E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS

Size: px
Start display at page:

Download "E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS"

Transcription

1 Magnetohydrodynamics Magnetohydrodynamics (or MHD for short) is the study of the interaction between a magnetic field and a plasma treated as a continuous medium (e.g. Cowling 1957, Roberts 1967, Priest 1982, 1994). Most of the universe is not a normal gas but is instead a plasma. We are all familiar on Earth with the three states of matter (solid, liquid and gas). You change from one state to another (such as ice to water) by heating, and if you raise the temperature of gas sufficiently it changes to the fourth state of matter, namely plasma. In the plasma state the atoms have split into positive ions and negative electrons, which can flow around freely, so the gas becomes electrically conducting and a current can flow. (MHD can also be used to describe the behavior of an electrically conducting liquid.) Many dynamical processes in the universe are caused by the subtle nonlinear relationship between a magnetic field and a plasma. In a normal gas such as the air we breathe, there is virtually no interaction with a magnetic field. But in a plasma the extremely close coupling with the magnetic field means that whatever the plasma is doing intimately affects the magnetic field and vice versa. Indeed, on Earth we are in an extremely unusual part of the cosmos, a tiny island of solid, liquid and gas. But, as soon as we go up to the ionosphere, the plasma universe begins, including the region between Earth and Sun, the whole of the Sun itself, as well as the interstellar and intergalactic media and the stars and galaxies contained in them. In MHD we are not concerned with individual particles but treat the plasma as a continuous medium. It builds partly on electromagnetism and partly on fluid mechanics. The assumption of a continuous medium is valid for length-scales much larger than the mean-free path for particle collisions ( ) 2 ( ) 1 T n λ mfp 300 m, 10 6 K m 3 which is typically 3 cm in the solar chromosphere and 30 km in the solar corona. The magnetic field has several physical effects: (a) It exerts a force, which may accelerate plasma or create structure. (b) It stores energy, which may later be released as, for example, a solar eruption or a solar flare. (c) It acts as a thermal blanket, which, when wrapped around a cool solar prominence, say, may protect it from the surrounding corona. (d) It channels fast particles and plasma. (e) It drives instabilities and supports waves. MHD is important in a wide variety of cosmic phenomena. The different aspects of MHD are described in the articles that follow and the applications are discussed in many of the articles throughout the encyclopedia, notably in those about the Sun, where Figure 1. Segment of a magnetic flux tube. MHD phenomena are widespread. In this introductory article, we first describe a magnetic flux tube and then introduce the fundamental equations. Particular attention is given to the induction equation and the Lorentz force with which a magnetic field acts on a plasma. Then we describe the force balance of a plasma at rest, known as magnetohydrostatics, and mention briefly the possible wave modes and instabilities. Magnetic flux tubes A magnetic field line is a curve such that the tangent at any point is in the direction of the magnetic field. Its equation, for a two-dimensional magnetic field having components (B x,b y ), is dy dx = B y B x or dx/b x = dy/b y = dz/b z in three dimensions. A magnetic flux tube is the surface generated by the set of magnetic field lines which intersect a simple closed curve. Flux tubes are the building blocks of a magnetic configuration, but they must not be thought of as independent isolated structures. The strength (F ) of a flux tube is the amount of magnetic flux crossing a section (S), i.e. F = B ds. s Consider a finite segment of a flux tube bounded by plane sections S 1 and S 2 (figure 1). There is no flux across the walls of the tube, and so physically, if no flux is created inside the tube, the flux (F 1 ) entering through section S 1 equals the flux (F 2 ) leaving through section S 2. In other words, the strength (F ) is constant along the tube. Mathematically, integrating over the whole surface (S V ) of the segment of the tube between S 1 and S 2 gives, since B ds vanishes on the curved part B ds = B ds + B ds = F 1 + F 2 S V S 1 S 2 where F 1 is the flux from left to right and, on S V,dS is in the direction of the outwards normal. However, the Gauss divergence theorem gives B ds = B dv = 0 S V V since B = 0. Thus F 1 = F 2 as required, and therefore B = 0 implies that no flux is indeed created and the strength is constant along the flux tube. Dirac House, Temple Back, Bristol, BS1 6BE, UK 1

2 y x where B = µh, D = ɛe and j and ρ c are the electric current and charge densities present in the plasma. (Sometimes a subscript 0 is placed on µ and ɛ.) Here H is the magnetic field, B is the magnetic induction (although we shall loosely refer to it as the magnetic field), µ the magnetic permeability of free space, E the electric field, D the electric displacement, ɛ the permittivity of free space, ρ c the charge density, j the electric current density. These are supplemented by Ohm s law E = j/σ (3) where σ is the electrical conductivity. The equations of fluid mechanics for a perfect gas, on the other hand, are Figure 2. Field lines for the magnetic field (B x,b y ) = (y, x). ρ dv = p (4a) If the cross-sectional area (A) of a flux tube is small, then F BA. Thus, as the magnetic field lines become closer together, so A becomes smaller and, since F is constant, B increases in value, and vice versa. When sketching field lines from expressions for the field components there are three stages: (a) (b) (c) Evaluate the expressions for the field lines and sketch a typical one. Decide the directions of the arrows. Decide the spacings of other field lines. Thus, for example, if B x = y and B y = x, the field lines are given by dy/dx = x/y or y 2 x 2 = constant. When the constant is zero we obtain the two field lines (y =±x) through the origin (called separatrices); when the constant is positive (negative) we have branches of a rectangular hyperbola intersecting the y-axis (x-axis). From the orientations of the axes in figure 2 we have decided that the positive directions are to the right and upward; thus, for instance, on the positive x-axis the field is simply B y = x, which is positive and so the arrow is directed upwards. Also, as one moves out along the x-axis the magnitude of the field increases and so the field lines become more closely spaced. The origin is a special point, an X-type neutral point, where the field vanishes and the topology of nearby magnetic field lines is hyperbolic; it represents a weak spot in a configuration where magnetic energy tends to be released after the formation of a current sheet. Fundamental equations The MHD equations are a unification of the equations of slow electromagnetism and fluid mechanics. Maxwell s equations are H = j + D B = 0 (1) E = D = ρ c (2) dρ + ρ v = 0 (4b) p = RρT (4c) and an energy equation (see below), where ρ is the plasma density (the mass per unit volume), v the plasma velocity, p the plasma pressure, T the temperature, R the gas constant. The operator d/ = / + v is the total (or material) derivative and represents the time rate of change moving with an element of plasma, in contrast to / which represents the time rate of change at a fixed point of space. Equation (4a) is the equation of motion, which says that the mass times acceleration of a moving element of plasma equals the sum of the forces acting on the element. Here we have included just the pressure gradient ( p). Equation (4b)is the equation of mass continuity and is simply a mathematical expression of the physical fact that no plasma is being created or destroyed: thus, if for example mass is flowing outwards away from an element (so that the flow is diverging and the divergence v is positive), then the density of the element must be decreasing so that from (4b) dρ/ must be negative. Equation (4c) is the perfect gas law, stating that the pressure of a plasma is proportional to its density and temperature. In principle (4a) determines the velocity v, (4b) the density ρ, while (4c) and an energy equation determine the pressure p and temperature T. The (internal) energy equation may be written ρ de + p v = (κ T ) Q ν + Q r where p e = (γ 1)ρ is the internal energy density, κ is the thermal conductivity tensor, Q ν is the heating by viscous dissipation, Q r is the radiative energy loss and γ is the ratio of specific heats. In Dirac House, Temple Back, Bristol, BS1 6BE, UK 2

