Tuesday, January 25, Phobos, a moon of mars

Size: px
Start display at page:

Download "Tuesday, January 25, Phobos, a moon of mars"

Transcription

1 Phobos, a moon of mars

2 Phobos, a moon of mars

3 A Polar Ring Galaxy

4 Neutrinos

5 The Sun s Power Source Mid-19th Century Debate: Darwin Lord Kelvin Darwin: Earth must be at least 300 Million years old to account for geological and evolutionary changes evident in the fossil record. Lord Kelvin: If the Sun was powered by gravitational contraction, its age could not exceed 30 Million years. Today we know that Darwin was correct; Lord Kelvin did not know about nuclear fusion!

6 Steps 1905: A. Einstein proposed the equivalence of mass and energy: E = mc : F. W. Aston: measured the mass of the Helium nucleus: less than 4 Hyrdogen nuclei! 1920: Arthur Eddington proposes that fusion of Hydrogen into Helium powers the Sun 1938: Hans Bethe identified the actual nuclear reaction chains for this process.

7 Why does E=mc 2 work c is a very large number, c 2 even larger! The total worldwide energy consumption for 2010 was around 500 exajoules (exa=10 18!). So Joules. 1 Joule/second=a Watt. So your hairdryer = 1000 J/s. The mass energy equivalency of all this? 5563kg, or about 6 tons.

8 Why does E=mc 2 work 6 tons of gravel c is a very large number, c 2 even larger! The total worldwide energy consumption for 2010 was around 500 exajoules (exa=10 18!). So Joules. 1 Joule/second=a Watt. So your hairdryer = 1000 J/s. The mass energy equivalency of all this? 5563kg, or about 6 tons.

9 Sun s Layers

10 And composition 0.8% 28% 70% H He O C Fe 0.3% 0.2%

11 Making Fusion Work Nuclear Fusion: heavier elements made by fusing lighter ones All the elements (like Hydrogen) are ionized: i.e. stripped of their electrons. Nuclei (e.g. two protons) repel each other, as do all charged particles. Get them close enough, and the strong force takes over, binding them.

12 Making Fusion Work Nuclear Fusion: heavier elements made by fusing lighter ones All the elements (like Hydrogen) are ionized: i.e. stripped of their electrons. Nuclei (e.g. two protons) repel each other, as do all charged particles. Get them close enough, and the strong force takes over, binding them.

13 Making Fusion Work Nuclear Fusion: heavier elements made by fusing lighter ones All the elements (like Hydrogen) are ionized: i.e. stripped of their electrons. Nuclei (e.g. two protons) repel each other, as do all charged particles. Get them close enough, and the strong force takes over, binding them.

14 Eddington on heat To overcome the strong repulsive forces of electromagnetism, you need fast moving nuclei: very high temperatures. But quantum mechanics allows you to tunnel through the barrier. I am aware that many critics consider the stars are not hot enough. The critics lay themselves open to an obvious retort; we tell them to go and find a hotter place.

15 Not all nuclear created equal

16 The simplest recipe

17 The Neutron and neutrino A neutral particle adds mass, but not charge, to a nucleus. E.g. Helium has two protons, two neutrons. Free neutrons are NOT stable: n p + + e - +! e ("-decay) p + n + e + +! e (inverse "-decay) νe is a neutrino, nearly massless, almost noninteracting. Travels near the speed of light. 1930: Wolfgang Pauli Postulated, to explain missing energy in β decays.

18 Solar neutrinos Neutrinos do not have charge, and very little mass. They interact almost entirely through the weak force. Which is weak: the electromagnetic force ;). Every conversion of 4H 1He liberates 2 neutrinos, which escape the sun directly. If we can detect them, we can see deep inside the sun!

19 Interaction Problem: A hundred billion neutrinos from the sun pass through your thumbnail every second, and you don t notice! To block a neutrino with a 50% probability, you d need to pass it through 1 light-year of lead.

20 Homestake Mine: 100,000 gallons of dry-cleaning fluid, 1960 s, Ray Davis Underground, to prevent contamination by other radiation. Chlorine gets changed into argon. Argon collected, and counted. Results: only 1/3 of the expected neutrinos found!

