneous flows) Uniform (or almost uniform) distribution of transported solids across a pipeline cross section is characteristic of pseudo-homogeneous

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction. ENGR 1205 Appendix B

Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction. ENGR 1205 Appendix B Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction ENGR 1205 Appendix B 1 Contacting surfaces typically support normal and tangential forces Friction is a tangential

More information

Use of a smoothed model for pipe friction loss

Use of a smoothed model for pipe friction loss Use of a smoothed model for pipe friction loss Bradley J. Eck, M.ASCE Please cite this as: Eck, B. (2016). Use of a Smoothed Model for Pipe Friction Loss. J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0001239,

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

M E 320 Professor John M. Cimbala Lecture 38

M E 320 Professor John M. Cimbala Lecture 38 M E 320 Professor John M. Cimbala Lecture 38 Today, we will: Discuss displacement thickness in a laminar boundary layer Discuss the turbulent boundary layer on a flat plate, and compare with laminar flow

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes 8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

More information

Dry Friction Static vs. Kinetic Angles

Dry Friction Static vs. Kinetic Angles Outline: Types of Friction Dry Friction Static vs. Kinetic Angles Applications of Friction 1 Contacting surfaces typically support normal and tangential forces Friction is a tangential force Friction occurs

More information

DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M.

DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. Sahu 1, Kishanjit Kumar Khatua and Kanhu Charan Patra 3, T. Naik 4 1, &3 Department of Civil Engineering, National Institute of technology,

More information

External Flow and Boundary Layer Concepts

External Flow and Boundary Layer Concepts 1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS

Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS WEEK Four Lecture 6 VELOCITY DISTRIBUTION Joe Wheaton FOR TODAY, YOU SHOULD HAVE READ 1 LET S GET ON WITH IT TODAY S PLAN VELOCITY DISTRIBUTIONS

More information

B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I

B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00

More information

Pipe Flow/Friction Factor Calculations using Excel Spreadsheets

Pipe Flow/Friction Factor Calculations using Excel Spreadsheets Pipe Flow/Friction Factor Calculations using Excel Spreadsheets Harlan H. Bengtson, PE, PhD Emeritus Professor of Civil Engineering Southern Illinois University Edwardsville Table of Contents Introduction

More information

HYDRAULIC TRANSPORT OF SAND/SHELL MIXTURES IN RELATION WITH THE CRITICAL VELOCITY

HYDRAULIC TRANSPORT OF SAND/SHELL MIXTURES IN RELATION WITH THE CRITICAL VELOCITY HYDRAULIC TRANSPORT OF SAND/SHELL MIXTURES IN RELATION WITH THE CRITICAL VELOCITY Sape A. Miedema 1 & Robert C. Ramsdell ABSTRACT When considering pumping shells through a pipeline we have to consider

More information

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation /04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

More information

Chapter 8 Flow in Conduits

Chapter 8 Flow in Conduits 57:00 Mechanics of Fluids and Transport Processes Chapter 8 Professor Fred Stern Fall 013 1 Chapter 8 Flow in Conduits Entrance and developed flows Le = f(d, V,, ) i theorem Le/D = f(re) Laminar flow:

More information

Sizing of Gas Pipelines

Sizing of Gas Pipelines Sizing of Gas Pipelines Mavis Nyarko MSc. Gas Engineering and Management, BSc. Civil Engineering Kumasi - Ghana mariiooh@yahoo.com Abstract-In this study, an effective approach for calculating the size

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

The effect of geometric parameters on the head loss factor in headers

The effect of geometric parameters on the head loss factor in headers Fluid Structure Interaction V 355 The effect of geometric parameters on the head loss factor in headers A. Mansourpour & S. Shayamehr Mechanical Engineering Department, Azad University of Karaj, Iran Abstract

More information

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure

Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure Strojniški vestnik - Journal of Mechanical Engineering 55(009)4, 7-4 Paper received: 7.10.008 UDC 61.64 Paper accepted: 0.04.009 Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a

More information

Frictional Losses in Straight Pipe

Frictional Losses in Straight Pipe 2/2/206 CM325 Fundamentals of Chemical Engineering Laboratory Prelab Preparation for Frictional Losses in Straight Pipe Professor Faith Morrison Department of Chemical Engineering Michigan Technological

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

More information

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

2, where dp is the constant, R is the radius of

2, where dp is the constant, R is the radius of Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a one-dimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.