3 many astrophysical and solar applications the (optically thin) radiative loss term can be expressed as Q r = ρ 2 Q(T ) where Q(T ) is a function describing the temperature variation of the radiative loss. In a neutral gas the electromagnetic (1) (3) and fluid dynamic (4) equations are decoupled and so the electromagnetic and fluid properties are independent. However, in MHD we modify the above equations in four ways: (a) (b) (c) (d) A plasma feels an extra force, the so-called Lorentz force (j B), which is added on to the right-hand side of (4a). It is this term which couples the fluid equations to the electromagnetic equations. It is well known that an element dl of wire carrying a current J in a magnetic field feels a force J dl B perpendicular to the wire and to the field, and so it is natural that a plasma element of volume dv carrying a current of density j per unit volume should feel a force j dv B. The presence of the electric current adds an ohmic heating term (j 2 /σ ) to the energy equation. Ohm s law states that the electric field in a frame moving with the plasma is proportional to the current, but the total electric field on moving plasma is E + v B, where E is the field seen in a frame where the observer is at rest, so (3) is modified by adding v B to the left-hand side. This too couples the electromagnetic equations to the fluid equations. We consider processes with plasma and wave speeds much slower than the speed of light (v c), so that the displacement current ( D/) in (1) is negligible. This in turn means that we don t need to consider D = ρ c since it just determines ρ c if needed. There are at least a dozen different approximations that are commonly used for the MHD system of equations. Some of the more well-known ones are: incompressibility (when ρ is constant following the motion or v = 0), which requires that the flow speed be much smaller than the sound speed and Alfvén speed; a steady state ( / = 0 for all variables); the Boussinesq approximation (filtering out sound waves by including density variations only in the gravitational term in the equation of motion); an isothermal state (when T = constant); an ideal MHD state (when η = ν = 0, R m = R e =, see below); an inviscid state (when the viscous effects are negligible); an irrotational (potential) flow (when the vorticity, v, vanishes); an isentropic state (when the entropy is constant); a force-free field (j B = 0); a potential magnetic field (j = 0); a strong magnetic field (β 1); a weak magnetic field (β 1, where β is defined by equation (15) below); a supersonic flow regime (plasma velocity larger than sound speed); a subsonic flow regime (velocity smaller than sound speed). Validity of MHD in collisionless plasmas Many cosmic plasmas are collisionless, where the mean free-path for binary collisions between particles is much greater than the characteristic length-scale of the system. MHD ignores particle interactions, and so the reader may at first think that it is of little use in collisionless plasmas. In practice, however, MHD and its two-fluid variants often describe the behavior of collisionless plasmas surprisingly well. For instance, the solar wind beyond 10 solar radii is completely collisionless, but MHD models describe its global velocity, temperature and density quite well, including such time-dependent aspects as shock waves, stream interactions and turbulence. In principle, the appropriate theory for collisionless plasmas is kinetic plasma theory derived from Vlasov s equation. However, due to its mathematical complexity, it is rarely used to construct a global model of the solar wind and is instead confined mainly to calculating effective transport coefficients and modeling localized effects such as shock structure. MHD has been successful in describing collisionless plasmas for several reasons. Firstly, conservation of mass, momentum and energy are principles common to both ideal MHD and collisionless systems. It is only when dissipation processes are considered that classical MHD becomes problematical. Secondly, ionized particles undergo a gyro-motion about the magnetic field which prevents them from traveling unimpeded in the direction perpendicular to the field. Thus, long-range interactions occur only along the field, while short-range interactions across the field may be described by MHD-like equations. Finally, many plasmas are perturbed by waves which interact with particle motion, even along the field, scattering them in all directions and so re-introducing some form of effective collisionality. In ideal MHD the magnetic field is frozen to the plasma, but this is also a natural consequence of gyromotion in a collisionless plasma whenever the E B drift of the gyro-centers dominates all other drifts. Thus, if a collisionless plasma contains particles undergoing gyromotion and the E B drift dominates, it will obey the ideal MHD Ohm s law. The MHD Lorentz force (j B) is recovered in a collisionless plasma whenever the particle gyro-velocity is much smaller than the speed of light. When the Lorentz force on individual particles is added together it gives a net force per unit volume of F = ρ c E + j B where ρ c is the electric charge density. However, the ratio of the two terms on the right is ( ) 2 ρ c E j B V c which is much less than unity when the particle speed (V ) is non-relativistic. In other words, ρ c E is usually Dirac House, Temple Back, Bristol, BS1 6BE, UK 3