21 Homestake Mine: 100,000 gallons of dry-cleaning fluid, 1960 s, Ray Davis Underground, to prevent contamination by other radiation. Chlorine gets changed into argon. Argon collected, and counted. Results: only 1/3 of the expected neutrinos found!

22 Missing Neutrinos but Only one flavor of neutrinos detected

23 From the sun? Super Kamiokande can get a direction for each neutrino event. A 500 day exposure centered on the sun shows that s where they originate.

24 Many experiments confirm: roughly 1/3 as many as theory of the Sun predicts.

25 Super Kamiokande A Japanese experiment now detects all three flavors of neutrinos: missing solar neutrinos found! Electron neutrinos have changed into muon and pion neutrinos on their trip from the sun. Which means: Neutrinos have mass!

26 Neutrinos elsewhere Neutrinos have (tiny, but nonzero) mass: could they explain missing mass in the universe (the so-called Dark Matter problem)? The big-bang produced copious neutrinos: your body, right now, contains 10,000,000 relic neutrinos from the creation of the universe! Almost impossible to detect!

27 Supernova Neutrinos In 1987, a Supernova exploded in The large Magellanic Cloud. Three hours before the light of the SN arrived, three separate neutrino observatories detected a burst of neutrinos (24 observed events, total!). First direct neutrino observation from outside the solar system!

28 Betelgeuse: supernova in <100,000 yrs (not in 2012). Harmless to earth, but excellent for studying neutrinos, SN ejecta, etc.

29 Assignments Read: Popular/secrets.htm Watch: v=md1ckuqp04q Note: Link up from Luminis website default page.

AST 100 General Astronomy: Stars & Galaxies

AST 100 General Astronomy: Stars & Galaxies AST 100 General Astronomy: Stars & Galaxies On to Our Nearest Star: the SUN ANNOUNCEMENTS PLEASE CHANGE CLICKER FREQUENCY TO 26 De-Mystifying science The case of the Sun Ancient philosophers/scientists

More information

Lecture 12: Making the Sun Shine Readings: Sections 18-1, 18-4 and Box 18-1

Lecture 12: Making the Sun Shine Readings: Sections 18-1, 18-4 and Box 18-1 Lecture 12: Making the Sun Shine Readings: Sections 18-1, 18-4 and Box 18-1 Key Ideas Stars shine because they are hot need an internal energy source to stay hot Kelvin-Helmholtz Mechanism Energy from

More information

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star

The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star The Sun Closest star to Earth - only star that we can see details on surface - easily studied Assumption: The Sun is a typical star Why is the Sun hot and bright? Surface Temperature of the Sun: T =

More information

Limb Darkening: The Inside of the Sun: What keeps the Sun shining? What keeps the Sun from collapsing? Gravity versus Pressure. Mechanical Structure

Limb Darkening: The Inside of the Sun: What keeps the Sun shining? What keeps the Sun from collapsing? Gravity versus Pressure. Mechanical Structure Reading: Chapter 16 (next week: Chapter 17) Exam 1: This Thursday, February 8 - bring a #2 pencil! ESSAY, Review Sheet and Practice Exam Posted Astro 150 Spring 2018: Lecture 9 page 1 Last time: Our Sun

More information

Reading Clicker Q 2/7/17. Topics for Today and Thur. ASTR 1040: Stars & Galaxies

Reading Clicker Q 2/7/17. Topics for Today and Thur. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Solar granulation Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 7 Tues 7 Feb 2017 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur Consider Sun s energy

More information

Lifetime of Stars/ Fusion powers the stars 11 Oct

Lifetime of Stars/ Fusion powers the stars 11 Oct of Stars/ Fusion powers the stars 11 Oct Big questions Does the sun have a finite life or does it last forever? What powers the sun? Where does carbon come from? How long does the sun live? What happens

More information

ET: Astronomy 230 Section 1 MWF Astronomy Building. Outline. The Early Universe? HW1 due today!

