Comparison of available measurements of the absolute air-fluorescence yield*

Size: px
Start display at page:

Download "Comparison of available measurements of the absolute air-fluorescence yield*"

Transcription

1 Comparison of available measurements of the absolute air-fluorescence yield* J. Rosado, F. Blanco and F. Arqueros Universidad Complutense de Madrid * J. Rosado et al., Astropart. Phys. 34 (2010) 164

2 Outline 1. Introduction 2. Normalization procedure 3. Monte Carlo analysis of experiments 4. Comparison of results J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

3 1. Introduction J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

4 1. Introduction: Motivation Comparison of absolute FY cannot be done directly in many occasions because: a) Single bands vs wide spectral range b) Conversion from ph/m to ph/mev depends on geometry: (de/dx) dep c) Discrepancies in the P parameters J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

5 1. Introduction: Motivation Summary of FY results used in the comparison J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

6 1. Introduction: Objectives Comparison of results in ph/mev normalized to the 2P(0-0) band at 800 hpa and 293 K MC analysis of experiments including geometrical features for comparison with calculations of the authors and to propose corrections to the FY values J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

7 2. Normalization procedure J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

8 2. Normalization procedure: wavelength reduction Measurements performed for a wide spectral range λ are normalize to 337 nm FY = FY 337, I = 337 λ λ I λ I λ I λ Experimental relative intensities of AIRFLY * within nm * M. Ave et al., Astropart. Phys., 28 (2007) 41 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

9 2. Normalization procedure: wavelength reduction Relative intensities of AIRFLY follow (for bands belonging to the same system) * : I vv' = q X v A vv' 1+ P / P' 0 q X v A vv' P' v I q A 1+ P / 00 X 0 00 P' v q X 0 A 00 P' 0 P >>P independent of P Fluorescence spectrum can be extended beyond the nm spectral range * F. Arqueros et al., NJP 11 (2009) J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

10 2. Normalization procedure: wavelength reduction Comparison between experimental and predicted relative intensities Experimental relative intensities I I vv' 00 q q X v X 0 A A vv' 00 P' P' v 0 AIRFLY data 2P(0,v') 2P(1,v') 2P(2,v') 2P(3,v') 2P(4,v') Predicted relative intensities J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

11 2. Normalization procedure: wavelength reduction Results of the wavelength reduction Two weak bands beyond the range of AIRFLY 2P(0-4) with I ~ 2% I 337 2P(4-9) with I ~ 0.2% I 337 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

12 2. Normalization procedure: units and geometry Conversion of ε (ph/m) to Y (ph/mev) Y = ε ( de / dx) dep where (de/dx) dep should be calculated for the observation volume of the experiment Some authors assume (de/dx) dep = (de/dx) loss J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

13 2. Normalization procedure: units and geometry A MC simulation including the microscopic molecular processes was carried out for each experiment: a) Energy deposition b) Geometrical factors Comparison with results reported by the authors J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

14 2. Normalization procedure: scaling Normalization to common P and T a) Pressure dependence: Y = Y 0 Y 0 P' 1+ P / P' P P >>P a) Temperature dependence: P' ~ T 1/ 2 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

15 2. Normalization procedure: scaling Scaling law nearly independent of P : Y ( 800 hpa, 293 K) Y ( P,T ) P T Except for AirLight: Y ( 800 hpa, 293 K) = 1+ Y / P' (293 K) J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

16 3. Monte Carlo analysis of experiments J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

17 3. MC analysis: basics Layout of the simulation algorithm e - source loop electrons step <x>=(nσ) -1 Cutoff energy of 11 ev! geometry end e - Predictions of E dep and F. emission elast. brem. excit. ioniz. X-rays also included J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

18 3. MC analysis: basics Simulation results: a) Energy deposition de dx dep = vol E track dep x Primary electrons lose energy in collisions and have fluctuating trajectories b) Geometrical acceptance (if possible) Ω = Ω φ light vol J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

19 3. MC analysis: Nagano s experiment Nagano et al. * made three assumptions: a) x = x gap b) <Ω> = <Ω> <Ω> beam c) (de/dx) dep = (de/d( /dx) loss * M. Nagano et al., Astropart. Phys. 20 (2003) 293; M. Nagano et al., Astropart. Phys. 22 (2004) 235 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

20 3. MC analysis: Nagano s experiment Three corrections have been applied: Y = Y Nag Ω Ω beam x gap x ( de / dx) de / dx loss dep ~1% increase 7% increase ~1% decrease FY of Nagano should be increased by 7% J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