4 negligible compared with the (j B) force for the lowenergy particles. In a collisionless plasma, the most important new effect arises in the pressure and viscous terms in the momentum equation, since the gas pressure is generally anisotropic relative to the magnetic field. The plasma exerts a pressure (p ) along the field which is usually different from the pressure (p ) perpendicular to the field. Similarly, the viscous stress tensor is also anisotropic and dependent on the magnetic field. If p and p can be expressed in terms of the local bulk properties of the plasma, then the MHD equations can still be applied by just adding the appropriate forms of the pressure and viscous stress tensors. In a collisionless plasma equation (6a) in the next section is replaced by the generalized Ohm s law. For a fully ionized plasma it takes the form ( ) E = v B + j σ + m e j + (vj + jv) j B p e ne 2 ne ne where vj and jv are dyadic tensors and p e is the electron stress tensor. The first term on the left-hand side of this equation is the convective electric field, while the second term is the field associated with Ohmic dissipation caused by electron ion collisions. The next three terms describe the effects of electron inertia, while the penultimate term is the Hall effect and the last term includes the electron gyroviscosity. For a partially ionized plasma, collisions between charged particles and neutrals lead also to ambipolar diffusion. Induction equation With the above assumptions, equations (1) (3) become j = B/µ (5a) are primary variables, with the current driven by electric fields, and then the magnetic field is a secondary variable produced by currents. However, in MHD the basic physics is quite different, since the plasma velocity (v) and magnetic field (B) are the primary variables, determined by the induction equation and the equation of motion, while the resulting current (j) and electric field (E) are secondary and may be deduced from (5a) and (6a) if required. If V 0, L 0 are typical velocity and length-scale, the ratio of the first to the second term on the right-hand side of (7) is, in order of magnitude, the magnetic Reynolds number R m = L 0V 0 η. Thus, for example, in a solar active region where η 1m 2 s 1, L m, V ms 1 we find R m 10 9 and so the second term on the right of (7) is completely negligible. In turn, equation (6a) reduces to E = v B to a very high degree of approximation. This is the case in almost all of the solar atmosphere, indeed in almost all of the universe the only exception is in regions (such as current sheets) where the length-scale is extremely small, so small that R m 1 and the second term on the right of (7) becomes important. If R m 1, the induction equation reduces to = η 2 B (8) and so B is governed by a diffusion equation, which implies that field variations (irregularities) on a scale L 0 diffuse away on a time-scale of τ d = L2 0 η = E (5b) which is obtained simply by equating the orders of magnitude of both sides of (8). The corresponding speed at which they diffuse is where E = v B + j/σ B = 0 (6a) (6b) We may therefore eliminate j and E by substituting for j from (5a)in(6a) and for E from (6a)in(5b), with the result that / = (v B) η ( B), where η = 1/(µσ ) is the magnetic diffusivity, here assumed uniform. By expanding out the triple vector product in the last term and using (6b), we obtain finally = (v B) + η 2 B (7) which is known as the induction equation. This is the basic equation for the magnetic behavior in MHD: it determines B once v is known. In electromagnetism the electric current and electric field ν d = L 0 τ d = η L 0. With η 1 m 2 s 1, the decay time for a sunspot is (with L 0 = 10 6 m) sec = yr, so that the process whereby sunspots disappear in a few days cannot just be diffusion (and is probably instead decaying by the convection away from the spot of many small flux tubes). Similarly, the diffusion time for a magnetic field pervading the Sun as a whole (with L 0 = m) is s = yr. This is of the order of the age of the universe, so a magnetic field in a star at its formation has not had time to diffuse much. Consider, for example, a one-dimensional magnetic field (B(x, t)ŷ) satisfying = η 2 B x 2 (9) Dirac House, Temple Back, Bristol, BS1 6BE, UK 4

5 B B 0 t = 0 t = t 1 t = t 2 plasma C 1 motion C 2 2 ηt 1 2 ηt 2 x -B 0 t 1 t 2 (a) Figure 3. The magnetic field (B) in a diffusing one-dimensional current sheet as a function of distance (x) for times t = 0, t 1, t 2. and suppose that initially the field is B(x,0) = B 0 for x > 0 and B( x,0) = B(x,0), as shown in figure 3. Physically, what do we expect to happen? Since (9) has the form of a heat conduction equation and we know that heat tends to flow from a hot region to a cool one and smooth out a temperature gradient, we expect the same diffusive process to occur for our magnetic field and for the initially steep magnetic gradient at x = 0 to smooth out, as shown in figure 3. Mathematically, the required solution of (9) turns out to be, in terms of the error function (erf(ξ)) ( ) x B(x,t) = B 0 erf = 2B x/ (4ηt) 0 e u2 du. (4ηt) π This solution does indeed have the form shown in figure 3 and it may be verified a posteriori by substituting back into (9). The resulting field lines diffuse through the plasma and cancel at x = 0. The main reason for variations in R m from one phenomenon to another is variations in the appropriate length-scale (L 0 ). If R m 1, the induction equation becomes = (v B) and Ohm s law reduces to E + v B = 0 so that the total electric field in a frame of reference moving with the plasma vanishes. Then, if we consider a curve C (bounding a surface S) which is moving with the plasma, in a time an element ds of C sweeps out an element of area v ds. The rate of change (d/ B ds) of magnetic flux through C then consists of two parts, namely S ds + B v ds. C As C moves, so the flux changes partly because the magnetic field is changing with time (the first term) and partly because of the motion of the boundary (the second 0 P 1 P 2 plasma motion P 1 P 2 t 1 t 2 (b) Figure 4. (a) Magnetic flux conservation if a curve C 1 is distorted into C 2 by a plasma motion, the flux through C 1 at t 1 equals the flux through C 2 at t 2.(b) Magnetic field line conservation if plasma elements P 1 and P 2 lie on a field line at t 1, then they will lie on the same line at t 2. term). Then, by putting B v ds = v B ds and applying Stokes theorem to the second term, we obtain d ( ) B ds = (v B) ds S which vanishes in the present approximation. Thus, the total magnetic flux through C remains constant as it moves with the plasma. In other words we have proved magnetic flux conservation (figure 4(a)). It follows that plasma elements that form a flux tube initially do so at all later times (figure 4(a)). There is also magnetic field line conservation (or conservation of magnetic connectivity), namely that, if two plasma elements lie on a field line initially they will always do so (figure 4(b)). At t = t 1, say, suppose elements P 1 and P 2 lie on a field line, which may be defined as the intersection of two flux tubes. Then, at some later time (t = t 2 ) by magnetic flux conservation P 1 and P 2 will still lie on both tubes, and so they will lie on the field line defined by their intersection. We interpret the above results by saying that the magnetic field lines move with the plasma we say that they are frozen into the plasma and plasma can move freely along field lines, but in motion perpendicular to them they are dragged with the plasma or vice versa. Dirac House, Temple Back, Bristol, BS1 6BE, UK 5