ET: Astronomy 230 Section 1 MWF Astronomy Building. Outline. The Early Universe? HW1 due today! This Class (Lecture 5): From Atoms to Molecules to Clouds Next Class: Star Formation ET: Astronomy 230 Section 1 MWF 1400-1450 134 Astronomy Building HW1 due today! Outline What is life made of? We are

More information

The Sun = Typical Star

The Sun = Typical Star The Sun = Typical Star Some Properties Diameter - 109 times Earth s Volume - about 1,000,000 times Earth s Mass - about 300,000 times Earth s 99.8% of Solar System Density = Mass/Volume = 1.4 g/cm 3 The

More information

Neutrinos: What we ve learned and what we still want to find out. Jessica Clayton Astronomy Club November 10, 2008

Neutrinos: What we ve learned and what we still want to find out. Jessica Clayton Astronomy Club November 10, 2008 Neutrinos: What we ve learned and what we still want to find out Jessica Clayton Astronomy Club November 10, 2008 Neutrinos, they are very small, they have no charge and have no mass, and do not interact

More information

Solar Interior. Sources of energy for Sun Nuclear fusion Solar neutrino problem Helioseismology

Solar Interior. Sources of energy for Sun Nuclear fusion Solar neutrino problem Helioseismology Solar Interior Sources of energy for Sun Nuclear fusion Solar neutrino problem Helioseismology Solar Atmosphere Solar interior Solar facts Luminosity: 3.8x10 26 J/s Mass: 2.0x10 30 kg Composition: 73%

More information

Birth and Death of Stars. Birth of Stars. Gas and Dust Clouds. Astronomy 110 Class 11

Birth and Death of Stars. Birth of Stars. Gas and Dust Clouds. Astronomy 110 Class 11 Birth and Death of Stars Astronomy 110 Class 11 Birth of Stars Start in cloud of gas and dust Contraction and Fragmentation Gravitational collapse and heating Protostar and disk Main Sequence Star Gas

More information

What Powers the Stars?

What Powers the Stars? What Powers the Stars? In brief, nuclear reactions. But why not chemical burning or gravitational contraction? Bright star Regulus (& Leo dwarf galaxy). Nuclear Energy. Basic Principle: conversion of mass

More information

Stellar energy generation on the main sequence

Stellar energy generation on the main sequence Stellar energy generation on the main sequence Once fusion reactions begin at the center of a cloud of gas, we call the object a star. For the bulk of its lifetime, a star fuses hydrogen into helium in

More information

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity Weight of upper layers compresses lower layers Gravitational equilibrium: Energy provided by fusion maintains

More information

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law.

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. Fission & Fusion Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to understand

More information

High Mass Stars. Dr Ken Rice. Discovering Astronomy G

High Mass Stars. Dr Ken Rice. Discovering Astronomy G High Mass Stars Dr Ken Rice High mass star formation High mass star formation is controversial! May form in the same way as low-mass stars Gravitational collapse in molecular clouds. May form via competitive

More information

Forces and Nuclear Processes

Forces and Nuclear Processes Forces and Nuclear Processes To understand how stars generate the enormous amounts of light they produce will require us to delve into a wee bit of physics. First we will examine the forces that act at

More information

Some Good News. Announcements. Lecture 10 The Sun. How does the Sun shine? The Sun s Energy Source

Some Good News. Announcements. Lecture 10 The Sun. How does the Sun shine? The Sun s Energy Source Announcements Homework due today. Put your homework in the box NOW. Please STAPLE them if you have not done yet. Quiz#3 on Tuesday (Oct 5) Announcement at the end of this lecture. If you could not pick

More information

The Sun - II. Alexei Gilchrist

The Sun - II. Alexei Gilchrist The Sun - II Alexei Gilchrist Some resources http://www.nineplanets.org/sol.html The Universe: Secrets of the Sun video Search on youtube Secrets of the Sun (references are to clips here http://www.youtube.com/view_play_list?p=4eef5255d3eef425

More information

Nuclear Fusion. STEREO Images of Extreme UV Radia6on at 1 Million C

Nuclear Fusion. STEREO Images of Extreme UV Radia6on at 1 Million C Nuclear Fusion STEREO Images of Extreme UV Radia6on at 1 Million C 1 Fusion vs. Fission Fission is the breaking apart of a nucleus what occurs during radioac6ve decay naturally occurring and happens in