21 3. MC analysis: AirLight experiment AirLight * performed a GEANT4 simulation to obtain: a) Energy deposition b) Acceptance <Ω> * T. Waldenmaier et al., Astropart. Phys. 29 (2008) 205 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

22 3. MC analysis: AirLight experiment Integrated E dep vs E at atmospheric pressure 24 Energy deposition or loss (kev) Deposited energy (AirLight) Deposited energy (this work) ~10% difference Detected energy (kev) Deviations decrease with P resulting in an effective correction of about -7% in the FY J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

23 3. MC analysis: AirLight experiment Integrated E loss vs E at atmospheric pressure Energy deposition or loss (kev) Discrepancy at low energy Energy loss (AirLight) Energy loss (this work) Detected energy (kev) Discrepancy in E loss could be due to AirLight assuming straight trajectories of electrons J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

24 3. MC analysis: FLASH experiment FLASH * performed an EGS4 simulation to obtain: a) Energy deposition b) Acceptance <Ω> * R. Abbasi et al., Astropart. Phys. 29 (2007) 77 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

25 3. MC analysis: FLASH experiment Comparison of (de/dx) dep vs P at 28.5 GeV de dep /dx (MeV g -1 cm 2 ) FLASH This work P (hpa) ~1% Discrepancy could be due to a different treatment of the density correction This work (dens. corr. at 1 atm) Similar behavior if applying a fixed dens. corr. Also a small correction in <Ω>, resulting in a total correction of about -2% in the FY J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

26 3. MC analysis: MACFLY experiment MACFLY * performed a GEANT4 simulation to obtain: a) Energy deposition b) Acceptance <Ω> * P. Colin et al., Astropart. Phys. 27 (2007) 317 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

27 3. MC analysis: MACFLY experiment E dependence of (de/dx) dep at atmospheric P Unexpected behavior of the E dep curve of MACFLY at low energies de dep /dx (MeV g -1 cm 2 ) MACFLY This work ~ 6% E (ev) Proposed corrections of the FY are +2% at 1.5 MeV and -6% at 20 GeV and 50 GeV J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

28 3. MC analysis: Kakimoto s experiment Kakimoto et al. * made similar assumptions than Nagano s, in particular: de dx dep = de dx loss * F. Kakimoto et al., Nucl. Instr. Meth. A 372 (1996) 527 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

29 3. MC analysis: Kakimoto s experiment Simulation results for a simple geometry * Geometrical details are not relevant *F. Blanco et al., Phys. Lett. A 345 (2005) 355 F. Arqueros et al., New J. Phys. 11 (2009) Obs. volume R ~ 10 cm J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

30 3. MC analysis: Kakimoto s experiment Corrections are larger than 25% at high electron energy! Energy (MeV) Correction to FY +6% +25% +28% +29% J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

31 3. MC analysis: Lefeuvre s experiment Lefeuvre et al. * performed a GEANT simulation to obtain: a) Contribution of high- energy secondaries b) Acceptance <Ω> Electron scattering by the lead walls of the chamber has an important role * G. Lefeuvre et al., Nucl. Instr. Meth. A 578 (2007) 78 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

32 3. MC analysis: Lefeuvre s experiment Simulation results for a simple geometry assuming R = 4 cm The effect of scattering by the chamber walls was estimated using CASINO2.42 Energy (MeV) Correction to FY +7% +8% J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

33 4. Comparison of results J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

34 4. Comparison of results: table Absolute FY values normalized to 337 nm, 800 hpa and 293 K J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

35 4. Comparison of results: table J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

36 4. Comparison of results: concluding remarks Most measurements lead to Y 337 ~ 6.5 ph/mev, except for those of MACFLY and the preliminary result of AIRFLY * Discrepancies larger than uncertainties: error in E dep should be considered Proposed corrections are non-negligible, in particular when authors assume: (de/dx) dep = (de/dx) loss * M. Ave et al., Nucl. Instr. Meth. A 597 (2008) 55 J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

37 4. Comparison of absolute FY values Normalized FY using calculations of authors Y 337 (ph/mev) Kakimoto Lefeuvre FLASH 6.5 ph/mev Nagano MACFLY AirLight E (MeV) J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

38 4. Comparison of absolute FY values Normalized FY after applying corrections Y 337 (ph/mev) Kakimoto Lefeuvre FLASH 6.5 ph/mev Nagano MACFLY AirLight E (MeV) J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

39 4. Comparison of absolute FY values Normalized FY using calculations of authors AirLight <Y 337 > = 6.42 ph/mev Χ 2 /ndg = 1.69 FLASH MACFLY Lefeuvre Nagano Theoretical value (7.5 ph/mev) Kakimoto Y 337 (ph/mev) J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