6 The Lorentz force One equation relating our fundamental variables v and B is the induction equation; the other is the equation of motion, whose most common form is y ρ dv = p + j B (10) although other forces such as viscous or gravitational may sometimes be important too. The term p is the plasma pressure gradient: it acts from regions of high plasma pressure to low pressure and is perpendicular to the isobars (curves of constant pressure). The magnetic force (j B) is perpendicular to the magnetic field, and so any plasma acceleration parallel to the magnetic field must be caused by other forces. By substituting for j from Ampère s law (5a) and using an identity for the triple vector product, we can write it as ( ) j B = ( B) B/µ = (B ) B µ B 2. 2µ Magnetic Pressure Force Magnetic Tension Force (a) x The two terms on the right-hand side have important physical interpretations. Since the second term has the same form as p, we can say that it represents the effect of a magnetic pressure of magnitude B 2 /(2µ). It gives a force when B 2 varies with position, and the direction of the force is from regions of high magnetic pressure to low magnetic pressure. The first term represents the effect of a magnetic tension parallel to the magnetic field of magnitude B 2 /µ per unit area. It gives a force when the field lines are curved, just like an elastic band or rope. By writing B = Bŝ in terms of the unit vector (ŝ) along the magnetic field, the tension term ((B )B/µ) may be written B µ d B2 dŝ (Bŝ) = ds µ ds + B db µ ds ŝ = B2 µ ˆn R + d ds ( B 2 2µ ) ŝ where ˆn is the principal normal and R is the radius of curvature. The second term on the right of this equation is irrelevant, since it cancels with the component of (B 2 /2µ) parallel to B, as it must since j B is perpendicular to B. However, the first term on the right is the magnetic tension term, which shows that when the radius of curvature is small the tension force is large. Thus, we have shown that the magnetic force has two distinct effects: the magnetic pressure tries to compress the plasma and produces a net force if B varies with position; the magnetic tension tends to make the field lines shorten themselves like elastic bands and gives a net force if the field lines are curved. As an example, consider the field with components B x = y,b y = x, with X-type field lines shown in figure 5(a). At a point on the positive x-axis, the curvature of the field lines suggest a magnetic tension force to the right, while the fact that the magnetic pressure is increasing (like x 2 ) away from the origin suggests a magnetic pressure force (b) Figure 5. Magnetic forces due to the fields (a) B = y ˆx + xŷ and (b) B = r ˆθ. to the left. However, from the field lines alone, it is not evident which dominates. Now ( )( ) (B ) B µ = y x + x y y µ ˆx + x µ ŷ = x µ ˆx + y µ ŷ Dirac House, Temple Back, Bristol, BS1 6BE, UK 6

7 which becomes x ˆx/µ on the x-axis and so does indeed act away form the origin. Also, the magnetic pressure force is ( ) ( ) B 2 x 2 + y 2 = = x 2µ 2µ µ ˆx y µ ŷ which becomes x ˆx/µ on the x-axis and so does act towards the origin. We find therefore that the tension and pressure forces are in precise balance, as they must be since the electric current is ( ) j = 1 y µ x x ẑ = 0 y and so the Lorentz force j B vanishes everywhere. Also, consider next the field B = r ˆθ, for which the field lines are the circles r = constant, becoming more closely spaced as one moves outwards (figure 5(b)). Thus, physically the magnetic tension and pressure forces are expected both to act inwards. Mathematically, we find the magnetic pressure force is ( ) ( ) B 2 r 2 = = r 2µ 2µ µ ˆr which does indeed act inwards. Also, the magnetic tension is ( )( ) ( ) (B ) B µ = B θ B θ ˆθ = r ˆθ r θ µ θ µ and now r/µ does not vary with θ but ˆθ does! In fact ˆθ/ θ = ˆr and so (B )B/µ = rˆr/µ, which again acts inwards, as expected. Magnetohydrostatics Consider the equation of motion when pressure, magnetic and gravitational forces are acting ρ dv = p + j B + ρg (11) where j = B/µ. (12) If L 0,v 0,L 0 /v 0 are typical values for the length-scale, plasma velocity and time-scale respectively, the order of magnitude of the current from (12) is j 0 = B 0 /µl 0. Then, in terms of the typical density (ρ 0 ), pressure (p 0 ) and magnetic field (B 0 ), the sizes of each term in equation (11) are ρ 0 v0 2/L 0, p 0 /L 0, B0 2/µL 0, ρ 0 g, respectively. Now, provided the magnetic term is of the same order as the largest force term, we have force balance if the first term is much smaller than the third, namely v 2 0 B2 0 µρ 0 v 2 A where v A is known as the Alfvén speed. Then (11) reduces to the equation for magnetohydrostatic force balance 0 = p + j B + ρg (13) where j = B/µ, B = 0 and ρ = p/(rt). In this equation, when gravity is negligible we have magnetostatic balance 0 = p + j B (14) if the fourth term in (11) is much smaller than the third, namely L 0 B 2 0 /(µρ 0g) = 2H/β, where H = p 0 ρ 0 g = RT 0 g is the pressure scale-height and p 0 β = B0 2/(2µ) (15) in the plasma beta, namely the ratio of plasma to magnetic pressure. In turn, in (14) the magnetic force dominates if 2β 1, and then (14) reduces further to the equation j B = 0 (16) for a FORCE-FREE MAGNETIC FIELD, in which the magnetic field is in equilibrium with itself under a balance between magnetic pressure and magnetic tension forces. Suppose now that gravity is directed vertically downwards in the negative z-direction (g = gẑ). Then the component of (13) parallel to a particular magnetic field line is 0 = dp/ds ρg cos θ, where s is measured along the field, or, since ds cos θ = dz, we have 0 = dp/dz ρg. After putting ρ = p(rt) 1 this becomes dp dz = p g RT which may be integrated to give ( ) z g p = p 0 exp 0 RT dz where p 0 is the pressure at the base (z = 0) of the field line. If the variation (T (z)) of the temperature with height is known, this determines the pressure and therefore the density. If, in particular, the temperature is uniform (T = T 0 ) then p = p 0 e z/h so that the pressure (and density) decrease exponentially with height, with the scale-height H being the vertical distance over which the pressure falls off by a factor e. Down in the solar photosphere, where T 0 = 6000 K, the scale-height is about 150 km or less and so, over for instance a vertical distance of 1.5 Mm, the pressure and density would fall off by a factor of e By contrast, in the solar corona where T 0 = K, say, the scale-height is about 100 Mm, and so the density falls off much more slowly. Indeed, for many purposes, in the corona we can neglect the effect of gravity, i.e. when the vertical scales of interest are 100 Mm or less. Dirac House, Temple Back, Bristol, BS1 6BE, UK 7