More information

The dying sun/ creation of elements

The dying sun/ creation of elements The dying sun/ creation of elements Homework 6 is due Thurs, 2 April at 6:00am OBAFGKM extra credit Angel: Lessons>Extra Credit Due 11:55pm, 31 March Final exam (new, later time) 6 May, 3:00-5:00, BPS

More information

Lecture 13: The Sun, and how stars work. Astronomy 111 Wednesday October 11, 2017

Lecture 13: The Sun, and how stars work. Astronomy 111 Wednesday October 11, 2017 Lecture 13: The Sun, and how stars work Astronomy 111 Wednesday October 11, 2017 Reminders Star party tomorrow night! Homework #6 due Monday How do stars work? What is a star? What is a star composed of?

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

More information

Agenda for Ast 309N, Sep. 6. The Sun s Core: Site of Nuclear Fusion. Transporting Energy by Radiation. Transporting Energy by Convection

Agenda for Ast 309N, Sep. 6. The Sun s Core: Site of Nuclear Fusion. Transporting Energy by Radiation. Transporting Energy by Convection Agenda for Ast 309N, Sep. 6 The Sun s Core: Site of Nuclear Fusion Feedback on card of 9/04 Internal structure of the Sun Nuclear fusion in the Sun (details) The solar neutrino problem and its solution

More information

Filling the intellectual Vacuum: Energy Production. Contenders: From early 1920s: probably fusion, but how?

Filling the intellectual Vacuum: Energy Production. Contenders: From early 1920s: probably fusion, but how? Life of Stars Filling the intellectual Vacuum: Contenders: Energy Production Gravitational contraction Radioactivity (1903) Annihilation (E=mc 2, 1905) of proton and electron Hydrogen to helium nuclear

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

ASTR Midterm 1 Phil Armitage, Bruce Ferguson

ASTR Midterm 1 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 1 Phil Armitage, Bruce Ferguson FIRST MID-TERM EXAM FEBRUARY 16 th 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

Selected Questions from Minute Papers. Outline - March 2, Stellar Properties. Stellar Properties Recap. Stellar properties recap

Selected Questions from Minute Papers. Outline - March 2, Stellar Properties. Stellar Properties Recap. Stellar properties recap Black Holes: Selected Questions from Minute Papers Will all the material in the Milky Way eventually be sucked into the BH at the center? Does the star that gives up mass to a BH eventually get pulled

More information

Fission & Fusion Movie

Fission & Fusion Movie Fission & Fusion Movie Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to

More information

N = R *! f p! n e! f l! f i! f c! L

N = R *! f p! n e! f l! f i! f c! L Astronomy 330 Drake Equation The class s first estimate is Frank Drake This class (Lecture 6): Stars Next Class: Star Formation Music: We are all made of Stars Moby Feb 5, 2009 Astronomy 330 N = R *! f

More information

The Sun Our Nearest Star The Sun is an average star in mass, lifetime, and energy output. We will look at in detail before studying stars in general

The Sun Our Nearest Star The Sun is an average star in mass, lifetime, and energy output. We will look at in detail before studying stars in general The Sun Our Nearest Star The Sun is an average star in mass, lifetime, and energy output. We will look at in detail before studying stars in general Some Properties Diameter - 09 times Earth s Volume -

More information

LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

! Exam 1 in this classroom in 1 week (Oct 1 st )! 40 Multiple choice questions! Will cover material up to and including today.!

! Exam 1 in this classroom in 1 week (Oct 1 st )! 40 Multiple choice questions! Will cover material up to and including today.! This Class (Lecture 12): Why does the Sun Shine? Next Class: Why is the Sun Yellow? HW5 due Monday Exam 1 next Friday!! Exam 1 in this classroom in 1 week (Oct 1 st )! 40 Multiple choice questions! Will

More information

Late stages of stellar evolution for high-mass stars

Late stages of stellar evolution for high-mass stars Late stages of stellar evolution for high-mass stars Low-mass stars lead a relatively peaceful life in their old age: although some may gently blow off their outer envelopes to form beautiful planetary

More information

The slides with white background you need to know. The slides with blue background just have some cool information.