40 4. Comparison of absolute FY values Normalized FY after applying corrections AirLight <Y 337 > = 6.74 ph/mev Χ 2 /ndg = 1.27 FLASH MACFLY Lefeuvre Nagano Theoretical value (7.5 ph/mev) Kakimoto Y 337 (ph/mev) J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

41 Thanks! J. Rosado et al, 7th AFW, Coimbra, Portugal, September of

Average value of available measurements of the absolute air-fluorescence yield

Average value of available measurements of the absolute air-fluorescence yield arxiv:1103.2022v1 [astro-ph.im] 10 Mar 2011 Average value of available measurements of the absolute air-fluorescence yield J. Rosado, F. Blanco, F. Arqueros Departamento de Física Atómica, Molecular y

More information

arxiv: v1 [astro-ph] 30 Jul 2008

arxiv: v1 [astro-ph] 30 Jul 2008 arxiv:0807.4824v1 [astro-ph] 30 Jul 2008 THE AIR-FLUORESCENCE YIELD F. Arqueros, F. Blanco, D. Garcia-Pinto, M. Ortiz and J. Rosado Departmento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias

More information

Theore&cal evalua&on of fluorescence emission and energy deposi&on in air generated by electrons

Theore&cal evalua&on of fluorescence emission and energy deposi&on in air generated by electrons Theore&cal evalua&on of fluorescence emission and energy deposi&on in air generated by electrons Fernando Arqueros Universidad Complutense de Madrid 0 Introduc)on Rela)ve intensi)es Outline The role of

More information

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield arxiv:1207.2913v1 [astro-ph.im] 12 Jul 2012 On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield J. Rosado, P. Gallego, D. García-Pinto, F. Blanco and

More information

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield EPJ Web of Conferences 53, 10001 (2013) DOI: 10.1051/epjconf/20135310001 C Owned by the authors, published by EDP Sciences, 2013 On the energy deposition by electrons in air and the accurate determination

More information

The air fluorescence yield. Fernando Arqueros Universidad Complutense de Madrid Spain

The air fluorescence yield. Fernando Arqueros Universidad Complutense de Madrid Spain The air fluorescence yield Fernando Arqueros Universidad Complutense de Madrid Spain XLIII rd Rencontres de Moriond: Electroweak Interactions and Unified Theories La Thuile, Aosta Valley, Italy. March

More information

Impact of the Fluorescence Yield selection on the reconstructed shower parameters

Impact of the Fluorescence Yield selection on the reconstructed shower parameters Impact of the Fluorescence Yield selection on the reconstructed shower parameters J. R. Vázquez, D. García Pinto and F. Arqueros Universidad Complutense de Madrid 1 - Introduction Outline - Impact of the

More information

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases Paolo Privitera 5th Fluorescence Workshop 7 th Air Fluorescence El Escorial Workshop - Madrid, Spain September 22-24,

More information

Study of Number of photons at axis Shower with different de/dx and Fluorescence Yield

Study of Number of photons at axis Shower with different de/dx and Fluorescence Yield Study of Number of photons at axis Shower with different de/dx and Fluorescence Yield Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP, Brazil E-mail: toderocj@ufabc.edu.br

More information

arxiv:astro-ph/ v2 19 Jun 2006

arxiv:astro-ph/ v2 19 Jun 2006 The yield of air fluorescence induced by electrons F. Arqueros, F. Blanco, A. Castellanos, M. Ortiz, J. Rosado arxiv:astro-ph/0604498v2 19 Jun 2006 Departamento de Física Atómica, Molecular y Nuclear,

More information

arxiv:astro-ph/ v1 4 Dec 2006

arxiv:astro-ph/ v1 4 Dec 2006 Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments arxiv:astro-ph/0611v1 4 Dec 006 P. Colin a d 1, A. Chukanov b, V. Grebenyuk b, D. Naumov b e, P.

More information

Ionizing radiation produces tracks defined by the geometry of the energy deposition events. An incident ion loses energy by Coulombic interactions

Ionizing radiation produces tracks defined by the geometry of the energy deposition events. An incident ion loses energy by Coulombic interactions Track Structure Ionizing radiation produces tracks defined by the geometry of the energy deposition events. An incident ion loses energy by Coulombic interactions with electrons of the medium. These primary

More information

AIRFLY: Measurement of the Air Fluorescence induced by electrons

AIRFLY: Measurement of the Air Fluorescence induced by electrons AIRFLY: Measurement of the Air Fluorescence induced by electrons Valerio Verzi INFN Sezione di Roma II For the Airfly collaboration 9 th Topical Seminar on Innovative Particle and Radiation Detectors 23-26

More information

Passage of particles through matter

Passage of particles through matter Passage of particles through matter Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University September 11, 2017 Delta rays During ionization, the energy is transferred to electrons

More information

Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm.

Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm. Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm. G. Lefeuvre a1, P. Gorodetzky a2, J. Dolbeau a, T. Patzak a, P. Salin a a APC - AstroParticule et Cosmologie, CNRS

More information

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 597 (28) 1 22 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

FLASH. FLuorescence in Air from SHowers (SLAC E-165) Pisin Chen SLAC. Report to DOE HEP Review SLAC, June 2-4, 2004

FLASH. FLuorescence in Air from SHowers (SLAC E-165) Pisin Chen SLAC. Report to DOE HEP Review SLAC, June 2-4, 2004 FLASH FLuorescence in Air from SHowers (SLAC E-165) Pisin Chen SLAC Report to DOE HEP Review SLAC, June 2-4, 2004 Fluorescence from Air in Showers (FLASH) J. Belz 1, D. Bergman 5, Z. Cao 2, F.Y. Chang

More information

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A

ARTICLE IN PRESS. Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 597 (2008) 41 45 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

arxiv: v2 [astro-ph] 13 Mar 2008

arxiv: v2 [astro-ph] 13 Mar 2008 arxiv:81.2v2 [astro-ph] 1 Mar 28 Altitude dependence of fluorescence light emission by extensive air showers Abstract B. Keilhauer a, J. Blümer a,b R. Engel b H.O. Klages b a Universität Karlsruhe, Institut

More information

Interaction of ion beams with matter

Interaction of ion beams with matter Interaction of ion beams with matter Introduction Nuclear and electronic energy loss Radiation damage process Displacements by nuclear stopping Defects by electronic energy loss Defect-free irradiation

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

Dead Layer and Active Volume Determination for GERDA Phase II

Dead Layer and Active Volume Determination for GERDA Phase II Dead Layer and Active Volume Determination for GERDA Phase II Björn Lehnert on behalf of the GERDA Collaboration DPG Spring Meeting 05/02/2013 Dresden Institut für Kern- und Teilchenphysik Dead Layer (DL)

More information

A measurement of the air fluorescence yield

A measurement of the air fluorescence yield Nuclear Instruments and Methods in Physics Research A 372 (1996) 527-533 A measurement of the air fluorescence yield F. Kakimoto a, E.C. Loh b, M. Nagano c.*, H. Okuno d, M. Teshima c, S. Ueno a a Department

More information

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

More information

Ion, electron and photon interactions with solids: Energy deposition, sputtering and desorption

Ion, electron and photon interactions with solids: Energy deposition, sputtering and desorption Ion, electron and photon interactions with solids: Energy deposition, sputtering and desorption Jørgen Schou Department of Optics and Plasma Research, Risø National Laboratory, DK-4000 Roskilde, Denmark.

More information

Application of Birks' law of scintillator nonlinearity in Geant4. Alexander Tadday Kirchhoff Institute for Physics Heidelberg University

Application of Birks' law of scintillator nonlinearity in Geant4. Alexander Tadday Kirchhoff Institute for Physics Heidelberg University Alexander Tadday Alexander - IRTG Tadday Meeting - IRTG - Heidelberg Meeting - 05.11.20 Application of Birks' law of scintillator nonlinearity in Geant4 Alexander Tadday Kirchhoff Institute for Physics

More information

A Geant4 validation study for the ALICE experiment at the LHC

A Geant4 validation study for the ALICE experiment at the LHC A Geant4 validation study for the ALICE experiment at the LHC Kevin Nicholas Barends Department of Physics University of Cape Town Supervisor: Dr Alexander Kalweit Co-supervisor: Dr Sandro Wenzel 04 August

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School

Physics of Particle Beams. Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School Physics of Particle Beams Hsiao-Ming Lu, Ph.D., Jay Flanz, Ph.D., Harald Paganetti, Ph.D. Massachusetts General Hospital Harvard Medical School PTCOG 53 Education Session, Shanghai, 2014 Dose External

More information

CCD readout of GEM-based neutron detectors

CCD readout of GEM-based neutron detectors Nuclear Instruments and Methods in Physics Research A 478 (2002) 357 361 CCD readout of GEM-based neutron detectors F.A.F. Fraga a, *, L.M.S. Margato a, S.T.G. Fetal a, M.M.F.R. Fraga a, R. Ferreira Marques

More information

Monte Carlo radiation transport codes

Monte Carlo radiation transport codes Monte Carlo radiation transport codes How do they work? Michel Maire (Lapp/Annecy) 16/09/2011 introduction to Monte Carlo radiation transport codes 1 Outline From simplest case to complete process : Decay