8 Potential fields If the pressure gradient and gravitational force are negligible, (16) holds and a particular case of interest is when the current vanishes, so that B = 0 (17) where B = 0. (18) Equation (17) may be satisfied identically by putting B = ψ and then (18) gives Laplace s equation 2 ψ = 0. Thus, many of the general results of potential theory may be applied and the magnetic field is said to be current-free or potential. Magnetic reconnection MAGNETIC RECONNECTION is a fundamental process in a plasma, whereby the magnetic connectivity of plasma elements changes and magnetic energy is converted into other forms such as heat, kinetic energy and fast-particle energy. It involves a localized breakdown of ideal MHD in a small region due to, for example, resistive effects. It is responsible for many dynamic processes in the universe, such as SOLAR FLARES and GEOMAGNETIC STORMs and probably solar coronal heating (see CORONAL HEATING MECHANISMS). Magnetic helicity For a perfectly conducting plasma in a closed volume (V ), the MAGNETIC HELICITY is K = A B dv V where B = A, and the state of minimum energy for fixed K is a linear force-free field. K is a measure of the sum of the twist and the linkage of flux tubes. Thus, for two linked tubes K = 1 F F LF 1F 2 where 1 and 2 are the twists of the two tubes F 1,F 2 their magnetic fluxes and L the linking number. Reconnection can convert linkage helicity to twist helicity, but it produces only a small change in the total helicity in a plasma of large global magnetic Reynolds number. Magnetohydrodynamic waves and shock waves In a gas there are sound waves which propagate equally in all directions at the sound speed c s = ( γp 0 ρ 0 ) 1/2. In a plasma there are also waves, but they are of several types. Waves are very important in the solar atmosphere and throughout the cosmos. For example, they may be seen propagating out of sunspots or away from large solar flares. They are also a prime candidate for heating the solar atmosphere. In MHD there is an incompressible mode known as the Alfvén wave, which propagates at the Alfvén speed along the magnetic field. Also, there are two compressible modes known as slow and fast magnetoacoustic waves, which propagate slower and faster respectively than the Alfvén speed. These MHD waves have propagation characteristics that depend on the direction of propagation relative to the magnetic field. Small-amplitude sound waves propagate without change of shape, but when the amplitude is finite the crest can move faster than its trough, causing a progressive steepening. Ultimately, the gradients become so large that dissipation becomes important, and a steady shock wave shape may be attained with a balance between the steepening effect of the nonlinear convective term and the broadening effect of dissipation. The dissipation inside the shock front converts the energy being carried by the wave gradually into heat. The effect of the passage of the shock is to compress and heat the gas. In MHD the slow magnetoacoustic wave can steepen to form a slow-mode shock and the fast wave to form a fast-mode shock. Magnetohydrodynamic instabilities Equilibrium magnetic fields in the universe can go sometimes unstable to a wide variety of instabilities. Sometimes the effect is to create fine-scale structure and at other times it is to produce dynamic events such as solar flares and dramatic eruptions from the Sun called SOLAR CORONAL MASS EJECTIONs. The two main ways of analysing stability are by investigating the natural (or normal) modes of variation or by an energy (or variational) method. The instabilities that commonly occur include: the Rayleigh Taylor instability, when heavy fluid is supported above light fluid; kink instability or sausage instability of a magnetic flux tube when its twist is too large; resistive instability such as the tearing-mode instability of a current sheet or a sheared structure; convective instability of a plasma that is heated sufficiently from below; and flow instabilities that occur when the shear in a flow is too great (such as the Kelvin Helmholtz instability and in accretion discs the Balbus Hawley instability). Conclusion It is important to recognize that magnetohydrodynamics builds on the tools of both fluid dynamics and electromagnetism, but it possesses many new features that are present in neither. Furthermore, it is advisable to build both a physical and mathematical understanding of magnetic field behavior, since they both complement one another and together give a deeper understanding than either alone. In the following articles, various aspects and applications of MHD theory are developed in detail. In a companion article, Parker describes the key physical Dirac House, Temple Back, Bristol, BS1 6BE, UK 8

9 processes involved in LARGE-SCALE PLASMA DYNAMICS. Then basic DYNAMO THEORY for the generation and maintenance of cosmical magnetic fields is developed by Moffatt and in particular for the GEODYNAMO by Proctor and for solar and stellar dynamos by Rosner. Then several important aspects of MHD theory are described, including FORCE- FREE MAGNETIC FIELDS (Low), MAGNETIC HELICITY (Berger) and MHD WAVES (Roberts). The theory for MHD INSTABILITIES is set up by Hood and applied in particular to MAGNETIC BUOYANCY by Hughes and to MHD: MAGNETOCONVECTION by Cattaneo. The key process of MAGNETIC RECONNECTION is reviewed by Schindler and Hörnig and its role in MHD: MAGNETIC RECONNECTION AND TURBULENCE is described by Matthaeus. Finally, two astrophysical environments where MHD plays a crucial role are discussed, namely the MHD OF ACCRETION DISKS by Brandenburg and the MHD OF ASTROPHYSICAL WINDS by Heyvaerts. Acknowledgments We are most grateful to colleagues in St Andrews and Durham and to Jean Heyvaerts and Karl Schindler for helpful comments. Bibliography Cowling T G 1957 Magnetohydrodynamics (New York: Interscience) Priest E R 1982 Solar Magnetohydrodynamics (Dordrecht: Reidel) Priest E R 1994 Magnetohydrodynamics Plasma Astrophysics ed J G Kirk, D B Melrose and E R Priest (Berlin: Springer) pp Priest E R and Forbes T G 2000 Magnetic Reconnection: MHD Theory and Applications (Cambridge: Cambridge University Press) Roberts P H 1967 An Introduction to Magnetohydrodynamics (London: Longman) Eric R Priest and Terry G Forbes Dirac House, Temple Back, Bristol, BS1 6BE, UK 9