More information

HYDRAULIC STRUCTURES, EQUIPMENT AND WATER DATA ACQUISITION SYSTEMS - Vol. I Fluid Mechanics in Pipelines - D. Stephenson

HYDRAULIC STRUCTURES, EQUIPMENT AND WATER DATA ACQUISITION SYSTEMS - Vol. I Fluid Mechanics in Pipelines - D. Stephenson FLUID MECHANICS IN PIPELINES D. Stephenson Water Utilisation Division, University of Pretoria, Pretoria, South Africa Keywords: Flow, turbulence, pipelines, water hammer, head-loss, friction, waterworks,

More information

F L U I D S Y S T E M D Y N A M I C S

F L U I D S Y S T E M D Y N A M I C S F L U I D S Y S T E M D Y N A M I C S T he proper design, construction, operation, and maintenance of fluid systems requires understanding of the principles which govern them. These principles include

More information

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., June 2003

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng.,   June 2003 TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., www.lightmypump.com June 2003 Figure 1 Calculation example flow schematic. Situation Water at 150 F is to be pumped from a

More information

The Darcy-Weisbach Jacobian and avoiding zero flow failures in the Global Gradient Algorithm for the water network equations

The Darcy-Weisbach Jacobian and avoiding zero flow failures in the Global Gradient Algorithm for the water network equations The Darcy-Weisbach Jacobian and avoiding zero flow failures in the Global Gradient Algorithm for the water network equations by Elhay, S. and A.R. Simpson World Environmental & Water Resources Congress

More information

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses). PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:

More information

Improved Method for Converting Equivalent Sand-grain Roughness to Hazen-Williams Coefficient

Improved Method for Converting Equivalent Sand-grain Roughness to Hazen-Williams Coefficient Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 119 OI: 10.11159/htff16.119 Improved Method for Converting

More information

Lecture 10: River Channels

Lecture 10: River Channels GEOG415 Lecture 10: River Channels 10-1 Importance of channel characteristics Prediction of flow was the sole purpose of hydrology, and still is a very important aspect of hydrology. - Water balance gives

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW Derivation of uniform flow equation Dimensional analysis Computation of normal depth UNIFORM FLOW 1. Uniform flow is the flow condition obtained from a

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) No. of Printed Pages : 6 BME-028 BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) Term-End Examination December, 2011 00792 BME-028 : FLUID MECHANICS Time : 3 hours

More information

Chapter 3 Water Flow in Pipes

Chapter 3 Water Flow in Pipes The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics - ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution

More information

Comparison of Explicit Relations of Darcy Friction Measurement with Colebrook-White Equation

Comparison of Explicit Relations of Darcy Friction Measurement with Colebrook-White Equation Applied mathematics in Engineering, Management and Technology 2 (4) 24:57-578 www.amiemt-journal.com Comparison of Explicit lations of arcy Friction Measurement with Colebrook-White Equation Saeed Kazemi

More information

Why the Fluid Friction Factor should be Abandoned, and the Moody Chart Transformed

Why the Fluid Friction Factor should be Abandoned, and the Moody Chart Transformed The Open Mechanical Engineering Journal, 2009, 3, 43-48 43 Open Access Why the Fluid Friction Factor should be Abandoned, and the Moody Chart Transformed Eugene F. Adiutori * Ventuno Press, Green Valley,

More information

Laminar and turbulent flows

Laminar and turbulent flows Ventilation 0 Duct Design Vladimír Zmrhal (room no. 84) http://users.fs.cvut.cz/~zmrhavla/index.htm Dpt. Of Environmental Engineering Laminar and turbulent flos Reynolds number d Re = ν laminar flo Re