More information

New Measurements of ψ(3770) Resonance Parameters & DD-bar Cross Section at BES-II & CLEO-c

New Measurements of ψ(3770) Resonance Parameters & DD-bar Cross Section at BES-II & CLEO-c New Measurements of ψ(3770) Resonance Parameters & DD-bar Cross Section at BES-II & CLEO-c The review talk is based on the talks given at ICHEP 04 by Anders Ryd, Ian Shipsey, Gang Rong 1 Outline Introduction

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

Transition Radiation Detector for GlueX

Transition Radiation Detector for GlueX Transition Radiation Detector for GlueX Test with Argon S.Furletov, L. Pentchev Jefferson Lab GlueX Collaboration Meeting Feb 19, 2016 Outline Test setup in Hall D Monte Carlo simulation First results

More information

Monte Carlo radiation transport codes

Monte Carlo radiation transport codes Monte Carlo radiation transport codes How do they work? Michel Maire (Lapp/Annecy) 23/05/2007 introduction to Monte Carlo radiation transport codes 1 Decay in flight (1) An unstable particle have a time

More information

Chapter V: Cavity theories

Chapter V: Cavity theories Chapter V: Cavity theories 1 Introduction Goal of radiation dosimetry: measure of the dose absorbed inside a medium (often assimilated to water in calculations) A detector (dosimeter) never measures directly

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Detectors for High Energy Physics

Detectors for High Energy Physics Detectors for High Energy Physics Ingrid-Maria Gregor, DESY DESY Summer Student Program 2017 Hamburg July 26th/27th Disclaimer Particle Detectors are very complex, a lot of physics is behind the detection

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 2 September 1999 GEANT4 SIMULATION OF ENERGY LOSSES OF SLOW HADRONS V.N. Ivanchenko Budker Institute for Nuclear Physics, Novosibirsk, Russia S. Giani, M.G. Pia

More information

A new detector for neutron beam monitoring

A new detector for neutron beam monitoring A new detector for neutron beam monitoring European Organization for Nuclear Research (CERN), Geneva, Switzerland in collaboration with Commissariat à l Energie Atomique (CEA), Saclay, France, Instituto

More information

On the track of the dark forces. A.J. Krasznahorkay Inst. for Nucl. Res., Hung. Acad. of Sci. (ATOMKI)

On the track of the dark forces. A.J. Krasznahorkay Inst. for Nucl. Res., Hung. Acad. of Sci. (ATOMKI) On the track of the dark forces A.J. Krasznahorkay Inst. for Nucl. Res., Hung. Acad. of Sci. (ATOMKI) Outline Introduction: the light dark matter Previous results and new plans The internal pair creation

More information

Physics 100 PIXE F06

Physics 100 PIXE F06 Introduction: Ion Target Interaction Elastic Atomic Collisions Very low energies, typically below a few kev Surface composition and structure Ion Scattering spectrometry (ISS) Inelastic Atomic Collisions

More information

Two Experimental Techniques Yielding Different Descriptions of Quenching

Two Experimental Techniques Yielding Different Descriptions of Quenching Two Experimental Techniques Yielding Different Descriptions of Quenching a very personal view by Andreas Ulrich with real work done by: Thomas Dandl, Thomas Heindl, and Andrei Morozov * and a lot of help

More information

CRaTER Science Requirements

CRaTER Science Requirements CRaTER Science Requirements Lunar Reconnaissance Orbiter CRaTER Preliminary Design Review Justin Kasper (CRaTER Proj. Sci.) Outline Energy deposition Classical ionizing radiation Nuclear fragmentation

More information

Simulation of Energy Loss Straggling Maria Physicist January 17, 1999

Simulation of Energy Loss Straggling Maria Physicist January 17, 1999 Simulation of Energy Loss Straggling Maria Physicist January 17, 1999 i This text should be read with a pinch of salt 1. ntroduction Due to the statistical nature of ionisation energy loss, large fluctuations

More information

arxiv:astro-ph/ v3 29 Nov 2003

arxiv:astro-ph/ v3 29 Nov 2003 Measurements of atmospheric muon spectra at mountain altitude arxiv:astro-ph/0205427v3 29 Nov 2003 T. Sanuki a,, M. Fujikawa a, K. Abe a, K. Anraku a,1, Y. Asaoka a,2, H. Fuke a, S. Haino a, M. Imori a,

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors J.L. Tain Jose.Luis.Tain@ific.uv.es http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Scintillation detector: SCINTILLATION MATERIAL LIGHT-GUIDE