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

Ideal Magnetohydrodynamics (MHD)

Ideal Magnetohydrodynamics (MHD) Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics

More information

1 Energy dissipation in astrophysical plasmas

1 Energy dissipation in astrophysical plasmas 1 1 Energy dissipation in astrophysical plasmas The following presentation should give a summary of possible mechanisms, that can give rise to temperatures in astrophysical plasmas. It will be classified

More information

Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) Magnetohydrodynamics (MHD) Robertus v F-S Robertus@sheffield.ac.uk SP RC, School of Mathematics & Statistics, The (UK) The Outline Introduction Magnetic Sun MHD equations Potential and force-free fields

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

MAGNETOHYDRODYNAMICS

MAGNETOHYDRODYNAMICS Chapter 6 MAGNETOHYDRODYNAMICS 6.1 Introduction Magnetohydrodynamics is a branch of plasma physics dealing with dc or low frequency effects in fully ionized magnetized plasma. In this chapter we will study

More information

Conservation Laws in Ideal MHD

Conservation Laws in Ideal MHD Conservation Laws in Ideal MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 3, 2016 These lecture notes are largely based on Plasma Physics for Astrophysics

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

PHYS 643 Week 4: Compressible fluids Sound waves and shocks PHYS 643 Week 4: Compressible fluids Sound waves and shocks Sound waves Compressions in a gas propagate as sound waves. The simplest case to consider is a gas at uniform density and at rest. Small perturbations

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest. St Andrews

MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest. St Andrews MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest St Andrews CONTENTS - Lecture 2 1. Introduction 2. Flux Tubes *Examples 3. Fundamental Equations 4. Induction Equation *Examples 5. Equation

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

The Magnetorotational Instability

The Magnetorotational Instability The Magnetorotational Instability Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley

More information

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES:  (references therein) PLASMA ASTROPHYSICS ElisaBete M. de Gouveia Dal Pino IAG-USP NOTES:http://www.astro.iag.usp.br/~dalpino (references therein) ICTP-SAIFR, October 7-18, 2013 Contents What is plasma? Why plasmas in astrophysics?

More information

SOLAR MHD Lecture 2 Plan

SOLAR MHD Lecture 2 Plan SOLAR MHD Lecture Plan Magnetostatic Equilibrium ü Structure of Magnetic Flux Tubes ü Force-free fields Waves in a homogenous magnetized medium ü Linearized wave equation ü Alfvén wave ü Magnetoacoustic

More information

Magnetohydrodynamic Waves

Magnetohydrodynamic Waves Magnetohydrodynamic Waves Magnetohydrodynamic waves are found in a wide variety of astrophysical plasmas. They have been measured in plasma fusion devices and detected in the MAGNETOSPHERE OF EARTH, the

More information

8.2.2 Rudiments of the acceleration of particles

8.2.2 Rudiments of the acceleration of particles 430 The solar wind in the Universe intergalactic magnetic fields that these fields should not perturb them. Their arrival directions should thus point back to their sources in the sky, which does not appear

More information

Collisions and transport phenomena

Collisions and transport phenomena Collisions and transport phenomena Collisions in partly and fully ionized plasmas Typical collision parameters Conductivity and transport coefficients Conductivity tensor Formation of the ionosphere and

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Nick Murphy Harvard-Smithsonian Center for Astrophysics namurphy@cfa.harvard.edu http://www.cfa.harvard.edu/ namurphy/ November 18,

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

The Virial Theorem, MHD Equilibria, and Force-Free Fields

The Virial Theorem, MHD Equilibria, and Force-Free Fields The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely

More information

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability V.V.Mirnov, C.C.Hegna, S.C.Prager APS DPP Meeting, October 27-31, 2003, Albuquerque NM Abstract In the most general case,

More information

VII. Hydrodynamic theory of stellar winds

VII. Hydrodynamic theory of stellar winds VII. Hydrodynamic theory of stellar winds observations winds exist everywhere in the HRD hydrodynamic theory needed to describe stellar atmospheres with winds Unified Model Atmospheres: - based on the

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Astronomy 404 October 18, 2013

Astronomy 404 October 18, 2013 Astronomy 404 October 18, 2013 Parker Wind Model Assumes an isothermal corona, simplified HSE Why does this model fail? Dynamic mass flow of particles from the corona, the system is not closed Re-write

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Motivations The role of MHD turbulence in several phenomena in space and solar

More information

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density varies as ( ) where is a constant, is the unit vector in x direction. a) Sketch the magnetic flux density and the

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Module No. # 01 Lecture No. # 02 Plasma Response to Fields: Fluid Equations Well, friends today I am going

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 30 2007 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley) The Physics of Collisionless Accretion Flows Eliot Quataert (UC Berkeley) Accretion Disks: Physical Picture Simple Consequences of Mass, Momentum, & Energy Conservation Matter Inspirals on Approximately

More information

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma:

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma: Phys780: Plasma Physics Lecture 20. Alfven Waves. 1 20. Alfven waves ([3], p.233-239; [1], p.202-237; Chen, Sec.4.18, p.136-144) We have considered two types of waves in plasma: 1. electrostatic Langmuir

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Fundamentals of Magnetohydrodynamics (MHD)

Fundamentals of Magnetohydrodynamics (MHD) Fundamentals of Magnetohydrodynamics (MHD) Thomas Neukirch School of Mathematics and Statistics University of St. Andrews STFC Advanced School U Dundee 2014 p.1/46 Motivation Solar Corona in EUV Want to

More information

Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester

Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester MagnetoHydroDynamics (MHD) 1. The MHD equations. Magnetic Reynolds number and ideal MHD 3. Some

More information

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism.