The slides with white background you need to know. The slides with blue background just have some cool information. The slides with white background you need to know. The slides with blue background just have some cool information. The Big Bang cosmology the study of the origin, properties, processes, and evolution

More information

Life of stars, formation of elements

Life of stars, formation of elements Life of stars, formation of elements Recap life of sun Life of massive stars Creation of elements Formation of stars Profs. Jack Baldwin & Horace Smith will teach course for the remainder of the term to

More information

AST 301 Introduction to Astronomy

AST 301 Introduction to Astronomy AST 301 Introduction to Astronomy John Lacy RLM 16.332 471-1469 lacy@astro.as.utexas.edu Myoungwon Jeon RLM 16.216 471-0445 myjeon@astro.as.utexas.edu Bohua Li RLM 16.212 471-8443 bohuali@astro.as.utexas.edu

More information

LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

More information

Ryan Stillwell Paper: /10/2014. Neutrino Astronomy. A hidden universe. Prepared by: Ryan Stillwell. Tutor: Patrick Bowman

Ryan Stillwell Paper: /10/2014. Neutrino Astronomy. A hidden universe. Prepared by: Ryan Stillwell. Tutor: Patrick Bowman Neutrino Astronomy A hidden universe Prepared by: Ryan Stillwell Tutor: Patrick Bowman Paper: 124.129 Date: 10 October 2014 i Table of Contents 1. Introduction pg 1 1.1 Background pg 1 2. Findings & Discussion

More information

Correction to Homework

Correction to Homework Today: Chapter 10 Reading Next Week: Homework Due March 12 Midterm Exam: March 19 Correction to Homework #1: Diameter of eye: 2.5 cm #10: See Ch. 11 Office Hours Monday. 11AM -2 PM Help Sessions Available:

More information

Lec 7: Classification of Stars, the Sun. What prevents stars from collapsing under the weight of their own gravity? Text

Lec 7: Classification of Stars, the Sun. What prevents stars from collapsing under the weight of their own gravity? Text 1 Astr 102 Lec 7: Classification of Stars, the Sun What prevents stars from collapsing under the weight of their own gravity? Text Why is the center of the Sun hot? What is the source of the Sun s energy?

More information

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14 The Sun Chapter 14 The Role of the Sun in the Solar System > 99.9% of the mass Its mass is responsible for the orderly orbits of the planets Its heat is responsible for warming the planets It is the source

More information

Astronomy 1 Fall Reminder: When/where does your observing session meet? [See from your TA.]

Astronomy 1 Fall Reminder: When/where does your observing session meet? [See  from your TA.] Astronomy 1 Fall 2016 Reminder: When/where does your observing session meet? [See email from your TA.] Lecture 9, October 25, 2016 Previously on Astro-1 What is the Moon made of? How did the Moon form?

More information

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 21 Stellar Explosions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused

More information

10/20/2009. Giants, Dwarfs, and the Main Sequences. My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building. The Sun and the Stars

10/20/2009. Giants, Dwarfs, and the Main Sequences. My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building. The Sun and the Stars the The Sun and the Giants, Dwarfs, and the Main Sequences 10/20/2009 My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building the Outline 1 2 3 the Outline 1 2 3 the Solar Structure Interior structure

More information

Stellar Interiors Nuclear Energy ASTR 2110 Sarazin. Fusion the Key to the Stars

Stellar Interiors Nuclear Energy ASTR 2110 Sarazin. Fusion the Key to the Stars Stellar Interiors Nuclear Energy ASTR 2110 Sarazin Fusion the Key to the Stars Energy Source for Stars For Sun, need total energy E = L t Sun = L x (10 10 years) ~ 10 51 erg N atoms = / m p ~ 10 57 atoms

More information

Plasma Universe. The origin of CMB

Plasma Universe. The origin of CMB Plasma Universe As we go back in time, temperature goes up. T=2.73(1+z) K At z~1100, T~3000 K About the same temperature as M-dwarfs Ionization of hydrogen atoms H + photon! p + e - Inverse process: recombination

More information

Interactions. Laws. Evolution

Interactions. Laws. Evolution Lecture Origin of the Elements MODEL: Origin of the Elements or Nucleosynthesis Fundamental Particles quarks, gluons, leptons, photons, neutrinos + Basic Forces gravity, electromagnetic, nuclear Interactions