More information

arxiv:nucl-ex/ v1 21 Dec 2004

arxiv:nucl-ex/ v1 21 Dec 2004 φ meson production in d + Au collisions at s NN = 00 GeV arxiv:nucl-ex/041048v1 1 Dec 004 1. Introduction Dipali Pal for the PHENIX collaboration Department of Physics & Astronomy, Vanderbilt University,

More information

Simulation study of scintillatorbased

Simulation study of scintillatorbased Simulation study of scintillatorbased calorimeter Hiroyuki Matsunaga (Tsukuba) For GLD-CAL & ACFA-SIM-J groups Main contributors: M. C. Chang, K. Fujii, T. Takeshita, S. Yamauchi, A. Nagano, S. Kim Simulation

More information

Measurement of the e + e - π 0 γ cross section at SND

Measurement of the e + e - π 0 γ cross section at SND Measurement of the e + e - π 0 γ cross section at SND L.Kardapoltsev (for SND collaboration) Budker Institute of Nuclear Physics, Novosibirsk state university PhiPsi 2017, Mainz, Germany June 2017 Outline

More information

Neutron pulse height analysis (R405n)

Neutron pulse height analysis (R405n) Neutron pulse height analysis (R405n) Y. Satou April 6, 2011 Abstract A pulse height analysis was made for the neutron counter hodoscope used in R405n. By normalizing the pulse height distributions measured

More information

Chapiter VII: Ionization chamber

Chapiter VII: Ionization chamber Chapiter VII: Ionization chamber 1 Types of ionization chambers Sensitive volume: gas (most often air direct measurement of exposure) ionization chamber Sensitive volume: semiconductor (silicon, germanium,

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Fig. 11. Signal distributions for 20 GeV * particles. Shown are the measured Éerenkov (a) and scintillation (b) signal distributions as well as the

Fig. 11. Signal distributions for 20 GeV * particles. Shown are the measured Éerenkov (a) and scintillation (b) signal distributions as well as the Fig. 11. Signal distributions for 20 GeV * particles. Shown are the measured Éerenkov (a) and scintillation (b) signal distributions as well as the signal distribution obtained by combining the two signals

More information

GEANT4 simulation of the testbeam set-up for the ALFA detector

GEANT4 simulation of the testbeam set-up for the ALFA detector GEANT4 simulation of the testbeam set-up for the detector V. Vorobel a and H. Stenzel b a Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic b II. Physikalisches Institut,

More information

Geant4 simulations of the lead fluoride calorimeter

Geant4 simulations of the lead fluoride calorimeter Geant4 simulations of the lead fluoride calorimeter A.A. Savchenko a, *, A.A. Tishchenko a, S.B. Dabagov a,b, A. Anastasi b,c, G. Venanzoni b, M.N. Strikhanov a (et al.) a National Research Nuclear University

More information

Particle production vs. energy: how do simulation results match experimental measurements?

Particle production vs. energy: how do simulation results match experimental measurements? Particle production vs. energy: how do simulation results match experimental measurements? Sezione INFN Milano Bicocca E-mail: maurizio.bonesini@mib.infn.it This talk is about the available hadroproduction

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

Characterizations and Diagnostics of Compton Light Source

Characterizations and Diagnostics of Compton Light Source Characterizations and Diagnostics of Compton Light Source Advance Light Source (ALS) (LBNL) Ying K. Wu Duke Free Electron Laser Laboratory (DFELL) Acknowledgments: DFELL: B. Jia, G. Swift, H. Hao, J. Li,

More information

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration The HARP Experiment (INFN-Ferrara) on behalf of the HARP Collaboration New Views in Particle Physics Outline Goals for a HAdRon Production experiment Example: KEK PS Neutrino beam-line Detector layout

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

PHI PSI 08. Federico Nguyen. International Workshop on e+e- collisions from Phi to Psi

PHI PSI 08. Federico Nguyen. International Workshop on e+e- collisions from Phi to Psi PHI PSI 08 Laboratori Nazionali di Frascati (Roma), April 8 th 008 International Workshop on e+e- collisions from Phi to Psi A precise new KLOE measurement of F! with ISR and extraction of a µ!! for [0.35,0.95]

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling

Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling Session 3: Probing the sub-disciplines: what do we know? what do we need to know? The physics The chemistry - Modelling Michael Dingfelder Department of Physics, East Carolina University Mailstop #563

More information

Queen s University PHYS 352

Queen s University PHYS 352 Page 1 of 5 Queen s University Faculty of Applied Science; Faculty of Arts and Science Department of Physics, Engineering Physics and Astronomy PHYS 352 Measurement, Instrumentation and Experiment Design