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism. Scope of this lecture ASTR 7500: Solar & Stellar Magnetism Hale CGEG Solar & Space Physics Processes of magnetic field generation and destruction in turbulent plasma flows Introduction to general concepts

More information

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

Problem set: solar irradiance and solar wind

Problem set: solar irradiance and solar wind Problem set: solar irradiance and solar wind Karel Schrijver July 3, 203 Stratification of a static atmosphere within a force-free magnetic field Problem: Write down the general MHD force-balance equation

More information

Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester

Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester Magnetohydrodynamics (MHD) Philippa Browning Jodrell Bank Centre for Astrophysics University of Manchester MagnetoHydroDynamics (MHD) 1. The MHD equations. Magnetic Reynolds number and ideal MHD 3. Some

More information

Solar Flare. A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona)

Solar Flare. A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona) Solar Flares Solar Flare A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona) Flares release 1027-1032 ergs energy in tens of minutes. (Note: one H-bomb: 10

More information

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment KB Chai Korea Atomic Energy Research Institute/Caltech Paul M.

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch 1 Two Fluid Dynamo and Edge-Resonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of Wisconsin-Madison, Madison,

More information

Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) KHU Valery Nakariakov Introduction to MHD 1 Magnetohydrodynamics (MHD) Lecturer: Professor Valery Nakariakov, V.Nakariakov@warwick.ac.uk Online lecture notes: http://goo.gl/opgmzk MHD describes large scale,

More information

Nonlinear MRI. Jeremy Goodman. CMPD/CMSO Winter School 7-12 January 2008, UCLA

Nonlinear MRI. Jeremy Goodman. CMPD/CMSO Winter School 7-12 January 2008, UCLA Nonlinear MRI Jeremy Goodman CMPD/CMSO Winter School 7-12 January 2008, UCLA Questions for the nonlinear regime How does the linear instability saturate? i.e., What nonlinear mode-mode interactions brake

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Analysis of Jeans Instability of Partially-Ionized. Molecular Cloud under Influence of Radiative. Effect and Electron Inertia

Analysis of Jeans Instability of Partially-Ionized. Molecular Cloud under Influence of Radiative. Effect and Electron Inertia Adv. Studies Theor. Phys., Vol. 5, 2011, no. 16, 755-764 Analysis of Jeans Instability of Partially-Ionized Molecular Cloud under Influence of Radiative Effect and Electron Inertia B. K. Dangarh Department

More information

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 5.2.2 Dynamo and Reconnection Research: Overview: Spheromaks undergo a relaxation

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 20 2011 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

Radiative & Magnetohydrodynamic Shocks

Radiative & Magnetohydrodynamic Shocks Chapter 4 Radiative & Magnetohydrodynamic Shocks I have been dealing, so far, with non-radiative shocks. Since, as we have seen, a shock raises the density and temperature of the gas, it is quite likely,

More information

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016 Beyond Ideal MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 8, 2016 These lecture notes are largely based on Plasma Physics for Astrophysics by

More information

13. ASTROPHYSICAL GAS DYNAMICS AND MHD Hydrodynamics

13. ASTROPHYSICAL GAS DYNAMICS AND MHD Hydrodynamics 1 13. ASTROPHYSICAL GAS DYNAMICS AND MHD 13.1. Hydrodynamics Astrophysical fluids are complex, with a number of different components: neutral atoms and molecules, ions, dust grains (often charged), and

More information

Recapitulation: Questions on Chaps. 1 and 2 #A

Recapitulation: Questions on Chaps. 1 and 2 #A Recapitulation: Questions on Chaps. 1 and 2 #A Chapter 1. Introduction What is the importance of plasma physics? How are plasmas confined in the laboratory and in nature? Why are plasmas important in astrophysics?

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学,

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学, RKK ( ) BHmag2012,, 2012.2.29 Outline Motivation and basis: Magnetic reconnection around astrophysical black holes Standard equations of resistive GRMHD Test calculations of resistive GRMHD A simulation

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information

November 2, Monday. 17. Magnetic Energy Release

November 2, Monday. 17. Magnetic Energy Release November, Monday 17. Magnetic Energy Release Magnetic Energy Release 1. Solar Energetic Phenomena. Energy Equation 3. Two Types of Magnetic Energy Release 4. Rapid Dissipation: Sweet s Mechanism 5. Petschek

More information

Turbulence and Transport The Secrets of Magnetic Confinement

Turbulence and Transport The Secrets of Magnetic Confinement Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS

More information

Kinetic, Fluid & MHD Theories

Kinetic, Fluid & MHD Theories Lecture 2 Kinetic, Fluid & MHD Theories The Vlasov equations are introduced as a starting point for both kinetic theory and fluid theory in a plasma. The equations of fluid theory are derived by taking

More information

PHYS 432 Physics of Fluids: Instabilities

PHYS 432 Physics of Fluids: Instabilities PHYS 432 Physics of Fluids: Instabilities 1. Internal gravity waves Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant density like the ocean or compressible

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Magnetohydrodynamic waves in a plasma

Magnetohydrodynamic waves in a plasma Department of Physics Seminar 1b Magnetohydrodynamic waves in a plasma Author: Janez Kokalj Advisor: prof. dr. Tomaž Gyergyek Petelinje, April 2016 Abstract Plasma can sustain different wave phenomena.

More information

Coronal Heating versus Solar Wind Acceleration

Coronal Heating versus Solar Wind Acceleration SOHO 15: Coronal Heating, 6 9 September 2004, University of St. Andrews, Scotland Coronal Heating versus Solar Wind Acceleration Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks 2292-13 School and Conference on Analytical and Computational Astrophysics 14-25 November, 2011 Angular momentum transport in accretion disks Gianluigi Bodo Osservatorio Astronomico, Torino Italy Angular

More information

Konvektion und solares Magnetfeld

Konvektion und solares Magnetfeld Vorlesung Physik des Sonnensystems Univ. Göttingen, 2. Juni 2008 Konvektion und solares Magnetfeld Manfred Schüssler Max-Planck Planck-Institut für Sonnensystemforschung Katlenburg-Lindau Convection &

More information

Jet Stability: A computational survey

Jet Stability: A computational survey Jet Stability Galway 2008-1 Jet Stability: A computational survey Rony Keppens Centre for Plasma-Astrophysics, K.U.Leuven (Belgium) & FOM-Institute for Plasma Physics Rijnhuizen & Astronomical Institute,