More information

ORIGIN OF THE ELEMENETS

ORIGIN OF THE ELEMENETS VISUAL PHYSICS ONLINE ORIGIN OF THE ELEMENETS Watch Video: The Origin of the Elements The ordinary matter in our universe (known as baryonic matter) is made up of 94 naturally occurring elements. It is

More information

Chapter 22: Cosmology - Back to the Beginning of Time

Chapter 22: Cosmology - Back to the Beginning of Time Chapter 22: Cosmology - Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Future of universe depends on the total amount of dark and normal matter Amount of matter

More information

Stellar Energy and Nucleosynthesis

Stellar Energy and Nucleosynthesis Stellar Energy and Nucleosynthesis Lecture 13 1 Orion Mosaic Orion in the Infrared Cornell imaging of Orion from SOFIA 19.7 mm (green) & 37 mm (red) 2 Orion Full OMC Prolyds 1 3 OMC Prolyds 2 HH 32 HH

More information

Chapter 14 Our Star Pearson Education, Inc.

Chapter 14 Our Star Pearson Education, Inc. Chapter 14 Our Star Basic Types of Energy Kinetic (motion) Radiative (light) Potential (stored) Energy can change type, but cannot be created or destroyed. Thermal Energy: the collective kinetic energy

More information

Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula.

Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula. Low mass stars Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Low mass stars Interstellar Cloud

More information

Lecture notes 8: Nuclear reactions in solar/stellar interiors

Lecture notes 8: Nuclear reactions in solar/stellar interiors Lecture notes 8: Nuclear reactions in solar/stellar interiors Atomic Nuclei We will henceforth often write protons 1 1p as 1 1H to underline that hydrogen, deuterium and tritium are chemically similar.

More information

Ay 1 Lecture 8. Stellar Structure and the Sun

Ay 1 Lecture 8. Stellar Structure and the Sun Ay 1 Lecture 8 Stellar Structure and the Sun 8.1 Stellar Structure Basics How Stars Work Hydrostatic Equilibrium: gas and radiation pressure balance the gravity Thermal Equilibrium: Energy generated =

More information

The Sun. The Chromosphere of the Sun. The Surface of the Sun

The Sun. The Chromosphere of the Sun. The Surface of the Sun Key Concepts: Lecture 22: The Sun Basic properties of the Sun The outer layers of the Sun: Chromosphere, Corona Sun spots and solar activity: impact on the Earth Nuclear Fusion: the source of the Sun s

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Announcements - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Review for Test #2 Oct 11 Topics: The Solar System and its Formation The Earth and our Moon

More information

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Brock University Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

Those invisible neutrinos

Those invisible neutrinos Those invisible neutrinos and their astroparticle physics Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai Bhoutics, IITM, March 31st, 2017 Those invisible neutrinos...

More information

BIG BANG SUMMARY NOTES

BIG BANG SUMMARY NOTES BIG BANG SUMMARY NOTES BIG BANG THEORY Studies of red-shifts of distant galaxies show that the universe is expanding. This and other observations has led to the Big Bang Theory The Big Bang Theory claims

More information

MAJOR NUCLEAR BURNING STAGES

MAJOR NUCLEAR BURNING STAGES MAJOR NUCLEAR BURNING STAGES The Coulomb barrier is higher for heavier nuclei with high charge: The first reactions to occur are those involving light nuclei -- Starting from hydrogen burning, helium burning

More information

1. Star: A object made of gas found in outer space that radiates.

1. Star: A object made of gas found in outer space that radiates. 1. Star: A object made of gas found in outer space that radiates. 2. Stars produce extremely great quantities of energy through the process of. The chemical formula for nuclear fusion looks like this:

More information

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Brock University Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Number of hours: 50 min Time of Examination: 18:00 15:50 Instructor:

More information

Weight of upper layers compresses lower layers

Weight of upper layers compresses lower layers Weight of upper layers compresses lower layers Gravitational equilibrium: Energy provided by fusion maintains the pressure Gravitational contraction: Provided energy that heated core as Sun was forming