More information

COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015

COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015 COLUMNAR RECOMBINATION JIN LI INSTITUTE FOR BASIC SCIENCE CYGNUS2015 CONFERENCE JUN.3, 2015 1 The dark matter in the Universe Dark Matter is stable, non-baryonic, nonrelavistic, and interactes gravitationally

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

Plasma Optimization in a Multicusp Ion Source by Using a Monte Carlo Simulation

Plasma Optimization in a Multicusp Ion Source by Using a Monte Carlo Simulation Journal of the Korean Physical Society, Vol. 63, No. 7, October 2013, pp. 0 0 Plasma Optimization in a Multicusp Ion Source by Using a Monte Carlo Simulation M. Hosseinzadeh and H. Afarideh Nuclear Engineering

More information

The Multiple Muon Charge Ratio in MINOS Far Detector

The Multiple Muon Charge Ratio in MINOS Far Detector The Multiple Muon Charge Ratio in MINOS Far Detector C. M. Castromonte and R. A. Gomes Instituto de Física - Universidade Federal de Goiás, Brazil M. C. Goodman and P. Schreiner Argonne National Laboratory,

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Gaseous Detectors. Bernhard Ketzer University of Bonn

Gaseous Detectors. Bernhard Ketzer University of Bonn Gaseous Detectors Bernhard Ketzer University of Bonn XIV ICFA School on Instrumentation in Elementary Particle Physics LA HABANA 27 November - 8 December, 2017 Plan of the Lecture 1. Introduction 2. Interactions

More information

Improving Scintillation Response in Xenon and Implementation in GEANT4

Improving Scintillation Response in Xenon and Implementation in GEANT4 Improving Scintillation Response in Xenon and Implementation in GEANT4 UC Davis and LLNL Faculty Mani Tripathi Bob Svoboda Postdocs and Research Scientists Matthew Szydagis Kareem Kazkaz Undergraduates

More information

Summer Student Project Report

Summer Student Project Report European Organization for Nuclear Research Summer Student Project Report Vlasios Vasileiou CERN EP/NOE Aristotle University of Thessaloniki Vlasios.Vasileiou@cern.ch August 2002 Supervisors: Igor Garcia

More information

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams 22 nd International Symposium on Plasma Chemistry July 5-10, 2015; Antwerp, Belgium Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and

More information

Energy dependence of W values for protons in hydrogen

Energy dependence of W values for protons in hydrogen Energy dependence of W values for protons in hydrogen G.A.Korolev,* G.D.Alkhazov, A.V.Dobrovolsky, A.V.Khanzadeev, A.A.Vorobyov Petersburg Nuclear Physics Institute of National Research Centre Kurchatov

More information

Simulations of synchrotron-radiation-induced electron production in the CESR vacuum chamber wall

Simulations of synchrotron-radiation-induced electron production in the CESR vacuum chamber wall 45th ICFA Beam Dynamic Workshop June 8 12, 2009, Cornell University, Ithaca New York Simulations of synchrotron-radiation-induced electron production in the CESR vacuum chamber wall Jim Crittenden Stephen

More information

Monte Carlo modelling of a NaI(Tl) scintillator detectors using MCNP simulation code

Monte Carlo modelling of a NaI(Tl) scintillator detectors using MCNP simulation code Journal of Materials and Environmental Sciences ISSN : 2028-2508 Copyright 2017, University of Mohammed Premier Oujda Morocco J. Mater. Environ. Sci., 2017 Volume 8, Issue 12, Page 4560-4565 http://www.jmaterenvironsci.com

More information

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center Michal Mocko G. Muhrer, F. Tovesson, J. Ullmann International Topical Meeting on Nuclear Research Applications and Utilization

More information

> 12 GeV. (a) Value 43% 7-12 GeV 11% 13% 11% 9% 8% (b) Uncertainty. narrow resonan ces 14% 31% 11% ρ 25%

> 12 GeV. (a) Value 43% 7-12 GeV 11% 13% 11% 9% 8% (b) Uncertainty. narrow resonan ces 14% 31% 11% ρ 25% Measurement of R Between 2-5 GeV Derrick Kong University of Hawaii We have obtained measurements of the total cross section for e + e? annihilation into hadronic nal states for 6 energy points (2.6, 3.2,

More information

The limitations of Lindhard theory to predict the ionization produced by nuclear recoils at the lowest energies

The limitations of Lindhard theory to predict the ionization produced by nuclear recoils at the lowest energies The limitations of Lindhard theory to predict the ionization produced by nuclear recoils at the lowest energies model energy given to electrons = ionization + scintillation in e.g. liquid nobles see also

More information

arxiv:astro-ph/ v1 6 Mar 2007

arxiv:astro-ph/ v1 6 Mar 2007 Measurement of the pressure dependence of air fluorescence emission induced by electrons arxiv:astro-ph/0703132v1 6 Mar 2007 AIRFLY Collaboration: M. Ave a, M. Bohacova b, B. Buonomo c, N. Busca a, L.