More information

MHD Simulation of Solar Chromospheric Evaporation Jets in the Oblique Coronal Magnetic Field

MHD Simulation of Solar Chromospheric Evaporation Jets in the Oblique Coronal Magnetic Field MHD Simulation of Solar Chromospheric Evaporation Jets in the Oblique Coronal Magnetic Field Y. Matsui, T. Yokoyama, H. Hotta and T. Saito Department of Earth and Planetary Science, University of Tokyo,

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 4. Basics of Fluid Dynamics CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,

More information

B.V. Gudiksen. 1. Introduction. Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della

B.V. Gudiksen. 1. Introduction. Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della À Ø Ò Ø ËÓÐ Ö ÓÖÓÒ B.V. Gudiksen Institute of Theoretical Astrophysics, University of Oslo, Norway e-mail:boris@astro.uio.no Abstract. The heating mechanism

More information

Magnetohydrodynamics Stability of a Compressible Fluid Layer Below a Vacuum Medium

Magnetohydrodynamics Stability of a Compressible Fluid Layer Below a Vacuum Medium Mechanics and Mechanical Engineering Vol. 12, No. 3 (2008) 267 274 c Technical University of Lodz Magnetohydrodynamics Stability of a Compressible Fluid Layer Below a Vacuum Medium Emad E. Elmahdy Mathematics

More information

Magnetohydrodynamic Waves

Magnetohydrodynamic Waves Magnetohydrodynamic Waves Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 17, 2016 These slides are largely based off of 4.5 and 4.8 of The Physics of

More information

Electricity and magnetism

Electricity and magnetism Physics: Physics: Electricity and magnetism Fluid mechanics Magnetohydrodynamics he interaction of electrically conducting fluids with magnetic fields. The fluids can be ionized gases (commonly called

More information

Simulations of magnetic fields in core collapse on small and large scales

Simulations of magnetic fields in core collapse on small and large scales Simulations of magnetic fields in core collapse on small and large scales Miguel Ángel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz CAMAP, Departament

More information

! e x2 erfi(x)!!=!! 1 2 i! e x2!erf(ix)!,

! e x2 erfi(x)!!=!! 1 2 i! e x2!erf(ix)!, Solution to Problem 1 (a) Since ρ is constant and uniform, the continuity equation reduces to!iu!!=!! "u x "x!+! "u y "y!!=!!!.! which is satisfied when the expression for u x and u y are substituted into

More information

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

ASTR-3760: Solar & Space Physics...Spring 2017

ASTR-3760: Solar & Space Physics...Spring 2017 ASTR-3760: Solar & Space Physics...Spring 2017 Review material for midterm exam (March 22, 2017) Although I m not recommending full-on memorization of everything in this document, I do think it s important

More information

Physical Processes in Astrophysics

Physical Processes in Astrophysics Physical Processes in Astrophysics Huirong Yan Uni Potsdam & Desy Email: hyan@mail.desy.de 1 Reference Books: Plasma Physics for Astrophysics, Russell M. Kulsrud (2005) The Physics of Astrophysics, Frank

More information

ESS 200C. Lectures 6 and 7 The Solar Wind

ESS 200C. Lectures 6 and 7 The Solar Wind ESS 200C Lectures 6 and 7 The Solar Wind The Earth s atmosphere is stationary. The Sun s atmosphere is not stable but is blown out into space as the solar wind filling the solar system and then some. The

More information

n v molecules will pass per unit time through the area from left to

n v molecules will pass per unit time through the area from left to 3 iscosity and Heat Conduction in Gas Dynamics Equations of One-Dimensional Gas Flow The dissipative processes - viscosity (internal friction) and heat conduction - are connected with existence of molecular

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

Vortices in accretion discs: formation process and dynamical evolution

Vortices in accretion discs: formation process and dynamical evolution Vortices in accretion discs: formation process and dynamical evolution Geoffroy Lesur DAMTP (Cambridge UK) LAOG (Grenoble) John Papaloizou Sijme-Jan Paardekooper Giant vortex in Naruto straight (Japan)

More information

On the nature of three-dimensional magnetic reconnection

On the nature of three-dimensional magnetic reconnection JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A7, 1285, doi:10.1029/2002ja009812, 2003 On the nature of three-dimensional magnetic reconnection E. R. Priest School of Mathematics and Statistics, University

More information

where G is Newton s gravitational constant, M is the mass internal to radius r, and Ω 0 is the

where G is Newton s gravitational constant, M is the mass internal to radius r, and Ω 0 is the Homework Exercise Solar Convection and the Solar Dynamo Mark Miesch (HAO/NCAR) NASA Heliophysics Summer School Boulder, Colorado, July 27 - August 3, 2011 PROBLEM 1: THERMAL WIND BALANCE We begin with

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere P. Song Center for Atmospheric Research University of Massachusetts Lowell V. M. Vasyliūnas Max-Planck-Institut

More information

Solar Physics & Space Plasma Research Center (SP 2 RC) MHD Waves

Solar Physics & Space Plasma Research Center (SP 2 RC) MHD Waves MHD Waves Robertus vfs Robertus@sheffield.ac.uk SP RC, School of Mathematics & Statistics, The (UK) What are MHD waves? How do we communicate in MHD? MHD is kind! MHD waves are propagating perturbations

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

28. THE GRAVITATIONAL INTERCHANGE MODE, OR g-mode. We now consider the case where the magneto-fluid system is subject to a gravitational force F g

28. THE GRAVITATIONAL INTERCHANGE MODE, OR g-mode. We now consider the case where the magneto-fluid system is subject to a gravitational force F g 8. THE GRAVITATIONAL INTERCHANGE MODE, OR g-mode We now consider the case where the magneto-fluid system is subject to a gravitational force F g =!g, where g is a constant gravitational acceleration vector.

More information

Asymmetric Magnetic Reconnection in Coronal Mass Ejection Current Sheets

Asymmetric Magnetic Reconnection in Coronal Mass Ejection Current Sheets Asymmetric Magnetic Reconnection in Coronal Mass Ejection Current Sheets Nicholas Murphy, 1 Mari Paz Miralles, 1 Crystal Pope, 1,2 John Raymond, 1 Kathy Reeves, 1 Dan Seaton, 3 & David Webb 4 1 Harvard-Smithsonian

More information