More information

Supernovae, Neutron Stars, Pulsars, and Black Holes

Supernovae, Neutron Stars, Pulsars, and Black Holes Supernovae, Neutron Stars, Pulsars, and Black Holes Massive stars and Type II supernovae Massive stars (greater than 8 solar masses) can create core temperatures high enough to burn carbon and heavier

More information

Astrophysical Nucleosynthesis

Astrophysical Nucleosynthesis R. D. Gehrz ASTRO 2001, Fall Semester 2018 1 RDG The Chemical Evolution of the Universe 2RDG 1 The Stellar Evolution Cycle 3 RDG a v a v X X V = v a + v X 4 RDG reaction rate r n n s cm ax a X r r ( E)

More information

Solar Fusion. After Steele Hill, SOHO

Solar Fusion. After Steele Hill, SOHO Solar Fusion After Steele Hill, SOHO by Michael Gallagher for the BDAS Astronomy Course 28 th April 2006 Sources Books Michael Zeilic, Astronomy, the Evolving Universe, 5 th Edition, John Wiley, 1988 Simon

More information

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest. Overview: The Sun Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy

More information

1. Four different processes are described in List A. The names of these processes are given in List B.

1. Four different processes are described in List A. The names of these processes are given in List B. Nuclear fission and nuclear fusion 1. Four different processes are described in List A. The names of these processes are given in List B. Draw a line to link each description in List A to its correct name

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

1. Convective throughout deliver heat from core to surface purely by convection.

1. Convective throughout deliver heat from core to surface purely by convection. 6/30 Post Main Sequence Evolution: Low-Mass Stars 1. Convective throughout deliver heat from core to surface purely by convection. 2. Convection mixes the material of the star is the material carries the

More information

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?)

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) Unseen Influences Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from

More information

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture.

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture. Announcements BRIGHT Homework#3 will be handed out at the end of this lecture. Due October 14 (next Thursday) Review of Mid-term exam will be handed out Tuesday. Mid-term exam will be variants (if not

More information

Lecture 14: The Sun and energy transport in stars. Astronomy 111

Lecture 14: The Sun and energy transport in stars. Astronomy 111 Lecture 14: The Sun and energy transport in stars Astronomy 111 Energy transport in stars What is a star? What is a star composed of? Why does a star shine? What is the source of a star s energy? Laws

More information

For instance, due to the solar wind, the Sun will lose about 0.1% of its mass over its main sequence existence.

For instance, due to the solar wind, the Sun will lose about 0.1% of its mass over its main sequence existence. 7/7 For instance, due to the solar wind, the Sun will lose about 0.1% of its mass over its main sequence existence. Once a star evolves off the main sequence, its mass changes more drastically. Some stars

More information

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline 10/18/17 Lecture Outline 11.1 A Closer Look at the Sun Chapter 11: Our Star Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on

More information

Today in Astronomy 142

Today in Astronomy 142 Today in Astronomy 142! Elementary particles and their interactions, nuclei, and energy generation in stars.! Nuclear fusion reactions in stars TT Cygni: Carbon Star Credit: H. Olofsson (Stockholm Obs.)

More information

The Big Bang Theory, General Timeline. The Planck Era. (Big Bang To 10^-35 Seconds) Inflationary Model Added. (10^-35 to 10^-33 Of A Second)

The Big Bang Theory, General Timeline. The Planck Era. (Big Bang To 10^-35 Seconds) Inflationary Model Added. (10^-35 to 10^-33 Of A Second) The Big Bang Theory, General Timeline The Planck Era. (Big Bang To 10^-35 Seconds) The time from the exact moment of the Big Bang until 10^-35 of a second later is referred to as the Planck Era. While

More information

Neutrinos and the Universe

Neutrinos and the Universe Neutrinos and the Universe Susan Cartwright University of Sheffield Neutrinos and the Universe Discovering neutrinos Detecting neutrinos Neutrinos and the Sun Neutrinos and Supernovae Neutrinos and Dark

More information

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered The Sun Visible Image of the Sun Our sole source of light and heat in the solar system A very common star: a glowing g ball of gas held together by its own gravity and powered by nuclear fusion at its

More information

Astronomy 104: Second Exam

Astronomy 104: Second Exam Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

More information

GraspIT Questions AQA GCSE Physics Space physics

GraspIT Questions AQA GCSE Physics Space physics A. Solar system: stability of orbital motions; satellites (physics only) 1. Put these astronomical objects in order of size from largest to smallest. (3) Fill in the boxes in the correct order. the Moon

More information

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6 The Sun the main show in the solar system 99.8% of the mass 99.9999...% of the energy 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Homework due next time - will count best 5 of 6 The

More information

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery?