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience

More information

Erosion of sand under high flow velocities

Erosion of sand under high flow velocities Delft University of Technology Faculty of Mechanical, Maritime and Materials Engineering Department of Offshore Engineering Erosion of sand under high flow velocities Author: Juneed Sethi MSc Thesis Thesis

More information

SKM DRILLING ENGINEERING. Chapter 3 - Drilling Hydraulics

SKM DRILLING ENGINEERING. Chapter 3 - Drilling Hydraulics 1 SKM 3413 - DRILLING ENGINEERING Chapter 3 - Drilling Hydraulics Assoc. Prof. Abdul Razak Ismail Petroleum Engineering Dept. Faculty of Petroleum & Renewable Energy Eng. Universiti Teknologi Malaysia

More information

FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 23, Important Concepts FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

More information

Lecture 4. Lab this week: Cartridge valves Flow divider Properties of Hydraulic Fluids. Lab 8 Sequencing circuit Lab 9 Flow divider

Lecture 4. Lab this week: Cartridge valves Flow divider Properties of Hydraulic Fluids. Lab 8 Sequencing circuit Lab 9 Flow divider 91 Lecture 4 Lab this week: Lab 8 Sequencing circuit Lab 9 Flow divider Cartridge valves Flow divider Properties of Hydraulic Fluids Viscosity friction and leakage Bulk modulus Inertance Cartridge Valves

More information

Glacier Hydrology II: Theory and Modeling

Glacier Hydrology II: Theory and Modeling Glacier Hydrology II: Theory and Modeling McCarthy Summer School 2018 Matt Hoffman Gwenn Flowers, Simon Fraser Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Observations

More information

EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013

EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013 EXAMPLE SHEET FOR TOPIC ATMN 01 Q1. se dimensional analysis to investigate how the capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid density ρ, surface tension σ and

More information

Design Methodology for Hydraulic Ram Pump

Design Methodology for Hydraulic Ram Pump Design Methodology for Hydraulic Ram Pump Aniruddha Deo 1, Atharva Pathak 2, Santosh Khune 3, Mamta Pawar 4 U.G. Student, Department of Mechanical Engineering, Dr. Babasaheb Ambedkar College of Engineering

More information

Darcy's Law. Laboratory 2 HWR 531/431

Darcy's Law. Laboratory 2 HWR 531/431 Darcy's Law Laboratory HWR 531/431-1 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify

More information

Chapter 7 FLOW THROUGH PIPES

Chapter 7 FLOW THROUGH PIPES Chapter 7 FLOW THROUGH PIPES 7-1 Friction Losses of Head in Pipes 7-2 Secondary Losses of Head in Pipes 7-3 Flow through Pipe Systems 48 7-1 Friction Losses of Head in Pipes: There are many types of losses

More information

Used to estimate energy loss due to friction in pipe. D = internal diameter of pipe (feet) L = length of pipe (feet) Penn State-Harrisburg

Used to estimate energy loss due to friction in pipe. D = internal diameter of pipe (feet) L = length of pipe (feet) Penn State-Harrisburg Module b: Flow in Pipes Darcy-Weisbac Robert Pitt University o Alabama and Sirley Clark Penn State-Harrisburg Darcy-Weisbac can be written or low (substitute V Q/A, were A (π/4)d in te above equation):

More information

Slurry Pipeline System: Simulation and Validation

Slurry Pipeline System: Simulation and Validation Slurry Pipeline System: Simulation and Validation Dr. George Shou ABSTRACT Multiple simulation techniques were used to simulate the operation of the Antamina pipeline system. For the storage tanks, the

More information

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh Chater 10: Flow in Conduits By Dr Ali Jawarneh Hashemite University 1 Outline In this chater we will: Analyse the shear stress distribution across a ie section. Discuss and analyse the case of laminar

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF CIVIL ENGINEERING QUESTION BANK III SEMESTER CE 8302 FLUID MECHANICS Regulation 2017 Academic Year 2018 19 Prepared by Mrs.

More information

PIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number.

PIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number. PIPING SYSTEMS In this chapter we will review some of the basic concepts associated with piping systems. Topics that will be considered in this chapter are - Pipe and tubing standards - Effective and hydraulic

More information