More information

TECHNIQUE OF MEASURING THE FIRST IONIZATION COEFFICIENT IN GASES

TECHNIQUE OF MEASURING THE FIRST IONIZATION COEFFICIENT IN GASES 2011 International Nuclear Atlantic Conference - INAC 2011 Belo Horizonte,MG, Brazil, October 24-28, 2011 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-04-5 TECHNIQUE OF MEASURING

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

arxiv:physics/ v1 3 Aug 2006

arxiv:physics/ v1 3 Aug 2006 Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon arxiv:physics/6834 v1 3 Aug 26 K. Ni, E. Aprile, K.L. Giboni, P. Majewski, M. Yamashita Physics Department and Columbia Astrophysics Laboratory

More information

Silver Thin Film Characterization

Silver Thin Film Characterization Silver Thin Film Characterization.1 Introduction Thin films of Ag layered structures, typically less than a micron in thickness, are tailored to achieve desired functional properties. Typical characterization

More information

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data Indian Journal of Pure & Applied Physics Vol. 54, Februray 2016, pp. 137-143 Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental

More information

The GEM scintillation in He-CF 4, Ar-CF 4, Ar-TEA and Xe-TEA mixtures

The GEM scintillation in He-CF 4, Ar-CF 4, Ar-TEA and Xe-TEA mixtures The GEM scintillation in He-CF 4, Ar-CF 4, Ar-TEA and Xe-TEA mixtures M. M. Fraga, F. A. F. Fraga, S. T. G. Fetal, L. M. S. Margato, R. Ferreira Marques and A. J. P. L. Policarpo LIP- Coimbra, Dep. Física,

More information

The KASCADE-Grande Experiment

The KASCADE-Grande Experiment The KASCADE-Grande Experiment O. Sima 1 for the KASCADE-Grande Collaboration 2 1 University of Bucharest, Romania 2 https://web.ikp.kit.edu/kascade/ CSSP14 Sinaia 2014 Overview 1. KASCADE-Grande experimental

More information

Measurements of the Fluorescence Light Yield in Electromagnetic Showers

Measurements of the Fluorescence Light Yield in Electromagnetic Showers Measurements of the Fluorescence Light Yield in Electromagnetic Showers K. Reil, P. Chen, C. Field, C. Hast, R. Iverson, J.S.T. Ng, A. Odian, H. Vincke, and D. Walz SLAC, Stanford, CA 9425, USA J. Belz,

More information

Past searches for kev neutrinos in beta-ray spectra

Past searches for kev neutrinos in beta-ray spectra Past searches for kev neutrinos in beta-ray spectra Otokar Dragoun Nuclear Physics Institute of the ASCR Rez near Prague dragoun@ujf.cas.cz supported by GAČR, P203/12/1896 The ν-dark 2015 Workshop TUM

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Particle-Matter Interactions

Particle-Matter Interactions Particle-Matter Interactions to best detect radiations and particles we must know how they behave inside the materials 8/30/2010 PHYS6314 Prof. Lou 1 Stable Particles Visible to a Detector Hadrons (Baryon/Meson)

More information

Energy Spectrum of Ultra-High-Energy Cosmic Rays Measured by The Telescope Array

Energy Spectrum of Ultra-High-Energy Cosmic Rays Measured by The Telescope Array Energy Spectrum of Ultra-High-Energy Cosmic Rays Measured by The Telescope Array Graduate School of Science, Osaka City University E-mail: yt@sci.osaka-cu.ac.jp Tareq AbuZayyad, Dmitri Ivanov, Gordon Thomson

More information

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Vyacheslav Ivanov *1, Evgeny Solodov 1, Evgeny Kozyrev 1, and Georgiy Razuvaev 1 1 Budker Institute of Nuclear Physics,

More information

? Simulation. of PICASSO detectors. Marie-Hélène Genest - Université de Montréal

? Simulation. of PICASSO detectors. Marie-Hélène Genest - Université de Montréal ? Simulation of PICASSO detectors Marie-Hélène Genest - Université de Montréal On behalf of the PICASSO Collaboration (Montréal, Queen s, Indiana South Bend, Prague) 2006 Simulation of PICASSO detectors

More information