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery? Chapter 14 Our Star 14.1 A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source

More information

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He Our sole source of light and heat in the solar system A common star: a glowing ball of plasma held together by its own gravity and powered by nuclear fusion at its center. Nuclear fusion: Combining of

More information

Nuclear Energy 6/04/08. Lecture 22 1

Nuclear Energy 6/04/08. Lecture 22 1 Nuclear Energy Fission, Fusion, the Sun s s Energy What s s in a Nucleus The nucleus of an atom is made up of protons and neutrons each is about 2000 times the mass of the electron, and thus constitutes

More information

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes Today Stars Properties (Recap) Nuclear Reactions proton-proton chain CNO cycle Stellar Lifetimes Homework Due Stellar Properties Luminosity Surface Temperature Size Mass Composition Stellar Properties

More information

Astr 1050 Mon. March 30, 2015 This week s Topics

Astr 1050 Mon. March 30, 2015 This week s Topics Astr 1050 Mon. March 30, 2015 This week s Topics Chapter 14: The Sun, Our Star Structure of the Sun Physical Properties & Stability Photosphere Opacity Spectral Line Formation Temperature Profile The Chromosphere

More information

Nuclear Chemistry. Transmutations and the Creation of Elements

Nuclear Chemistry. Transmutations and the Creation of Elements Nuclear Chemistry Transmutations and the Creation of Elements Nuclear Fusion When two smaller elements are fused together to form a larger element. Fusion is Hard! There are two competing forces in an

More information

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics Subatomic Physics Section 1 Preview Section 1 The Nucleus Section 2 Nuclear Decay Section 3 Nuclear Reactions Section 4 Particle Physics Subatomic Physics Section 1 TEKS The student is expected to: 5A

More information

Solar Neutrinos. Learning about the core of the Sun. Guest lecture: Dr. Jeffrey Morgenthaler Jan 26, 2006

Solar Neutrinos. Learning about the core of the Sun. Guest lecture: Dr. Jeffrey Morgenthaler Jan 26, 2006 Solar Neutrinos Learning about the core of the Sun Guest lecture: Dr. Jeffrey Morgenthaler Jan 26, 2006 Review Conventional solar telescopes Observe optical properties of the Sun to test standard model

More information

Q1. Describe, in as much detail as you can, the life history of a star like our Sun

Q1. Describe, in as much detail as you can, the life history of a star like our Sun Q1. Describe, in as much detail as you can, the life history of a star like our Sun..................................... (Total 6 marks) Q2. The energy radiated by a main sequence star like the Sun is

More information

Today The Sun. Events

Today The Sun. Events Today The Sun Events Last class! Homework due now - will count best 5 of 6 Final exam Dec. 20 @ 12:00 noon here Review this Course! www.case.edu/utech/course-evaluations/ The Sun the main show in the solar

More information

A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: How Stars Work. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: How Stars Work Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu October 07, 2014 Read: Chaps 14, 15 10/07/12 slide 1 Exam scores posted in Mastering Questions

More information

[2] State in what form the energy is released in such a reaction.... [1]

[2] State in what form the energy is released in such a reaction.... [1] (a) The following nuclear reaction occurs when a slow-moving neutron is absorbed by an isotope of uranium-35. 0n + 35 9 U 4 56 Ba + 9 36Kr + 3 0 n Explain how this reaction is able to produce energy....

More information

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun The Sun The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x 10 33 g = 330,000 M Earth = 1 M Sun Radius of Sun = 7 x 10 5 km = 109 R Earth = 1 R Sun Luminosity of Sun =

More information

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. HW3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused by falling matter from the atmosphere of

More information